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We use an implicit alternating direction numerical procedure to estimate the
value of a fixed-rate mortgage (FRM) with embedded default and prepayment
options. The value of FRMs depends on interest rates, the house value, and mort-
gage maturity. Our numerical results suggest that the joint option value of pre-
payment and default is considerably high, even at loan origination. We extend 
the model to include prepayment penalties in FRM valuation. © 2009 Wiley
Periodicals, Inc. Jrl Fut Mark 29:840–861, 2009
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INTRODUCTION

We apply an option-based approach to estimate the value of a fixed-rate mort-
gage (FRM). Specifically, we consider embedded prepayment and default
options in FRMs. Using numerical procedures, we demonstrate how risk factors
impact the value of an FRM and discuss pricing, prepayment, and default issues
in mortgage markets. These risk factors include interest rate volatility, house
value return volatility, the loan-to-value (LTV) ratio, and prepayment penalties.
Our model incorporates an implicit finite difference method with a modified
low-upper (LU) triangular decomposition algorithm as in SIAM (1999).

The valuation of mortgage debt requires modelling the optimal prepay-
ment and default behavior of the borrower. The view of prepayment and default
as options held by the borrower has emerged over the last three decades. The
decision to terminate the mortgage either by prepayment or default is consid-
ered as endogenous. The option-based approach to mortgage valuation leads to
the solving of a partial differential equation (PDE) with two state variables, the
interest rate and the house price. Prior contributions in this line of research are
Kau, Keenan, Muller, and Epperson (1992, 1993), Kau and Keenan (1995),
and Deng, Quigley, and Van Order (2000), among others. These two-factor
models recognize the interest rate and the underlying house value as the main
sources of risk and determinants of mortgage termination, either by default or
prepayment. Two-factor models have the advantage of being more general, but
they raise the problem of solving a nonlinear PDE with two state variables.
More recently, Kariya, Pliska, and Ushiyama (2002) and Downing, Stanton,
and Wallace (2005) focus on prepayment risk taking into account the underly-
ing house value.

An alternative to the option-based approach is the econometric approach,
where default and prepayment are not determined endogenously, but modelled
using empirical data (see Kau, Keenan, & Smurov, 2004; Schwartz & Torous,
1989; Titman & Torous, 1989). However, microeconomic factors that drive the
mortgage origination market can change dramatically. As Kalotay, Yang, and
Fabozzi point out: “Econometric prepayment models have consistently failed
during fast prepayment periods. Although mortgage-backed security analysts
continually update their prepayment models, their models will always lag
behind shifts in the microeconomic structure of the mortgage market”
(Kalotay, Yang, & Fabozzi, 2000, p. 954).

The option-based approach is derived from the contingent claims analysis
of Cox, Ingersoll, and Ross (1985a), which models derivative securities based
on a PDE. The PDE modelling of mortgage valuation with options to prepay or
default has two state variables: the interest rate and the value of the underlying
house. Because a closed-form solution to the PDE is often unfeasible, numerical
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methods are generally used. Due to the free-boundary problem posed by the
early-exercise property of the American-style options to prepay and default,
explicit finite difference methods are one way to effectively estimate the value
of mortgage-related derivatives (Azevedo-Pereira, Newton, & Paxson, 2000;
Kau et al., 1992, 1993; Newton, Azevedo-Pereira, & Paxson, 2002).

The implicit alternating direction (IAD) method we propose in this study
differs from the previous work in several aspects. First, we propose an implicit
finite difference method to solve the PDE. Unlike the explicit finite difference
method, the implicit method does not suffer from instability due to restrictions
on time steps. The steps of the state variables—interest rate and house value—
can be small and the time step large without instability problems. The IAD
method is stable for both small and large time steps and the residual error term
is smaller, e.g., in the order of O(�t, �r2, �H2) compared to O(�t, �r2, �H2),
where � is the grid size of the explicit method (Wilmott, 1998).

Second, we use a modified LU triangular decomposition algorithm (SIAM,
1999) to improve the computational efficiency. The LU decomposition algo-
rithm is a well-developed mathematical method to solve sparse linear systems
of equations, relieving memory space and reducing rounding errors. We further
modify the backward substitution procedure of LU decomposition to impose
the early-exercise constraint of an American-style option.

Finally, we extend the model to include transaction costs to the borrower
of exercising the prepayment or default options. The transaction cost is
assumed to be a constant portion of the unpaid balance on prepayment termi-
nation or a constant portion of the value of the underlying house on default ter-
mination, as in Stanton (1995) and Kalotay, Williams, and Fabozzi (2004).

We examine the theoretical value of an FRM. In our numerical approxi-
mation, we first consider a callable but non-defaultable FRM, and then the
value of a callable and defaultable FRM. The numerical illustration with
benchmark parameters similar to Kau et al. (1993) indicates that the value of
embedded prepayment and default options in a conventional mortgage is
about 6.8% of the value of an equivalent option-free mortgage, even at mort-
gage origination.

We contribute to the finance literature in two distinct and important ways.
First, we demonstrate the application of the IAD method and its effectiveness
in pricing mortgage-backed securities with embedded options. The IAD
method with the LU decomposition algorithm improves upon both the accuracy
and the convergence stability compared to previously used numerical methods.
Second, we document a significant value of the prepayment option and the
default option present in most conventional mortgages, which have been tradi-
tionally understated or overlooked. The joint option value is significant not only
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at loan origination but also for the duration of the mortgage. Further, we illus-
trate the optimal default boundary for an amortizing FRM and discuss its
implications for the current sub-prime mortgage markets in the United States.

