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The Black-Scholes option pricing model is used to 
value a wide range o f  option contracts. It often prices deep in- 
the-money and deep out-of-the-money options inconsistently, 
a phenomenon we refer to as a volatility “skew” or “smile. ” 

This article applies an extension of the Black- 

Scholes model developed by Jarrow and Rudd to an investi- 
gation o f  SGP 500 index option prices. Non-normal skew- 
ness and kurtosis in option-implied distributions o f  index 
returns are found to contribute signijkantly to the phe- 
nomenon ofvolatility skews. 

he Black-Scholes [1973] option pricing 
model provides the foundation of modern 
option pricing theory. In actual application, T however, the model often inconsistently 

prices deep in-the-money and deep out-of-the- 
money options. Options professionals call this effect 
the volatility “skew” or “smde.” 

A volatility skew is the anomalous pattern 
that results from calculating implied volatilities 
across a range of strike prices. Tjrpically, the skew 
pattern is systematically related to the degree to 
which the options are in or out of the money. This 
phenomenon is not predicted by the Black-Scholes 
model, since volatility is a property of the underly- 
ing instrument, and the same implied volatility 

value should be observed across all options on the 
same instrument. 

The Black-Scholes model assumes that stock 
prices are lognormally dlstributed, which implies in 
turn that stock log-prices are normally distributed. 
Hull [1993] and Natenburg [1994] point out that 
volatility skews are a consequence of empirical viola- 
tions of the normality assumption. 

In this article, we investigate volatility skew 
patterns embedded in S&P 500 index option prices. 
We adapt a method developed by Jarrow and Rudd 
[1982] to extend the Black-Scholes formula to 
account. for non-normal skewness and kurtosis in 
stock returns. Ths method fits the first four moments 
of a distribution to a pattern of empirically observed 

8 IMPLIED VOLATILITY SKEWS AND STOCK INDEX SKEWNESS AND KURTOSIS IMPLIED BY S&P 500 INDEX OPTION PRICES SUMMER 1997 

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 1
99

7.
4.

4:
8-

19
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.ii
jo

ur
na

ls
.c

om
 b

y 
U

N
IV

E
R

SI
T

Y
 O

F 
M

IA
M

I 
on

 0
9/

04
/0

9.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



option prices. The mean of this distribution is deter- 
mined by option pricing theory, but an estimation 
procedure is employed to yield implied values for the 
standard deviation, skewness, and kurtosis of the dis- 
tribution of stock index prices. 

I. NON-NORMAL SKEWNESS AND 
KURTOSIS IN STOCK RETURNS 

It is widely known that stock returns do not 
always conform well to a normal distribution. As a 
simple examination, we separately compute the mean, 
standard deviation, and coefficients of skewness and 
kurtosis of monthly S&P 500 index returns in each of 
the seven decades from 1926 through 1995. In Exhib- 
it 1, Panel A reports statistics based on arithmetic 
returns, and Panel B reports statistics based on log-rel- 
ative returns. Arithmetic returns are calculated as 
P,/P,, - 1, and log-relative returns are calculated as 
log(P,/P,-l), where P, denotes the index value 
observed at the end of month t. 

The returns series used to compute statistics 
reported in Exhibit 1 do not include dividends. We 
choose returns without dividends because divi- 
dends paid out over the life of a European option 
do not accrue to the optionholder. Thus European- 
style S&P 500 index option prices are properly 
determined by index returns that exclude any divi- 
dend payments. 

The Black-Scholes model assumes that arith- 
metic returns are lognormally dstributed, or equiva- 
lently, that log-relative returns are normally distribut- 
ed. All normal distributions have a skewness coeffi- 
cient of zero and a kurtosis coefficient of 3. All log- 
normal dstributions are positively skewed with kurto- 
sis always greater than 3 (see Stuart and Ord [1987]). 

We have two observations to make about 
Exhibit 1. First, reported coefficients of skewness and 
kurtosis show significant deviations from normality 
occurring in the first two decades (1926-1935 and 
1936-1945) and the most recent decade (1986-1995) 
of this seventy-year period. 

