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An Empirical Test of

the Hull-White Option

Pricing Model

CHARLES CORRADO
TIE SU*

INTRODUCTION

The Black-Scholes (1973) option pricing model provides the foundation
for the modern theory of options valuation. In actual applications, how-
ever, the model has certain well-known deficiencies. For example, when
calibrated to accurately price at-the-money options the Black-Scholes
(1973) model often misprices deep in-the-money and deep out-of-the-
money options. This model-anomalous behavior gives rise to what options
professionals call “volatility smiles.” A volatility smile is the skewed pat-
tern that results from calculating implied volatilities across a range of
strike prices for an option series. This phenomenon is not predicted by
the Black-Scholes (1973) model, since volatility is a property of the un-
derlying instrument and the same implied volatility value should be ob-
served across all options on that instrument. Volatility smiles are generally
thought to result from the parsimonious assumptions used to derive the
Black-Scholes model. In particular, the Black-Scholes (1973) model as-
sumes that security log prices follow a constant variance diffusion pro-
cess. The constant variance assumption has been tested and rejected in
early studies by Beckers (1980), Black and Scholes (1972), Christie
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(1982), Officer (1973), and Schmalensee and Trippi (1978). Since then
a considerable body of research, most notably the conditional hetero-
skedasticity literature originating with Engle (1982) and Bollerslev
(1986), has documented the stochastic character of security return var-
iances. Bollerslev, Chou, and Kroner (1992) have surveyed this large body
of literature. To summarize, financial econometricians have produced
overwhelming evidence that security return variances are stochastic and
typically correlated with security prices. Under these conditions, Heston
(1993), Hull and White (1987), Scott (1987), Stein and Stein (1991),
Wiggins (1987), Hillard and Schwartz (1996), and others show that the
Black-Scholes (1973) model predicts option prices expected to system-
atically deviate from observed option prices.

This article studies the stochastic volatility process for the Standard
and Poor’s 500 index implied by S&P 500 index (SPX) option prices. The
major tool for this analysis is the stochastic volatility option pricing for-
mula derived by Hull and White (1988). The Hull and White (1988)
formula is an appealing choice, most importantly because it is sufficiently
flexible to allow a wide range of stochastic volatility specifications, in-
cluding an arbitrary correlation between security return volatility and se-
curity price changes. In addition, the Hull and White (1988) formula
readily lends itself to the estimation of underlying stochastic process pa-
rameters. This article contributes to the stochastic volatility literature by
reporting direct estimates of the parameters of a true stochastic volatility
process (i.e., where volatility is not a deterministic function of the un-
derlying cash price) obtained as implied parameters from observed option
prices. The procedures followed here represent a substantial generaliza-
tion of the widespread practice of obtaining an implied standard deviation
from observed option prices.

STOCHASTIC VOLATILITY OPTION PRICING
MODELS

Stock return volatility processes are an important topic in option pricing
theory. Consequently, they have received considerable attention in the
literature. This literature originates with Merton (1976a, 1976b) and Cox
and Ross (1976), who developed the first option pricing models allowing
a nonconstant return variance. Merton (1976a) assumes a mixture of
continuous and jump processes, while Cox and Ross (1976) allow return
volatility to be a deterministic function of the underlying stock price.
Later, Scott (1987) assumes that return volatility follows a continuous
diffusion process and Johnson and Shanno (1987) propose a stochastic
volatility model where stock returns and return volatility are correlated.
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Wiggins (1987) derives statistical estimators for volatility process pa-
rameters and calculates parameter estimates for several individual stocks
and stock indexes. Using Monte Carlo estimation methods, he finds that
where correlations between volatility movements and stock returns are
positive, out-of-the-money call options increase in value relative to Black-
Scholes prices, while in-the-money call options decrease in value. This
effect is reversed where correlations are negative.

Hull and White (1987) analyze European call options on a stock
price subject to stochastic volatility. Using a Taylor series expansion, they
derive an accurate formula for call options where stock returns and stock
volatilities are uncorrelated. In a related article, Hull and White (1988)
relax the zero correlation restriction. Dothan (1987) also derives an ac-
curate formula for biases in the Black-Scholes (1973) model induced by
stochastic volatility with nonzero correlation between stock returns and
return variances. Stein and Stein (1991) derive a stochastic volatility op-
tion pricing formula that assumes return volatility follows an Ornstein-
Uhlenbeck (AR1) process and Heston (1993) develops a closed form so-
lution for options with stochastic volatility.