The remainder of this article is organized as follows: the second section
sets up a theoretical framework for valuing the holding of a mortgage in the pres-
ence of prepayment and default options. The third section transforms the under-
lying PDE to obtain a numerical solution. The fourth section discusses the
boundary conditions for parameters. The fifth section outlines procedures in
the free-boundary IAD method. The sixth section presents numerical results
and their implications. Finally, the last section concludes.

VALUATION FRAMEWORK

Fixed-Rate Scheduled Payments in Continuous Time

Although payments from an FRM occur at discrete intervals, most traded 
mortgage-backed and fixed-income securities accrue interest daily. Thus, the
assumption of continuous payment is a convenient means of approximating 
the way in which FRM securities are actually valued. Consequently, the option to
default on a mortgage may be treated as an American-style option rather than a
European-style option with multiple stand-alone exercise dates, which are the
scheduled mortgage payment dates.

The following notation describes the scheduled continuous payment and
the components of mortgage value:

M The initial mortgage balance, which is the mortgage loan amount at
origination.

T The scheduled mortgage maturity.
t The mortgage time into term, 0 � t � T, with t equal to zero at mort-

gage origination and equal to T at maturity.
R0 The annualized effective mortgage contract rate at loan origination.

This interest rate is used to determine the scheduled payment rate and the
unpaid balance during the remaining life of the mortgage.

m The scheduled rate of instantaneous continuous payment, m, is deter-
mined by contract maturity T, the mortgage contract rate R0, and the par value
of the mortgage M. The payment over time interval �t will be m�t.

M(R0, t) The mortgage balance at time t, the present value of remaining
payment stream discounted at R0.

r(t) The instantaneous spot rate at time t driven by the single factor Cox,
Ingersoll, and Ross (1985b) (CIR) process. It varies through time and is further
discussed below.
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A[r(t)] The present value of future scheduled payments in the absence of
prepayment and default options. This present value of remaining scheduled
payments is discounted by the current term structure of interest rates. Note
that A[r(t)] is not a function of the house value. It is purely determined by the
current term structure of interest rates, represented by r(t), the remaining
scheduled payments m, and the remaining life of the mortgage T � t. We call it
the value of the option-free mortgage.

H(t) The market value of the house at time t.
VB[r(t), H(t)] The present value of future payments with prepayment and

default options. We call this the value of the mortgage to the borrower. It is a
function of the term structure of interest rates r(t), remaining mortgage pay-
ments M(R0, t), and the house value H(t). At any time, the borrower must make
the decision to prepay, default, or service the mortgage. When the interest rate
r(t) and the underlying house value H(t) are high, it is optimal for the borrower
to continue servicing the mortgage. This domain defines a continuation region
G, where the PDE implied by Cox et al. (1985a) is satisfied. In the prepayment
and default region, , it is optimal to terminate the mortgage by either prepay-
ment or default. In the prepayment region, the mortgage value is replaced by
M(R0, t), and in the default region by H(t). In fact, in the prepayment and
default region, the mortgage does not exist any more. Before the state variables
reach the termination boundary �G, the borrower will have already terminated
the mortgage by either prepayment or default. It may be more explicitly
expressed as VB[r(t), H(t), M(R0, t), m].

J[r(t), H(t)] The value of the joint prepayment and default option is a
function of the term structure of interest rates and the underlying house value,
i.e., J[r(t), H(t)] � A[r(t)] � VB[r(t), H(t)].

p The penalty for prepayment or refinancing fees. We assume that the
penalty is a constant fraction of the payoff, i.e., p � jM(R0, t), where j is a
fraction of the payoff at prepayment.

Based on the above set of definitions, we have the following relations:

(1)

(2)

A[r(t)] is defined so as not to allow for prepayment or default. The value of
the option-free mortgage is a function of current term structure of interest rates:

M(R0, t) � �
T�t

0

e�R0umdu � m�
T�t

0

e�R0udu � M
1 � e�R0(T�t)

1 � e�R0T
.

M � M(R0, 0) � �
T

0

e�R0tmdt and m �
M

�
T

0

e�R0tdt

�M
R0

1 � e�R0T

G
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(3)

The Joint Prepayment and Default Option Value

The value of mortgage debt to the lender is reduced by the option to prepay or
to default because the borrower may prepay or default, but not both, at any
time. Furthermore, when default occurs, the borrower not only surrenders the
house but also terminates the prepayment option, which has value. Similarly,
by prepaying, the borrower foregoes the default option. Therefore, the default
and prepayment options should not be valued independently.

We refer to the value of default and prepayment options as the value of the
joint option. Let C represent the value of the option to prepay for a non-
defaultable mortgage, and D represent the value of the option to default for a
non-callable mortgage. The value of the joint option, J, is a non-decreasing
function of C and D; otherwise, there is an arbitrage opportunity. It follows that

(4)

For convenience, we refer to the value of mortgage debt to the borrower,
VB, as the mortgage value. This value is the value of holding a mortgage with
embedded default and prepayment options:

(5)

Note that the value of the mortgage to the borrower reflects a combination
of a liability in the amount of the option-free mortgage and a long position in
the joint option to default or prepay.