Statistical significance is assessed by noting 
that population skewness and kurtosis for a normal 
distribution are 0 and 3, respectively. Also, vari- 
ances of sample coefficients of skewness and kurto- 
sis from a normal population are 6/n and 24/n, 

EXHIBIT 1 
P%ISTORICAL S8cP 500 INDEX k T U I I N  STATISTICS 
1926-1995 

PANEL A. ARITHMETIC RETURNS 

Standard 
Mean Deviation 

(%) Skewness Kurtosis Decade W) 
1926- 1935 7.4 35.1 0.77 7.50 
1936-1945 5.8 22.4 -0.55 7.15 
1946-1955 10.1 13.5 -0.28 3.02 
1956-1965 7.8 11.7 -0.52 3.37 
1966-1975 2.1 15.9 0.23 4.08 
1976-1985 9.5 14.1 0.30 3.67 
1986-1995 11.8 14.9 -1.19 9.27 
1986-1995* 14.0 13.0 -0.04 4.06 

PANEL B. LOG-RELATIVE RETURNS 

Standard 
Mean Deviation 

(%) Skewness Kurtosis Decade (W 
1926-1935 1.4 34.5 -0.02 6.23 
1936-1945 3.2 22.9 -1.12 8.30 
1946- 1955 9.2 13.5 -0.39 3.22 
1956-1965 7.1 11.7 -0.62 3.43 
1966-1975 0.9 15.9 0.03 3.90 
1976-1985 8.5 13.9 0.15 3.63 

1986-1995* 13.0 12.9 -0.20 4.05 
1986-1995 10.6 15.2 -1.67 11.92 

Means and standard deviations are annualized. 95% confidence 
intervals for normal sample skewness and kurtosis coefficients are 
50.438 and 3 5 0.877, respectively. 

*In&cates exclusion of October 1987 crash-month return. 

respectively. For each decade, n = 120 months, 
which is sufficiently large to invoke the central 
limit theorem and to assume that sample coeffi- 
cients are normally distributed. 

Thus, 95% confidence intervals for a test of 
index return normality are given by k 1.96 x d E  
= k0.438 for sample skewness and 3 k 1.96 x 424/120 
= 3 2 0.877 for sample kurtosis. For statistics com- 
puted from log-relative returns, sample skewness and 
kurtosis values outside these confidence intervals indi- 
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cate statistically significant departures from. normahty. 
For statistics obtained from arithmetic returns, a nega- 
tive sample skewness value outside the appropriate 
confidence interval inlcates a statistically significant 
departure from lognormality. 

Second, statistics reported fbr the decade 1986- 
1995 are sensitive to the inclusion of the October 
1987 return when the S&P 500 index fell by 
-21.76%. Includmg the October 1987 return yields 
log-relative skewness and kurtosis coefficients of 
-1.67 and 11.92, respectively, which deviate signifi- 
cantly from a normal specification. Excluding the 
October 1987 return yields skewness and kurtosis 
coefficients of -0.20 and 4.05, which are not signifi- 
cant deviations from normahty. 

The contrasting estimates of S&P 500 index 
return skewness and kurtosis in the decade 1986-1995 
raise an interesting empirical issue regardmg the pric- 
ing of S&P 500 index options. Specifically, do post- 
crash option prices embody an ongoing market per- 
ception of the possibility of another market crash sim- 
ilar to that of October 1987? 

If post-crash option prices retain no memory 
of the crash, then the near-normal skewness and 
kurtosis obtained by omitting the October 1987 
return suggest that the Black-Scholes model should 
be well-specified. I f  post-crash option prices 
“remember” the crash, however, we would expect 
to see non-normal skewness arid kurtosis in the 
option-implied distribution of stock returns similar 
to the sample skewness and kurtosis obtained by 
including the October 1987 return. 