In summary, prior research has led to the development of a variety
of stochastic volatility option pricing models. Unfortunately, empirical
applications of these models have been limited. Major exceptions are
Bates (1996), who estimates the parameters of a joint stochastic volatility-
jump diffusion model as implied by deutsche mark options, and Bakshi,
Cao, and Chen (1997), who estimate a similar parameter set for the S&P
500 index. This study applies the stochastic volatility model specified by
Hull and White (1988) to examine the stochastic process for the S&P
500 index. This choice is motivated by the model’s flexibility and adapt-
ability to parameter estimation. This study is based on options on the
S&P 500 index traded on the Chicago Board Options Exchange (CBOE).
Repeated perusals through The Wall Street Journal reveal that these op-
tions (the SPX contracts) are the most heavily traded European style index
options in the world.

METHODOLOGY

Hull and White (1988) assume the following stochastic processes for a
security price and its return volatility:

dS/S 4 fdt ` V dz (1a)!

dV 4 gdt ` n V dw (1b)!



366 Corrado and Su

Following the notation in Hull and White (1988), S is a stock price, V is
an instantaneous stock return variance, and dz, dw are Wiener processes
with correlation, q. n is the instantaneous standard deviation of dV/ .V!
f is the exponential drift rate of S and g(V) 4 a ` bV is the instantaneous
drift rate of V, where a and b are constants. Mean-reverting volatility
assumes that b is negative with a long-run reversion value of 1a/b, where
a must be positive to maintain a positive variance. The Hull-White (1988)
option pricing model assumes that the parameters, q, n, a, and b, are
constant. Time varying parameters could be used in this model. However,
cointegration concerns and correlations among time, varying parameters
may yield unstable estimates and considerably complicate the estimation
routine. Instead, constant parameters over short intervals are chosen.

While Heston (1993) provides a closed form solution for an option
price on an asset price following the stochastic volatility process specified
in eq. (1), the solution requires evaluation of a difficult integral expres-
sion. Fortunately, Hull and White (1988) provide an accurate approxi-
mation from a second-order Taylor series expansion around a constant
volatility specification (n 4 0). Using this expansion, they show that the
stochastic volatility bias of the Black-Scholes (1973) model is accurately
measured by the following expression:

2 2 2Bias 4 Q qn ` (Q ` Q q )n ` o(n ) (2)1 2 3

Assuming that volatility is initially at its long-run reversion value, i.e., V
4 1a/b, the coefficients Qj in eq. (2) are defined as follows, where d 4

bs.

21 ] C
dQ 4 1 V(1 ` d 1 e )S1 2b s ]S]V

21 ] C2d dQ 4 V(e 1 4e ` 2d ` 3)2 3 2 24b s ]V

2 21 ] C 2 ] C
d dQ 4 1 V(e (2 1 d) 1 (2 ` d))S ` V(e (2 1 d) 1 (2 ` d))3 3 3 2 2b s ]S]V b s ]V

3 31 ] C 1 ] C2 2 2 2d d` V (1 ` d 1 e ) S ` V (1 ` d 1 e ) (3)4 2 2 4 3 32b s ]S]V b s ]V

Adding this bias to the Black-Scholes call price yields the Hull and White
stochastic-volatility-adjusted call price, here denoted by CHW:

2 2 2C 4 C (V) ` Q qn ` Q n ` Q q n (4)HW BS 1 2 3
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For reference, the Black-Scholes call price with strike price, K, time to
option expiration, s, and interest rate, r, is stated as

1 srC 4 SN(d ) 1 Ke N(d )BS 1 2

log(S/K) ` (r ` V/2)s
d 4 d ` d 1 Vs (5)!1 2 1

Vs!

Equation (4) is the fundamental equation of this study. Assuming a con-
stant variance, i.e., n 4 0, the pricing bias is zero and eq. (4) collapses
to the Black-Scholes call price formula. If n . 0, then eq. (4) is the sum
of a Black-Scholes call price and adjustments for the stochastic volatility
process specified in eq. (1b). This study applies eq. (4) to estimate the
parameters of this stochastic volatility process from observed options
price data.