We also need to point out that in computing the value of the mortgage to
the borrower, we assume that markets are efficient and that the borrowers
rationally and optimally exercise the default and prepayment options. However,
in reality many borrowers may sub-optimally exercise default or prepayment
options due to personal or non-financial reasons, such as job relocation, death,
marital status change, or moving. Personal and non-financial reasons may
induce or force sub-optimal early exercises of default or prepayment options.
Consequently, the market value of a mortgage will reflect both optimal and
sub-optimal default and prepayment from various borrowers. Some mortgage
contracts are designed to appeal to different clienteles with different private
information about the likelihood of moving, for example. Such a contract may
offer high points with low rates to attract borrowers who tend to keep the mort-
gage longer, and low points with high rates to appeal to potential movers.

VB[r(t), H(t)] � A[r(t)] � J[r(t), H(t)].

J[r(t), H(t)] � Max5C[r(t), H(t)], D[r(t), H(t)]6.

A[r(t)] � �
T�t

0

e�r(u)umdu.
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We price mortgages assuming optimal prepayment and default. Such
mortgages carry a zero NPV to borrower who optimally exercises prepayment
and default options, and carry a negative NPV to borrower who sub-optimally
exercises these options.

The Economic Environment

The borrower faces uncertainty in the spot interest rate and the house value. To
describe the diffusion process of interest rates, we introduce additional nota-
tion. The term structure of interest rates is assumed to be generated from the
CIR process describing the spot interest rate r(t) as a mean-reverting square
root diffusion process:

(6)

where the parameters are:
k The speed of adjustment in the mean-reverting process.
u The long-term average spot interest rate.
sr The instantaneous standard deviation of spot interest rate.
zr A standardized Wiener process of the interest rate.

Equation (6) has the advantage over the Vasicek (1977) model in allowing
only a positive nominal interest rate. The slope of the term structure of interest
rates depends on the parameters of the model. Provided that r0 is less than u,
the CIR model suggests that the slope of the term structure of interest rates
will be positive and interest rates will converge to the mean value in the long
run. This property is convenient for us to analyze the mortgage value in differ-
ent economic environments.

We treat the house value, H(t), as a lognormal diffusion process. Because
the homeowner receives benefits from living in the house—saving the rent paid
to live in a comparable property—we deduct the service flow, d, provided by the
house as a continuous cash dividend being paid to the homeowner:

(7)

where the parameters are:
m The instantaneous rate of house value appreciation.
d The continuously compounded service flow provided by the house.
sH The instantaneous standard deviation of returns on the house value.
zH A standardized Wiener process of the house value.

It is assumed that houses are traded at no risk premium, which allows m to
be replaced by r. The correlation between the two processes is indicated by

dH
H

� (m � d)dt � sHdzH

dr � k(u � r)dt � sr2rdzr
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where r is the instantaneous correlation between the two Wiener processes.
The CIR framework provides a general methodology for the valuation of con-

tingent claims. We may write the PDE of the mortgage value, VB[r(t), H(t)], as a
function of the state variables, the house value, H, and the spot interest rate, r:

(8)

No analytic solution to the PDE is available; therefore, a numerical solu-
tion must be sought. We solve the system by working backward in time, using a
finite difference mesh, identifying points at which early exercise is optimal.

TRANSFORMATION OF THE PDE

We solve the PDE numerically by transforming the variables, namely, convert-
ing the coefficients of the PDE to constants, yielding a linear form. The bound-
ary conditions are then more accurately and easily applied. From the PDE
equation (8), any derivative with respect to H has a factor H multiplying it. This
pattern suggests the natural logarithmic transformation q � ln(H). Because the
house value follows a lognormal random walk, we transform H into its natural
logarithm value in the grid. The logarithmic transformation means that many
grid points are spread around low values of the house where the default option
is more likely to be in-the-money and thus exercised. The transformation is

(9)

The function q has an infinite domain (�q, �q) because the natural
boundaries for the house value are 0 and q. In any practical application, the
state variable will remain finite. A “large” house value, , can thus approx-
imate infinity, providing a boundary condition where the default option is
worthless. In practice, the upper bound, , does not have to be too large, typi-
cally three or four times the exercise price (Wilmott, 1998). For the lower
bound, we ignore the negative log value of the house value. Consider, for exam-
ple a house value of $1; that is, H � 1. The transformed house value variable is
thus .

Natural boundaries for the interest rate grid are 0 and q. Rather than
solving Equation (8) directly, we use the transformation

(10)y �
1

1 � rb
.

q � [0, ln(H)]

H

H � H

q � ln(H).

� (r � d)H
0VB

0H
�
0VB

0t
� rVB � m � 0.

1
2

H2sH
2 0

2VB

0H2 � rH2rsHsr

02VB

0H0r
�

1
2

rsr
2 0

2VB

0r2 � k(u � r)
0VB

0r

dzr(t)dzH(t) � rdt
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For some constant b � 0, we map the infinite range [0, q) of r into the
finite range [0, 1] for y. The factor b is chosen so as to center the range of most
concern for the state variable in the grid. Equation (8) is a backward parabolic
PDE. We transform it into a forward equation by reversing the time dimension:

(11)

These transformations convert the original PDE into the following equa-
tion whose value is a function of the new variables t, q, and y:

(12)

With the transformed variables t, q, and y, we now have a three-
dimensional box defined in the space .