11. JARROW-RUDD SKEWNESS- AND 
KURTOSIS-ADJUSTED MODEL 

The Jarrow-Rudd [1982,] option pricing 
model provides a useful analytic tool to examine the 
contrasting hypotheses. They prclpose a method to 
value European options when the underlying security 
price at option expiration follows a distribution F 
known only through its moments. They derive an 
option pricing formula from an Edgeworth series 
expansion of the security price dnstribution F about 
an approximating distribution A. 

Their simplest option pricing formula is the 
expression for an option price: 

The left-hand side term C(F) denotes a call 
option price based on the unknown price distribution 
E The first right-hand side term C(A) is a call price 
based on a known distribution A, followed by adjust- 
ment terms based on the cumulants K.(F) and K.(A) of 
the distributions F and A, respectively, and derivatives 
of the density of A. The density of A is denoted by 
a(SJ, where S, is a random stock price at option expi- 
ration. These derivatives are evaluated at the strike 
price K. The remainder E(K) continues the Edge- 
worth series with terms based on higher-order cumu- 
lants and derivatives. 

Cumulants are simdar to moments. In fact, the 
first cumulant of a distribution is equal to the mean, 
and the second cumulant is equal to the variance. The 
Jarrow-Rudd model uses t h d  and fourth cumulants. 
The relationships between thrd and fourth cumulants 
and moments for a hstribution F are: K~(F)  = p3(F) and 
K~(F)  = p4(F) - 3 pi (F), where pi is the squared vari- 
ance, and p3, p4 denote third and fourth central 
moments (Stuart and Ord [1987, p. 871). Thus the 
third cuniulant is the same as the third central moment, 
and the fourth cumulant is equal to the fourth central 
moment less three times the squared variance. 

Jarrow and Rudd [1982] suggest that with a 
good choice for the approximating distribution A, 
higher-order terms in the remainder E(K) are likely to 
be negligible. In essence, the Jarrow-Rudd model 
relaxes the strict distributional assumptions of the 
Black-Scholes model without requiring an exact 
knowledge of the true underlying distribution. 

Because of its preeminence in option pricing 
theory and practice, Jarrow-Rudd suggest the lognor- 
mal distribution as a good approximating distribution. 
When the dstribution A is lognormal, C(A) becomes 
the familiar Black-Scholes call price formula. 

In notation followed throughout, the Black- 
Scholes call price formula is stated in Equation (2), 
where So is current stock price, K is strike price, r is 
interest rate, t is time until option expiration, and the 

J J 
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parameter <r2 is the instantaneous variance of the 
security log-price: 

niently restated as 

C(F) = C(A) + h,Q3 + (4) 
C(A) = SoN(dl) - Ke-ItN(d,) (2) 

d, = 

d, = 

where the terms hj and Qj, j = 1, 2, are defined 
as follows: 

1og(So/K) + (r + 0 2 / 2 )  t 

O& 
1 1  = Y l F )  - Yl@) 

d, - O& 

Evaluating the lognormal density a(S,) and 
its first two derivatives at the strike price K yields 
the expressions: 

a(K) = (KO&)-' exp(-di /2) 

[(d2 - o & ) ~  - O&d2 - 

( 5 4  
rt 3 O2t 3/  2 e-* da(K) Q3 = -(Soe ) (e - 1) -- 

3! dSt 

(5B) 
rt 4 d t  2 e-* d2a(K) 

Q4 = (Soe ) (e - 1) -- 
41 dS; 

In Equation (5), y,(F) and y,(A) are skewness 
coefficients for the distributions F and A. Similarly, 
y2(F) and y2(A) are excess kurtosis coefficients. 
Skewness and excess kurtosis coefficients are defined 
in terms of cumulants as follows (Stuart and Ord 
[1987, p. 1071): 

O&) - 11 

(3) 

The risk-neutral valuation approach 
Jarrow and Rudd [1982] implies equality 

adopted by 
~~ of the first 

cumulants of F and A, i.e., K,(F) = K~(A) = Soert. This 
is equivalent to the equality of the means of F and A, 
as the first cumulant of a distribution is its mean. 