DATA SOURCES

Options price data for this study come from the Berkeley Options Data-
base of options traded on the CBOE. Option contracts for the S&P 500
index (the SPX contracts) are used. Option prices, stock index levels,
strike prices, and option expirations come directly from the Berkeley Op-
tions Database. To avoid bid–ask bounce problems in transactions data,
option prices are taken as midpoints of bid–ask price quotes. Interest
rates used are yields on Treasury bills with maturities closest to option
expirations. Interest rate data are culled from The Wall Street Journal.

Since S&P 500 index options are European style, the method sug-
gested by Black (1975) is used to adjust cash index levels by subtracting
present values of future dividend payments occurring before each option’s
expiration date. Daily dividends for the S&P 500 index are obtained from
the S&P 500 Information Bulletin.

Following data screening procedures in Barone-Adesi and Whaley
(1986), all options with prices less than $0.125 and option transactions
occurring before 9:00 AM are deleted. Obvious outliers are purged also
from the sample, including option prices that lie outside well-known no-
arbitrage option price boundaries (Merton, 1973). An estimation proce-
dure is performed on all data available from the Berkeley Options Data-
base. The results are similar across different periods. Results obtained
from option price quotations for contracts traded in February and April
1995 are reported because they are the most recent data in the sample.
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ESTIMATION PROCEDURES AND RESULTS

The first set of estimation procedures assesses the out-of-sample perfor-
mance of the Black-Scholes option pricing formula. Specifically, implied
standard deviations (ISD) are estimated on a daily basis for call options
on the S&P 500 index where, on the day prior to a given current day, a
unique ISD is obtained from all bid–ask price midpoints using Whaley’s
(1982) simultaneous equations procedure. This prior-day ISD is then
used as an input to calculate theoretical Black-Scholes option prices for
all current-day price observations. The theoretical Black-Scholes prices
based on an out-of-sample ISD are compared to their corresponding mar-
ket-observed prices.

The second set of estimation procedures assesses the out-of-sample
performance of the Hull and White stochastic volatility option pricing
formula. Ipso facto, this second step includes out-of-sample parameter
estimates for the stochastic volatility process specified in Hull and White
(1988). These out-of-sample parameter values are then used to calculate
theoretical option prices for all option price observations. These theo-
retical option prices are compared to their corresponding market-ob-
served prices.

BLACK-SCHOLES OPTION PRICING MODEL

The Black-Scholes formula requires five inputs: a security price, a strike
price, a risk-free interest rate, an option maturity, and a return standard
deviation. The first four inputs are directly observable from market data.
Only the return standard deviation is not directly observable. Out-of-
sample return standard deviations are estimated from values implied by
options based on the simultaneous equations procedure suggested by
Whaley (1982). A simultaneous equations estimate is the value of the
argument, BSISD, which minimizes the following sum of squares:

N
2min [C 1 C (BSISD)] (6)o OBS j BS j

BSISD j41

In eq. (6), N is the number of bid–ask price quotes sampled on a given
prior day, COBS is a market-observed call price, and CBS (BSISD) is a
theoretical Black-Scholes call price calculated using the standard devia-
tion parameter, BSISD. Based on the value of BSISD that minimizes the
sum of squared errors in eq. (6), theoretical Black-Scholes option prices
are calculated for all options in a given current day’s sample. These theo-
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TABLE I

Comparison of Black-Scholes Prices and Observed Prices of S&P 500 Index
Options (SPX)

Trading
Date

Number of
Price

Observations
ISD
(%)

Proportion of
Theoretical Prices
Outside Bid–Ask

Spreads

Average Deviation
of Theoretical Price

from Spread
Boundaries ($)

Average
Call Price ($)

Average
Bid–Ask Spread

($)

2/2/95 213 11.75 0.93 1.30 17.28 0.59
2/6/95 239 11.23 0.96 1.30 20.57 0.57
2/8/95 241 11.43 0.96 1.33 21.42 0.58
2/10/95 242 11.31 0.95 1.13 21.22 0.61
2/14/95 203 11.27 0.96 1.08 20.59 0.58
2/16/95 203 11.85 0.94 1.42 21.89 0.55
2/22/95 222 11.75 0.91 1.48 20.71 0.64
2/24/95 227 11.87 0.95 1.35 22.61 0.64
2/28/95 212 11.92 0.96 1.13 15.53 0.55
Average 222 11.60 0.95 1.28 20.20 0.59

Notes: On each day indicated, an ISD is estimated from one-day lagged price observations. Theoretical Black-Scholes
option prices are then calculated using this ISD. All price observations correspond to call options traded in February 1995.

retical Black-Scholes option prices are then compared to their corre-
sponding market-observed prices.