THE BOUNDARY CONDITIONS

To solve Equation (12), not only do we need to apply the finite difference
approximations to the first and second derivatives within the lattice but also we
must satisfy all boundary conditions. The boundary conditions can be identi-
fied at the faces and edges of the three-dimensional box. We will consider each
face in turn, followed by the edges where the faces intersect.

The Log Value of the House Value is Zero

When the log value of the house value is zero, i.e., H(t) � 1, the value of the
mortgage debt owed by the borrower cannot be more than the house value. 
The borrower’s rational behavior is to default. Consequently, the prepayment
option is worthless. The mortgage value is then equal to $1, the house value:

(13)

In fact, the homeowner will have already defaulted for a long time before
the log value of the house value approaches zero because the borrower holds an
American-style default option. We assign the mortgage value to be the option
payoff in the prepayment and default regions, where it is optimal for the bor-
rower to exercise either of the two options. This assignment provides us a
boundary condition so that the mortgage value can be defined in the entire

VB[r(t), H(t)] � H(t) � 1.

[0, T] � [0, ln(H)] � [0, 1]

� [s2
rb

2ry3 � bk(u � r)y2]
0VB

0r
�
0VB

0t
� rVB � m � 0.

1
2
s2

H

02VB

0q2 � ar � d �
1
2
d2

Hb 0VB

0q
�

1
2

rs2
rb

2y4 0
2VB

0y2

t � T � t.
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[r(t), H(t)] space. At this boundary where H(t) � 1, the value of the joint option
equals the value of the option-free mortgage minus the house value:

(14)

The Interest Rate is Zero

When the interest rate is zero, there is no discounting. The boundary condition
is then either in a prepayment region or in a default region (Kau et al., 1992).
In other words, the borrower will either prepay or default with certainty:

(15)

The House Value Becomes Very Large

As the house value tends to infinity, the value of the default option approaches
zero. This corresponds to one face of the box where the house value has an
extreme value as indicated in the following equation:

(16)

Because the value of the default option tends to zero, the mortgage value
at this extreme is given by

(17)

At this face of the box, the mortgage contract is equivalent to a callable but
non-defaultable one, and must therefore satisfy the degenerate form:

(18)

Before addressing the PDE of Equation (12), we must solve Equation (18).
In the absence of the house value in Equation (18), we may solve for it at every
interest rate step at each point in time. As the interest rate approaches infinity,
the value of a callable mortgage approaches zero. As the interest rate approach-
es zero at the other extreme, the borrower will prepay with certainty, with the
mortgage value equalling the unpaid balance M(R0, t).

The Interest Rate Becomes Very Large

As interest rates approach infinity, the present value of any future payments
approaches zero. At this boundary, the present value of the option-free mortgage

0VB

0t
�

1
2
s2

r r
02VB

0r2 � k(u � r)
0VB

0r
� rVB � m � 0.

lim
HS	

VB[r(t), H(t)] � A[r(t)] � lim
HS	

C[r(t), H(t)].

lim
HS	

D[r(t), H(t)] � 0.

drt � kudt and VB[r(t), H(t)] � Min[H(t), M(R0, t)].

J[r(t), H(t)] � A[r(t)] � 1.
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is worthless. The borrower cannot further minimize the mortgage value 
by defaulting or prepaying. We can therefore write the following:

(19)

Both H and r Have Extreme Values

Next, we consider the edges of the box where the extreme values of H and r
occur simultaneously. First, we take r � 0 and consider the two extremes of the
house value, H � 1 and H approaching infinity:

(20)

and

(21)

In Equation (20), the mortgage value is replaced with the house value at
default as the borrower will default with certainty at this boundary. When the
interest rate and the house value approach zero, the payoff from default domi-
nates that from prepayment. The borrower will default instead of prepay.
Equation (21) suggests that the borrower will prepay with certainty as the
interest rate approaches zero and the house value tends to infinity.

Finally, when r tends to infinity, the conditions on the rest of face H versus
time are given by the following equations:

(22)

(23)

At this boundary, as r goes to infinity, A[r(t)], the value of the option-free
mortgage, approaches zero. Because 0 � VB � A[r(t)], the mortgage value VB

approaches zero, default occurring.

The Initial Condition at Maturity

At maturity, the default option, the prepayment option, and the value of the
mortgage are worthless:

(24)VB[r(T), H(T)] � 0

lim
rS	
HS	

VB[r(t), H(t)] � 0

lim
rS	
HS0

VB[r(t), H(t)] � 0

lim
HS	

VB[r(t), H(t)] � M(R0, t).

VB[r(t), H(t)] � H(t) � 1

lim
rS	

A[r(t)] � 0 and lim
rS	
VB[r(t), H(t)] � 0.
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(25)

and

(26)

The mortgage is fully amortized; thus, the value of prepayment and default
options vanishes.

THE TREATMENT OF FREE BOUNDARY USING
THE IAD METHOD

Because the principles of the finite difference method are well known in the
mortgage valuation literature, only an outline of the particular technique is
provided here. We focus on the treatment of the free-boundary problem in an
implicit numerical scheme with a modified LU decomposition algorithm.

In the finite difference method of solution to the PDE, small but finite
changes in each dimension of the two state variables, i.e., interest rate and
house value, as well as time are considered. The value of the mortgage to the
borrower is then computed. Terms in the PDE are approximated by linear
slopes across the grid. The idea behind the finite difference method is to
approximate the first and second derivatives in the PDE with discrete small
increments in each dimension of the state variables in the lattice while moving
forward in time. Knowing terminal conditions, it is possible to work backward
in time, valuing the derivative at each point on the grid, until the initial values
are obtained. The new values are found using existing values at the previous
time step, working backward in time.