Also, the call price in Equation (1) corresponds 
to Jarrow and Rudd's first option price approximation 
method. This method selects an approximating hstri- 
bution that equates second cumulants of F and A, i.e., 
K,(F) = %(A). This is equivalent to the equahty of 
the variances of F and A, as the second cumulant of a 
distribution is equal to its variance. Consequently, Jar- 
row and Rudd show that when the dxtribution A is 
lognormal, the volatility parameter o2 is specified as a 

solution to the equahty K ~ ( F )  = K;(A)(e 
Dropping the remainder term E(K), the Jar- 

row-Rudd option price in Equation (1) is conve- 

1). 
d t  - 

d t  When the substitution q2 = e - 1 is used 
to simplify the algebraic expression, coefficients of 
skewness and excess kurtosis for the lognormal distri- 
bution A are defined as: 

y2(A) = 16q2 + 15q4 + 6q6 + q8 (7) 

For example, when o = 15% and t = 0.25, 
skewness is y1(A) = 0.226, and excess kurtosis is )',(A) 
= 0.091. Notice that skewness is always positive for 
the lognormal distribution. 

Non-lognormal skewness and kurtosis for yl(F) 
and y2(F) as defined in Equation (6) give rise to 
implied volatility skews. To illustrate this effect, we 
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generate option prices accordmg to the Jal-row-Rudd 
option price in Equation (4) using parameter values 
h, = -0.5, h, = 5, So = 450, CJ = 20%, t = 3 months, 
and r = 4%, and strike prices ranging from 400 to 
500. Implied volathties are then calculated for each 
skewness- and kurtosis-impacted option price using 
the Black-Scholes formula. 

The resulting volatility skew is plotted in 
Exhibit 2, where the horizontal axis measures strike 
price, and the vertical axis measures implied standard 
deviation value. While the true volatility value is 0 = 
20%, Exhibit 2 reveals that implied volatility is greater 
than true volatility for deep out-of-the-money 
options, but less than true volatility for deep in-the- 
money options. 

Exhibit 3 shows an empirical volatility skew 
obtained from S&P 500 index call option price 
quotes recorded on December 2, 1993, for options 
expiring in February 1994. The horizontal axis mea- 
sures option moneyness as the percentage difference 
between a dividend-adjusted stock index level and a 
discounted strike price. Positive (negative) moneyness 
corresponds to in-the-money (out-of-the-money) 
options with low (high) strike prices. 

The vertical axis measures implied standard 
deviation values. Solid marks represent implied 
volatilities calculated from observed option prices 

EXHIBIT 3 
HMPLIED VOLATILITIES (SPW: 12/02/93) 

8% I--!-- 
-6% -4% -2% 0% 2% 4% 6% 8% 

Option Moneyness 

using the Black-Scholes formula. Hollow marks rep- 
resent implied volatilities calculated from observed 
option prices using the Jarrow-Rudd formula. 

The Jarrow-Rudd formula uses a single skew- 
ness parameter and a single kurtosis parameter across 
all price observations. The skewness parameter and 
the kurtosis parameter are estimated by a procedure 
described in the empirical results section below. 
There are actually 1,354 price quotes used to form 
this graph, but the number of visually distinguishable 
dots is smaller. 

Exhibit 3 reveals that Black-Scholes implied 
volatilities range from about 17% for the deepest in- 
the-money options (positive moneyness) to about 9% 
for the deepest out-of-the-money options (negative 
moneyness). By contrast, Jarrow-Rudd implied 
volatilities are all close to 12% or 3.3%, regardless of 
option moneyness. Comparing Exhibit 3 with 
Exhibit 2 reveals that the Black-Scholes implied 
volatility skew for these S&P 500 index options is 
consistent with negative skewness in the distribution 
of S&P 500 index prices. 