An efficient options market is assumed, in which dealers set bid–ask
prices to bracket what they accurately perceive to be a correct but un-
observed price. In this setting, an option pricing model can do no better
than predict a price that lies within an observed bid–ask spread. There-
fore, the pricing error is measured as the difference between a model-
predicted price and a bid–ask spread boundary, and it is assignedrror if
the model-predicted price lies within a bid–ask spread. The logic behind
this measure is that in an efficient options market, one can only invalidate
an option pricing model when it systematically yields predicted prices
outside observed bid–ask spreads. By contrast, prior studies typically mea-
sure pricing error by the difference between a model-predicted price and
a bid–ask price average. This method yields larger measured pricing er-
rors, and therefore may overstate an assessment of noise in the trading
process.

Table I summarizes the calculations for S&P 500 index call option
prices observed during February 1995. Column 1 lists sampling dates
within the month. To maintain table compactness, results are reported
for only even-numbered dates within the month. Column 2 lists the num-
ber of price quotes available on each date. One-day lagged Black-Scholes
implied standard deviations (BSISD) for each date are reported in column
3. To assess the out-of-sample economic significance of differences be-
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tween theoretical and observed prices, column 4 lists the proportion of
theoretical Black-Scholes option prices lying outside their corresponding
observed bid–ask spreads, either below a bid price or above an asked
price. Column 5 lists average absolute deviations of theoretical prices
from bid–ask boundaries for only those theoretical prices lying outside
their bid–ask spreads. Specifically, for each theoretical option price lying
outside its corresponding bid–ask spread, an absolute deviation is cal-
culated using the following formula:

max(C (BSISD) 1 Ask, Bid 1 C (BSISD))BS BS

This absolute deviation statistic measures the economic significance of
deviations of theoretical option prices from observed bid–ask spreads.
Finally, column 6 lists day-by-day averages of observed call prices and
column 7 lists day-by-day averages of observed bid–ask spreads.

In Table I, column averages for all variables are listed in the bottom
row. For example, the average number of daily price observations sampled
is 222 (column 2), with an average option price of $20.20 (column 6)
and an average bid–ask spread of $0.59 (column 7). The average ISD is
11.60% (column 3). Regarding the ability of the Black-Scholes model to
predict option prices, the average proportion of theoretical Black-Scholes
prices lying outside their corresponding bid–ask spreads is 95% (column
4), with an average deviation of $1.28 for those observations lying outside
a spread boundary. This average deviation is more than twice as large as
the average bid–ask spread of $0.59.

A visual representation of deviations of observed call prices from
theoretical Black-Scholes call prices is displayed by the black squares in
Figure 1 for the 212 price quotes observed on 28 February 1995. Option
moneyness is measured on the horizontal axis and price deviations are
measured on the vertical axis. Option moneyness is a percentage calcu-
lated as follows, where S0 is a dividend-adjusted cash price and Ke1rt is
a discounted strike price:

1rtKe 1 S0Moneyness (%) 4 100 2 1rtKe

Negative (positive) moneyness corresponds to in-the-money (out-of-the-
money) call options with low (high) strike prices. Price deviations mea-
sured on the vertical axis are observed prices minus theoretical prices. So
defined, the zero horizontal axis corresponds to theoretical Black-Scholes
prices and the dots correspond to observed call prices relative to theo-
retical Black-Scholes prices.
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FIGURE 1
Mispricing of the Black-Scholes model and the Hull-White model (February 1995).

Figure 1 graphically reveals that the Black-Scholes formula overval-
ues out-of-the-money options and undervalues in-the-money options for
this sample of S&P 500 index call options. Moreover, Figure 1 shows that
observed option prices corresponding to deep in-the-money or out-of-the-
money options often deviate from theoretical prices by several dollars.