In an explicit scheme, each new value is calculated, respectively, using sev-
eral existing values. The explicit method calculates each value individually. The
optimal early-exercise boundary can be found by examining the difference
between the exercise payoff and the calculated new mortgage value. The differ-
ence will approach zero at the optimal early-exercise boundary. Thus, the opti-
mal prepayment boundary can be determined by moving backward in time from
t � T to t � 0. At each time step, the interest rate dimension is moved 
from infinity to zero. Although the explicit method has the advantage of sim-
plicity, it raises problems of stability and speed of solution. To overcome these
problems, the size of the time step has to be sufficiently small. For example,
previous work adopted a time step size of month, such as in Newton et al.
(2002) and Kau et al. (1992, 1993). Even if the time step is small, the round-
ing errors in computation will tend to be considerably large.

The alternative implicit method is more complicated in calculating all the
new values at the same time using all known values at the previous time step.

1
60

C[r(T), H(T)] � 0

D[r(T), H(T)] � 0
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The implicit method requires solving a linear system of equations, and the new
values are determined by the solution of the linear system of equations, linking
the values to each other.

We use the LU triangular decomposition algorithm (SIAM, 1999) to solve
the linear system of equations. The LU decomposition algorithm is a well-
developed mathematical method to solve a sparse linear system of equations,
which can relieve memory space and reduce rounding errors.

In numerical computation, we further modify the backward substitution
procedure of LU decomposition by applying the free-boundary constraints.
With the modified backward substitution procedure, we check whether exer-
cise is optimal at the same time the simultaneous equations are solved. This
algorithm for accommodating the early-exercise feature of an American-style
option is proposed by Brennan and Schwartz (1977) and further analyzed in
Jaillet, Lamberton, and Lapeyre (1990) and Ikonen and Toivanen (2004).

We first consider a callable but non-defaultable FRM denoted by .
We use the Crank–Nicholson algorithm (Crank & Nicholson, 1947), which has
desirable stability and convergence properties, to solve Equation (18). For con-
venience, we use a time interval of of a month, with mortgage maturity of
300 months or 25 years, yielding a total of 4,800 time intervals. The prepay-
ment decision is not simply triggered when the value of an equivalent option-
free mortgage A[r(t)] exceeds the unpaid balance M(R0, t). Instead, prepayment
occurs when the mortgage value exceeds the unpaid balance.
Therefore, the boundary condition for a callable but non-defaultable mortgage,

, is

(27)

To identify the prepayment boundary, we employ an explicit finite difference
scheme to make Equation (18) discrete and utilize the smooth-pasting condition
(Barone-Adesi, 2005) of prepayment boundary. See Appendix A for details.

Note that the house value H(t) vanishes in Equation (27) because it is
irrelevant to the valuation of a callable but non-defaultable mortgage .
To include transaction costs, i.e., prepayment penalty or refinancing fees,
associated with prepayment, this boundary condition can be modified as

, where j is the constant portion of the payoff
amount when prepayment occurs. The transaction cost can be a prepayment
penalty, a refinancing fee, or implicitly the difficulty of qualifying for a new
mortgage loan. For illustration purposes, we include an example of a prepay-
ment penalty with j equal to 3% of the payoff in the sixth section. This choice
is motivated by the current practice of mortgage markets. The amount of

VND
B [r(t)] � M(R0, t)(1 � j)

VND
B [r(t)]

VND
B [r(t)] � M(R0, t).

VND
B [r(t)]

VND
B [r(t)]

1
16

VND
B [r(t)]



Mortgage Prepayment and Default Options 853

Journal of Futures Markets DOI: 10.1002/fut

prepayment penalty varies across different countries and different types of
loan arrangements. In the United States, “. . . 70% of sub-prime loans have
such (prepayment) penalties, . . . typically involving six months of interest”
(Morgenson, 2007).

We then value an FRM with options to prepay and default. Note that the
default decision is not simply triggered when the value of an equivalent option-
free mortgage A[r(t)] exceeds the house value H(t). Instead, default occurs
when the mortgage value, VB, exceeds the house value H(t). For a callable and
defaultable FRM, early termination either by prepayment or default occurs
when the mortgage value exceeds the minimum of the callable but non-defaultable
mortgage and the house value. The boundary conditions impose the following
constraint:

(28)

With all the known boundaries and initial conditions, we can solve PDE
(12) implicitly in one factor and explicitly in the other factor at each time step
by using the IAD method. We incorporate Equation (28) in the numerical pro-
cedure by modifying the LU decomposition algorithm to determine the optimal
early-exercise boundary. Because only one direction is implicit, the solution by
IAD method is no more difficult than in the one-factor solution (Wilmott,
1998). With the modified LU decomposition algorithm, the free-boundary con-
ditions are incorporated into the process to solve Equation (12).

NUMERICAL RESULTS

Benchmark Parameters

This section presents and discusses the numerical results provided by the
model. Figure 1 and Tables I and II illustrate the mortgage value to the bor-
rower in the [r(t), H(t)] space for different macroeconomic parameter specifi-
cations. Computations are based on the following benchmark parameters: sr �

7% p.a., sH � 10% p.a., u� 10% p.a., k� 25% p.a., d� 7.5% p.a., r0 � 8% p.a.,
and r � 0. Mortgage contract parameters are: T � 300 months, R0 � 9%,
M � $100,000, and LTV ratio � 80%.