EXHIBIT 2 
IMPLIED VOLATILITY SKEW 

111. DATA SOURCES 

17% 
$500 $480 $460 $440 $420 $400 

Strike Price 

We base this study on the market for S&P 500 
index options at  the Chicago Board Options 
Exchange (CBOE), the SPX contracts. Rubinstein 
[1994] argues that t h s  market best approximates con- 
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ditions required for the Black-Scholes model, 
although Jarrow and Rudd [1982] point out that a 
stock index dmribution is a convolution of its compo- 
nent hstributions. Therefore, when the Black-Scholes 
model is the correct model for indwidual stocks, it is 
only an approximation for stock index options. 

Intraday price data come from the Berkeley 
Options Data Base of CBOE options trading. S&P 
500 index levels, strike prices, and option maturities 
also come from the Berkeley data base. To avoid bid- 
ask bounce problems in transaction prices, we take 
option prices as midpoints of CBOE dealers’ bid-ask 
price quotations. The risk-free interest rate is taken as 
the U.S. Treasury bill rate for a bill maturing closest 
to option contract expiration. Interest rate informa- 
tion comes from the Wall StreetJournal. 

Since S&P 500 index options are European- 
style, we use Black’s [1975] method to adjust index 
levels by subtracting present values of dividend pay- 
ments made before each option’s expiration date. 
D d y  S&P 500 index dividends are collected from the 
“S&P 500 Information Bulletin.” 

Following data screening procedures in 
Barone-Adesi and Whaley [1986], we delete all 
option prices under $0.125 and all transactions listed 
as occurring before 9:OOam. Obvious outliers are also 
purged from the sample, including recorded option 
prices lying outside well-known no-arbitrage option 
price boundaries (Merton [1973]). 

Iv. EMPIRICAL RESulLTS 

We first assess the out-of-sample performance 
of the Black-Scholes option pricing model without 
adjusting for skewness and kurtosis. Specifically, using 
option prices for all contracts within a given maturity 
series observed on a given day, we estimate a single 
implied standard deviation using Whaley’s [1982] 
simultaneous equations procedure. 

We then use this implied volatility as an input 
to the Black-Scholes formula to calculate theoretical 
option prices corresponding to all actual option 
prices within the same maturity series observed on 
the following day. Thus, theoretical option prices for 
a given day are based on a prior-day, out-of-sample 
implied standard deviation estimate. We then com- 
pare these theoretical prices with the actual market 

prices observed that day. 
Next, we assess the skewness- and kurtosis- 

adjusted Black-Scholes option pricing formula devel- 
oped by Jarrow and Rudd [1982] using an analogous 
procedure. Specifically, on a given day, we estimate a 
single implied standard deviation, a single skewness 
coefficient, and a single excess kurtosis coefficient 
using an expanded version of Whaley’s [1982] simul- 
taneous equations procedure. 

We then use these three parameter estimates as 
inputs to the Jarrow-Rudd formula to calculate theo- 
retical option prices corresponding to all option 
prices within the same maturity series observed on 
the following day. Thus, these theoretical option 
prices for a given day are based on prior-day, out-of- 
sample implied standard deviation, skewness, and 
excess kurtosis estimates. We then compare these the- 
oretical prices with the actual market prices. 

Black-Scholes Option Pricing Model 

The Black-Scholes formula specifies five 
inputs: a stock price, a strike price, a risk-free interest 
rate, an option maturity, and a return standard devia- 
tion. The first four inputs are directly observable mar- 
ket data. Since the return standard deviation is not 
directly observable, we estimate a return standard 
deviation implied by option prices using Whaley’s 
[ 19821 simultaneous equations procedure. 

This procedure yields a Black-Scholes implied 
standard deviation (BSISD) that minimizes the sum 
of squares: 

N 
min c[cOBS,j - CBS,j(BS1SD)12 
BSISD j=l 

where N denotes the number of price 

(8) 

quotations 
available on a given day for a given maturity series, 
COBS represents a market-observed call price, and 
CBs(BSISD) specifies a theoretical Black-Scholes call 
price based on the parameter BSISD. 