STOCHASTIC VOLATILITY OPTION PRICING
MODEL

In the second set of estimation procedures, on the day prior to a given
current day, stochastic volatility parameters are estimated for the sto-
chastic volatility model specified by Hull and White (1988). The sto-
chastic volatility process assumed by Hull and White (1988) has four
parameters that must be estimated. These are an instantaneous return
variance (V), a volatility of volatility (n), a correlation between stock re-
turns and variance changes (q), and a coefficient of mean reversion (b).
These parameters are estimated using a simultaneous equations method
based on minimizing the following sum of squares:

M
2 2 2 2min [C 1 (C (r) ` qnQ ` n Q ` q n Q )] (7)o OBS j BS j 1 2 3

r,p,n,b j41

Using this procedure, parameter estimates for r, q, n, and b are obtained.
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TABLE II

Comparison of Stochastic-Volatility-Adjusted Black-Scholes Prices and
Observed Prices of S&P 500 Index Options (SPX)

Trading
Date

Number of
Price

Observations
ISD
(%)

Implied
Correlation

(p)

Implied
Volatility

of
Volatility

(n)

Half-Life
of

Volatility
(Days)

Proportion of
Theoretical Prices
Outside Bid–Ask

Spread

Average Deviation
of Theoretical

Prices from Spread
Boundaries ($)

2/2/95 213 14.20 10.54 1.32 18.59 0.53 0.29
2/6/95 239 13.65 10.49 1.15 21.81 0.59 0.50
2/8/95 241 13.54 10.54 1.20 19.88 0.58 0.52
2/10/95 242 13.20 10.51 1.10 20.18 0.52 0.44
2/14/95 203 12.89 10.52 1.10 18.09 0.51 0.22
2/16/95 203 13.95 10.53 1.27 18.19 0.67 0.34
2/22/95 222 14.32 10.53 1.29 20.00 0.55 0.44
2/24/95 227 13.89 10.50 1.42 15.14 0.44 0.28
2/28/95 212 14.66 10.48 1.36 17.89 0.43 0.21
Average 222 13.81 10.52 1.25 18.86 0.53 0.36

Notes: On each day indicated, ISD, correlation, volatility of volatility, and mean reversion elasticity coefficient parameters
are estimated from one-day lagged price observations. Theoretical option prices are then calculated using these implied
parameters. All price observations correspond to call options traded in February 1995.

In turn, these parameter estimates are used to compute theoretical sto-
chastic volatility option prices. Deviations of market-observed prices from
theoretical prices are then calculated.

Table II summarizes empirical results obtained using the stochastic-
volatility-adjusted option pricing model. Price data used here are identical
to the data used to produce Table I. Thus, columns 1 and 2 of Table II
are identical to those in Table I. However, to test the out-of-sample pre-
diction power for the stochastic volatility model, parameter estimates
listed in columns 3–6 are one-day lagged parameter estimates. Only these
one-day lagged parameter estimates are used to calculate theoretical op-
tion prices. Therefore, the empirical results reported in Table II are based
on out-of-sample parameter estimates.

For each day listed in Table II, columns 3–5 list parameter estimates
for r, q, and n. Column 6 reports values for the estimated half-life in days
of a stochastic volatility deviation. These values are calculated as
1365(ln2)/b. The column average return volatility (r) is 13.81% which
is slightly higher than the corresponding average ISD reported in Table
I. All implied correlation coefficients between stock returns and volatility
changes are negative, with a column average correlation of 10.52. Im-
plied volatility of volatility (n) values have a column average of 1.25. Based
on the estimated mean reversion coefficients (b), the volatility half-life
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estimates have a column average value of 18.86 days. Overall, the em-
pirical results reported in columns 4–6 strongly support the stochastic
volatility model. These parameter estimates explain well the moneyness
bias of the Black-Scholes model shown in Figure 1, since a negative cor-
relation between stock returns and volatility changes leads the Black-
Scholes formula to underprice in-the-money call options and to overprice
out-of-the-money call options.

Negative correlation between stock index returns and volatility has
the following implications. On the one hand, when the stock index return
is high, volatility tends to be low. On the other hand, when the stock
index return is low, volatility tends to be high. This yields an asymmetric
distribution of returns where a large negative return is significantly more
likely to occur than a large positive return. This manifests itself in the
form of a high implied volatility for in-the-money index calls and out-of-
the-money index puts, and a low implied volatility for out-of-the-money
index calls and in-the-money index puts. By contrast, the Black-Scholes
model assumes a constant volatility distribution in which large positive
and negative returns have similar probabilities. Thus, compared to a sto-
chastic volatility specification with a negative correlation between index
returns and volatility, the Black-Scholes model overstates the likelihood
of a large upward move in the S&P 500 index and understates the like-
lihood of a large downward move.