The parameter values are within the ranges considered in the literature
(e.g., Kau et al., 1993; Titman & Torous, 1989) and they represent typical eco-
nomic parameters presented in the U.S. mortgage markets. Note also that the
term structure is chosen to be upward sloping.

VB[r(t), H(t)] � Min5H(t), VNDB [r(t)]6.
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Illustrative Results

Figure 1 presents the contour of VB, mortgage value to the borrower, at mortgage
origination as a function of the underlying house value and spot interest rates.
We assume that the FRM carries an initial mortgage balance of $100,000 with
a mortgage term of 25 years. Note that from Equation (5), VB[r(t), H(t)] �

A[r(t)] � J[r(t), H(t)], the mortgage value to the borrower can be viewed as the
difference between an otherwise-equivalent option-free mortgage value A[r(t)]
and the joint prepayment and default option premium J[r(t), H(t)]. A[r(t)] is
independent of the house value because it is free of default risk. It reflects only
the present value of a stream of prepayment-risk-free mortgage payments dis-
counted at the current term-structure-implied spot rates. J[r(t), H(t)] considers
both prepayment risk, affected mostly by changes in term structure of interest
rates, and default risk, affected by both term structure of interest rates and the
underlying house value.
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FIGURE 1
Mortgage value to the borrower VB[r(t), H(t)] at mortgage origination with prepayment and default

options. Figure 1 displays the contour of mortgage value as a function of underlying house value and spot
interest rates. Computations are based on the following benchmark parameters: sr � 7% p.a., sH � 10%
p.a., u � 10% p.a., k � 25% p.a., d � 7.5% p.a., r0 � 8% p.a., and r � 0. Mortgage contract parameters
are: T � 300 months, R0 � 9%, M � $100,000, and LTV ratio � 80%. We use logarithmic scaling for

the house value axis and label it with the actual house value. At low house values, the house value itself
dominates other factors. The mortgage value equals the house value because the borrower will default
with certainty, which is characterized by a linear relation between the house value and the mortgage

value. At higher house values, changes in the house value have little effect on the mortgage value and the
prepayment option assumes greater significance. At low spot rates, changes in spot rates have little effect

because the borrower will default at a low house value or otherwise prepay.
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It can be observed from Figure 1 that at low house values, the house value
itself dominates other factors. When the house value is sufficiently low, the bor-
rower defaults with certainty, regardless of the level of spot interest rates. At higher
house values, changes in the house value have little effect on the mortgage value.
The default option is deep out-of-the-money and is essentially almost worthless.
However, the prepayment option assumes greater significance.

TABLE I

Mortgage Value and Joint Option Value as a Function of Interest Rate Volatility at Mortgage
Origination

Standard The Joint Mortgage Value Mortgage Value
Deviation of Option-Free Option Value VB[r(t), H(t)] Without VB[r(t), H(t)] With
Spot Interest Mortgage Value J[r(t), H(t)] Prepayment Penalty a 3% Prepayment
Rates sr A[r(t)] ($) ($) ($) Penalty ($)

0.04 102,327 2,429 99,898 102,290
0.07 106,658 6,838 99,820 102,311
0.10 116,179 17,137 99,042 101,687
0.15 131,426 32,868 98,558 101,277

Note. This table reports mortgage value VB[r(t ), H(t)] with and without prepayment penalty and joint options value for different levels
of interest rate volatility. Computations are based on the following benchmark parameters: sH � 10% p.a., u � 10% p.a., k � 25%
p.a., d� 7.5% p.a., r0 � 8% p.a., and r � 0. Mortgage contract parameters are: T � 300 months, R0 � 9%, M � $100,000, and loan-
to-value (LTV) ratio � 80%. Note that VB[r (t ), H(t )] � A[r(t )] � J [r(t), H(t )], where A[r(t )] is the mortgage value without default and
prepayment options and J[r(t), H(t )] is the joint default and prepayment option value. As interest rate volatility increases, the value of
the option-free mortgage A[r (t )] increases due to Jensen’s inequality. At the same time, the joint default and prepayment option value
J [r(t ), H(t )] also increases because both the default option and the prepayment option have a higher value as interest rate volatility
increases. This table demonstrates that the mortgage value is a decreasing function in interest rate volatility. Higher interest rate
volatility is associated with lower mortgage values. The statement holds regardless of prepayment penalties. The prepayment penal-
ty has a significant effect on the value of mortgage. When a 3% prepayment penalty is imposed, the value of the mortgage increases
about 1%. Furthermore, for the benchmark case where the standard deviation of interest rates is 0.07, the joint option value is $6,838,
or about 6.8% of the loan size.