Using the out-of-sample one-day lagged parameter estimates for r,
q, n, and b, one can evaluate the predictive power of the stochastic vol-
atility option pricing model. Column 7 in Table II lists the proportion of
theoretical prices predicted by the stochastic volatility model that lies
outside observed bid–ask spreads. The column average proportion is 53%,
which represents a significant reduction from the corresponding average
proportion of 95% reported in Table I. For only those theoretical prices
that lie outside observed spreads, column 8 reports average deviations
from bid–ask spread boundaries. The column average deviation is $0.36,
which compares quite favorably with the average deviation of $0.59 re-
ported in Table I.

The statistical significance of the improvement in performance from
out-of-sample stochastic volatility adjustments can be assessed using the
following Z-statistic for the difference between two proportions (Hoel,
1984):

p 1 p1 2Z 4
p (1 1 p )/N ` p (1 1 p )/N! 1 1 1 2 2 2

In this statistic, p1 and p2 are sample proportions, and N1 and N2 are
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sample sizes corresponding to these proportions. For example, Table I
shows the volume-weighted average proportion, p1 4 0.947, and Table
II shows the volume-weighted average proportion, p2 4 0.536. These
proportions are almost identical to the simple averages reported in Tables
I and II, and are based on a total sample size of N 4 2002 observations
for all even-numbered days in the month. A quick computation yields a
Z-statistic value of 33.66, which is statistically significant at more than a
99.99% level of confidence.

The statistical significance of improvements attributable to the sto-
chastic volatility model can also be assessed using a simple sign test. The
null hypothesis is that the stochastic volatility model does not systemat-
ically yield lower daily proportions of theoretical prices outside bid–ask
spreads, in which case we can expect that half of the daily proportions
reported in Table II are less than the corresponding daily proportions
reported in Table I. The alternative hypothesis is that more than half of
the stochastic volatility model daily proportions in Table II are less than
the corresponding daily proportions in Table I. Comparing daily propor-
tions in Tables I and II, all nine daily proportions listed in Table II are
smaller than those listed in Table I. Under the null hypothesis, the prob-
ability of this occurring by chance is 1/28 4 1/512. Thus, it is concluded
that out-of-sample bias corrections for stochastic volatility provide a sig-
nificant incremental performance improvement over the Black-Scholes
model.

To visually assess the improvement attributable to a stochastic vol-
atility bias correction, white squares in Figure 1 plot deviations of market-
observed call prices from theoretical stochastic volatility call prices. Fig-
ure 1 graphically reveals that almost all moneyness biases are eliminated
by a stochastic volatility bias correction. This provides visual reinforce-
ment for the numerical results presented in Tables I and II.

Procedures identical to those described above are applied to another
sample of SPX options traded in April 1995. Tables III and IV and Figure
2 report results from this sample. Table III summarizes the performance
of the Black-Scholes model. ISDs obtained from call options have a col-
umn average of 12.57% (column 3). Column 4 lists the proportion of
theoretical Black-Scholes prices lying outside observed bid–ask spreads.
The column average of 93% is almost identical to the average proportion
of 95% reported in Table I. For those theoretical prices lying outside bid–
ask spreads, the column average deviation is $1.29, which is similar to
the average deviation of $1.28 reported in Table I. Black squares in Figure
2 graphically reinforce the conclusion that the Black-Scholes formula
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TABLE III

Comparison of Black-Scholes Prices and Observed Prices of S&P 500 Index
Options (SPX)

Trading
Date

Number of
Price

Observations
ISD
(%)

Proportion of
Theoretical Prices
Outside Bid–Ask

Spreads

Average Deviation
of Theoretical Price

from Spread
Boundaries ($)

Average
Call Price ($)

Average
Bid–Ask Spread

($)

4/4/95 265 12.86 0.95 1.39 25.05 0.70
4/6/95 279 12.74 0.94 1.28 25.62 0.72
4/10/95 270 12.91 0.93 1.29 25.49 0.76
4/12/95 271 13.41 0.94 1.61 25.67 0.75
4/18/95 209 12.40 0.91 1.07 26.40 0.76
4/20/95 210 12.86 0.93 1.35 25.16 0.75
4/24/95 258 12.71 0.94 1.53 24.81 0.73
4/26/95 212 11.80 0.92 1.04 17.48 0.66
4/28/95 222 11.46 0.93 1.04 17.97 0.66
Average 244 12.57 0.93 1.29 23.74 0.72

Notes: On each day indicated, an ISD is estimated from one-day lagged price observations. Theoretical Black-Scholes
option prices are then calculated using this ISD. All price observations correspond to call options traded in April 1995.