TABLE II

House Value Return Volatility and Mortgage Value VB[r(t), H(t)] at Mortgage Origination
Under Different Loan-to-Value (LTV) Ratios

Standard Deviation of 
Mortgage Value VB[r(t), H(t)]

House Value Returns sH LTV � 70% ($) LTV � 80% ($) LTV � 90% ($) LTV � 100% ($)

0.07 99,934 99,923 99,833 98,708
0.10 99,904 99,820 99,610 98,587
0.15 99,819 99,421 98,696 97,486
0.20 99,540 98,517 96,626 94,524

Note. This table illustrates the mortgage value for different levels of house value return volatility and loan-to-value (LTV) ratios.
Computations are based on the following benchmark parameters: sr � 7% p.a., sH � 10% p.a., u � 10% p.a., k � 25% p.a., d � 7.5%
p.a., r0 � 8% p.a., and r� 0. Mortgage contract parameters are: T � 300 months, R0 � 9%, and M � $100,000. The higher the house
value volatility, the higher the value of the default option premium, and consequently the lower the mortgage value. Furthermore, high-
er LTV ratios are associated with higher default risk and lower mortgage value for all different levels of house value return volatility.
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It is worthwhile to point out our assumptions to reach the above simulation
results. We assume the correlation of interest rates and house value to be zero.
However, empirical results indicate that the correlation is generally negative
(Schwartz & Torous, 1989). In Figure 1, the mortgage value drops significantly
as interest rates increase and simultaneously the house value falls.

The values of both the option-free mortgage A[r(t)] and the prepayment
option C[r(t), H(t)] vary inversely with the interest rate. For a very large house
value, when the interest rate is high, the mortgage value is a decreasing convex
function of the interest rate. On the other hand, when the interest rate is rela-
tively low, the prepayment option becomes more valuable and the mortgage
value becomes a decreasing concave function of the interest rate. Negative
convexity is the driving factor of this phenomenon. The behavior of the mort-
gage value to the borrower is much like that of a callable bond value. When the
bond yield is high, the callable bond exhibits positive duration and positive con-
vexity. However, when the bond yield is sufficiently low, the callable bond
exhibits positive duration and negative convexity. In this case, the prepayment
option is in-the-money.

In Table I we report mortgage value VB with and without prepayment
penalties as a function of interest rate volatility. Note that VB[r(t), H(t)] �

A[r(t)] � J[r(t), H(t)], where A[r(t)] is the value of an equivalent option-free
mortgage and J[r(t), H(t)] is the joint default and prepayment option value. To
separate the effects of the joint default and prepayment option from the effects
of term structure of interest rates, we calculate the value of an equivalent
option-free mortgage A[r(t)]. A[r(t)] is computed as the sum of the value of
zero-coupon bonds equal to the payment stream discounted at risk-free spot
interest rates (Hull, 2000, p. 570). As interest rate volatility increases, the value
of the option-free mortgage value A[r(t)] increases due to Jensen’s inequality. At
the same time, the joint default and prepayment option value J[r(t), H(t)] also
increases because both the default option and the prepayment option assume a
higher value as interest rate volatility increases. Consequently, the mortgage
value VB[r(t), H(t)] may either increase or decrease. However, numerical analy-
sis suggests that the mortgage value is a decreasing function of interest rate
volatility, as suggested in Table I. Higher interest rate volatility is associated
with lower mortgage value. The statement holds regardless of the presence of
prepayment penalties.

In fact, we see that the 3% prepayment penalty has a significant effect on
the value of mortgage. When a 3% prepayment penalty is imposed, the value of
the mortgage increases by more than 1%. For example, in the base case in the
second row of Table II, where we set sr � 0.07, the option-free mortgage value
A[r(t)] is $106,658. The mortgage value to the borrower VB[r(t), H(t)] is
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$99,820, which implies that the value of the joint default and prepayment
option J[r(t), H(t)] is $6,838. After we impose a 3% prepayment penalty, the
mortgage value to the borrower increases to $102,311. The value of joint default
and prepayment option is $6,838, representing about 6.8% of the mortgage
balance at origination, an economically significant amount. It suggests the
importance of embedded options in conventional FRMs.

In Table II, the volatility of the rate of return on the house, measured by
its standard deviation, has a negative effect on mortgage value. This is
explained by the fact that an increase in the volatility of the rate of return of the
house creates a relatively higher likelihood for the contract to reach the default
region; therefore, the default option has a greater value. Consequently, the
value of holding the mortgage VB[r(t), H(t)] falls.

Table II also demonstrates that the LTV ratio has similar, but more signif-
icant effects than house value return volatility on mortgage value VB[r(t), H(t)].
For a given house value return volatility and term structure of interest rates, the
expected value of prepayment and default increases as the LTV ratio increases.
Consequently, the mortgage value decreases accordingly.

Figure 2 demonstrates the borrower’s default strategy for an FRM with
LTV � 80% and mortgage initial balance � $100,000 at two years after mort-
gage origination. The optimal default boundary is identified at the same time
that the mortgage value is calculated by imposing the constraint indicated in
Equation (28). The borrower will only default if the underlying house value
falls far enough below the unpaid balance. We hold the benchmark interest
constant at r0 � 8%, but let the house value and the mortgage value vary. It is
optimal for the borrower to default when the house value falls to $92,500,
5.3% below the then-current outstanding mortgage balance of M(R0, t �

2 years), which is $97,664.

CONCLUSION

Using the contingent claims analysis of CIR (Cox et al., 1985a), we model
endogenous prepayment and default under dynamic economic circumstances.
A numerical example extends the model to include prepayment penalties. The
results show that the mortgage value is lower to the lender and greater to 
the borrower than the value of an equivalent option-free mortgage, even at
origination. Using a well-accepted set of parameter specifications, we find that
the value of joint default and prepayment option is about 6.8% of the unpaid
outstanding balance at origination, assuming a down-payment of 20%.
Lowering the down-payment percentage further reduces the mortgage value to
the borrower, implying higher default risk for lending banks.
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We contribute to the finance literature in two ways. First, we demonstrate
the application of the IAD method and its effectiveness in pricing mortgage-
based securities with embedded options to default or prepay. The IAD method
with an LU decomposition algorithm improves upon both the accuracy and
convergence stability compared to alternative numerical methods. For example,
we adopt a time step size of month without instability problems, compared to
that of month in the previous literature. Second, we document an economi-
cally significant value of the joint prepayment and default option present in
conventional mortgages.

1
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1
16

FIGURE 2
The optimal default boundary for an FRM two years after mortgage origination. This figure demonstrates

the borrower’s optimal strategy to default at two years after mortgage origination. Computations are
based on the following benchmark parameters: sr � 7% p.a., sH � 10% p.a., u � 10% p.a., k � 25% p.a.,
d � 7.5% p.a., r0 � 8% p.a., and r � 0. Mortgage contract parameters are: T � 300 months, R0 � 9%,
M � $100,000, and LTV � 80%. The vertical dimension is the mortgage value VB[r(t), H(t)], which is a

function of mortgage term t, current interest rate r(t), and house value H(t). We hold the benchmark
interest rate constant at r0 � 8%, but let the house value and the mortgage value vary, i.e., we hold 

r(t) � 8% and t � 2 years in the figure. The mortgage value is only a function of the house value. The
house value and the mortgage value converge at the optimal default boundary. Default occurs at a low

house value with mortgage value equal to H(t). However, when the house value is high, the default
option is deep out-of-the-money and would not be exercised. With the parameters we specified, it is

optimal for the borrower to default when the house value falls to about $92,500, which is about 5.3%
below the then-current outstanding mortgage balance of M(R0, t � 2 years) � $97,664.
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APPENDIX A: THE PREPAYMENT BOUNDARY

For simplification, we rewrite Equation (18) as

(A1)

We need to address the free-boundary problem in solving Equation (A1).
Let r*(t) denote the prepayment boundary at time t. We apply the “smooth-pasting
conditions” at r(t) � r*(t):

(A2)

(A3)

(A4)

The value matching condition equation (A2) implies that the mortgage
value is continuous across the prepayment boundary. It makes no difference for
the borrower to prepay or not to do so. The smooth-pasting condition (Barone-
Adesi, 2005) (3) and (4) implies that the slope is continuous at the prepayment
boundary (Azevedo-Pereira et al., 2000).

We consider the discrete model of Equation (A1). For convenience, we use
VB[r, t] for the mortgage value to the borrower variable in the discrete model.
Let �r and �t be the size of interest rate steps and time steps, respectively.
Equation (A1) can be written as

(A5)

where DL is the discrete expression of L, an algebra expression of VB[r � �r, t �

�t], VB[r, t � �t], and VB[r � �r, t � �t]. Knowing the mortgage value at time 
t � �t, we can calculate the mortgage value at time t using Equation (A5). We
move backward in time from t � T to t � 0. At each time step t � �t, we find a
boundary condition for the next time step t, VB[r*(t � �t), t]. Note that VB[r*(t �

�t), t] is the mortgage value at time t given r(t) � r*(t � �t).
As the prepayment option has no time value at maturity, the optimal strat-

egy is to prepay immediately when the interest rate falls below the contract rate
R0. It follows that r*(T) � R0. Moving backward in time from t � T to t � T � �t,
we can calculate VB[r(T), T � �t] using Equation (A5). Simultaneously, we
impose the early-exercise constraint VB[r*(T), T � �t] � M(R0, T � �t). At
time t � T � �t, with the boundary condition at r(T � �t) � r*(T) � R0 and
r(T � �t) �q, we can use the Crank–Nicholson algorithm to solve Equation (A1)
for r(T � �t) � [r*(T), q).

VB[r, t � ¢t] � VB[r, t]

¢t
� DL � 0

0VB[r(t)]

0r
�
0M(R0, t)

0r
� 0.

0VB[r(t)]

0t
�
0M(R0, t)

0t
� �me�R0(T�t)

VB[r(t)] � M(R0, t)

0VB

0t
� L � 0 with L �

1
2
s2
rr
02VB
0r2

� k(u � r)
0VB
0r

� rVB � m.



860 Chen et al.

Journal of Futures Markets DOI: 10.1002/fut

However, at each time step t, Equation (A1) is not solved for r(t) � [0, r*(t �

�t)]. To achieve this, we make use of the “smooth-pasting conditions” indicated
by Equations (A2)–(A4). Substituting Equations (A2)–(A4) into Equation (A1),
we have

(A6)

It is noteworthy that at the prepayment boundary the second partial differ-
ence is negative as the interest rate must be less than the contract rate on mort-
gage prepayment. This negative convexity reflects the impact of the embedded
prepayment option.

To find the prepayment boundary at time t with known VB[r*(t � �t), t], we
use a Taylor expansion to VB[r*(t � �t), t] at r(t) � r*(t), omitting higher-order
terms:

(A7)

Using Equations (A2)–(A4) and (A6), we solve Equation (A7) for r*(t). For
r(t) � [0, r*(t)], we use the payoff on prepayment for the mortgage value, i.e.,
VB[r, t] � M(R0, t) 
r(t) � [0, r*(t)].

This procedure is iterated from t � T to t � 0.
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