TABLE IV

Comparison of Stochastic-Volatility-Adjusted Black-Scholes Prices and
Observed Prices of S&P 500 Index Options (SPX)

Trading
Date

Number of
Price

Observations
ISD
(%)

Implied
Correlation

(q)

Implied
Volatility

of
Volatility

(n)

Half-Life
of

Volatility
(Days)

Proportion of
Theoretical Prices
Outside Bid–Ask

Spread

Average Deviation
of Theoretical

Prices from Spread
Boundaries ($)

4/4/95 265 15.19 10.47 1.17 25.47 0.53 0.41
4/6/95 279 14.69 10.52 1.06 25.73 0.45 0.40
4/10/95 270 14.60 10.56 0.96 29.26 0.45 0.41
4/12/95 271 15.62 10.57 1.34 20.76 0.42 0.56
4/18/95 209 13.52 10.55 0.89 26.33 0.30 0.22
4/20/95 210 14.72 10.56 1.21 19.68 0.36 0.24
4/24/95 258 14.67 10.60 1.39 16.83 0.33 0.36
4/26/95 212 13.10 10.56 0.87 28.28 0.22 0.11
4/28/95 222 12.73 10.54 0.95 23.54 0.31 0.15
Average 244 14.32 10.55 1.09 23.99 0.37 0.32

Notes: On each day indicated ISD, correlation, volatility of volatility, and mean reversion elasticity coefficient parameters
are estimated from one-day lagged price observations. Theoretical option prices are then calculated using these implied
parameters. All price observations correspond to all options traded in April 1995.
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FIGURE 2
Mispricing of the Black-Scholes model and the Hull-White model (April 1995).

systematically misprices deep in-the-money and deep out-of-the-money
options.

Table IV summarizes the performance of the stochastic volatility
model. The original option prices used to produce this table are identical
to those used to produce Table III; thus, columns 1 and 2 of both tables
are identical. Columns 3–6 report stochastic volatility parameter esti-
mates. The column average return volatility of 14.32% is slightly higher
than that reported in Table III. Implied correlations have a column av-
erage value of 10.55 and implied volatility of volatility values have an
overall average of 1.09. The column average stochastic volatility half-life
is 23.99 days. Again, out-of-sample parameter estimates are used to cal-
culate theoretical stochastic volatility model prices. Column 7 lists pro-
portions of theoretical prices lying outside market-observed bid–ask
spreads. The column average proportion is 37%, which is significantly
less than the average proportion of 93% reported in Table III. Column 8
lists average deviations from bid–ask spread boundaries. The column av-
erage deviation is $0.32, which is substantially smaller than the $1.29
average deviation reported in Table III. Finally, white squares in Figure
2 plot deviations of market-observed prices from theoretical prices. Figure
2 visually bolsters the conclusion that a stochastic volatility bias correc-
tion eliminates almost all moneyness bias from the Black-Scholes model.

In addition to results for the two months of 1995 data reported in
this article, all procedures are applied to various data for option contracts
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traded in the years 1991 and 1994. Empirical results obtained from these
data are essentially identical to results reported here.

CONCLUSIONS

This study uses the Hull and White (1988) stochastic volatility option
pricing formula to study the stochastic process for the Standard & Poor’s
500 index implied by S&P 500 index (SPX) options. It is found that a
stochastic volatility option pricing formula provides a significant improve-
ment over a constant volatility option pricing formula. This study con-
tributes to the empirical options literature in at least two ways. First, it
provides extensive evidence that observed option prices on the S&P 500
index correspond to a mean-reverting stochastic volatility process, where
return volatility is strongly negatively correlated with changes in stock
index levels. Second, it shows that the parameters of a stochastic volatility
process can be estimated from option prices and used to produce reliable
predictions of day-ahead relationships between option prices and index
levels. This represents a significant generalization of the common pro-
cedure of estimating an implied volatility from option prices.
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