Using a prior-day BSISD estimate, we calcu- 
late theoretical Black-Scholes option prices for all 
contracts in a current-day sample within the same 
maturity series. We then compare these theoretical 
Black-Scholes option prices to their corresponding 
market-observed prices. 

SUMMER 1997 THE JOURNAL OF DERIVATIVES 13 
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Exhibit 4 summarizes results for S&P 500 
index call option prices observed in December 1993 
for options expiring in February 1994. To save space, 
we list in the stub only even-numbered d.ates within 
the month. Column (1) lists the number of price 
quotations available on each date. The Black-Scb.oles 
implied standard deviation (BSISD) used to cal culate 
theoretical prices for each date is in column (2). 

To assess differences between theoretical and 
observed prices, the next-to-last column gives the 
proportion of theoretical Black-Scholes option prices 
lying outside their corresponding bid-ask spreads, 
either below the bid price or above the asked price. 
The last column shows the average absolute deviation 
of theoretical prices from spread boundaries for those 
prices lying outside their bid-ask spreads. 

Specifically, for each theoretical option price 
lying outside its corresponding bid-ask spread, we 
compute an absolute deviation according to: 

max[CBs(BSISD) - Ask, Bid - C,,(BSISD)] 

This absolute deviation statistic measures deviations of 

theoretical option prices from observed bid-ask spreads. 
Finally, the two middle columns list day-by- 

day averages of observed call prices and day-by-day 
averages of observed bid-ask spreads. Since option 
contracts are indivisible, all prices are stated on a per 
contract basis, which for SPX options is 100 times a 
quoted price. 

The last row in E h b i t  4 lists column averages 
for all variables. For example, the average number of 
daily price observations is 1,218, with an average con- 
tract price of $2,231.35, and an average bid-ask spread 
of $56.75. The average implied standard deviation is 
12.88%. The average proportion of theoretical Black- 
Scholes prices lying outside their correspondmg bid- 
ask spreads is 75.21%, with an average absolute devia- 
tion of $69.77 for those observations lying outside a 
spread boundary. 

The average absolute price deviation of 
$69.77 per contract for observations lying outside a 
spread boundary is slightly larger than the average 
bid-ask spread of $56.75. Price deviations are larger 
for deep in-the-money and deep out-of-the-money 
options, however. 

EXHIBIT 4 
COMPARISON OF BLACK-SCHOLES PRICES AND OBSERVED PlltCES OF s&P 500 OPTIONS 

Average Average Absolute 
Implied Average Observed Proportion of Deviation of 

Number of Standard Observed Bid-Ask Theoretical Prices Theoretical Price 
Price Deviation call Price Spread Outside Bid-Ask from Spread 

Date Observations (%I (8 ($1 Spreads (%) Boundaries ($) 
12/02/53 1,354 15.29 2,862.74 67.87 59.68 48.98 
12/06/93 
12/08/93 
12/10/93 
12/ 14/93 
12/16/53 
12/20/93 
12/22/93 
12/28/93 
12/30/93 
Average 

1,667 
956 

2,445 
3,100 
1,944 

115 
199 
166 
242 

14.94 
14.77 
14.56 
15.14 
14.55 
10.66 
9.93 
5.07 
9.86 

3,113.35 
3,012.24 
2,962.24 
3,003.08 
2,754.71 
1,453.04 
1,203.78 

608.45 
1.339.86 

1,218 12.88 2,231.35 

67.26 56.63 54.14 
59.95 62.03 40.53 
61.60 60.00 32.87 
68.75 66.58 37.46 
61.79 78.65 59.65 
55.76 91.30 194.51 
45.63 99.50 117.83 
27.52 83.13 46.56 
51.32 94.63 65.18 
56.75 75.21 69.77 

Black-Scholes implied standard deviations (BSISD) estimated from prior-day option price observations. Current-day theoretical 
Black-Scholes option prices calculated using prior-day volatility parameter estimate. Prices stated on a per contract basis, i.e., 100 
times quote price. 
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For example, Exhibit 4 shows that the Black- 
Scholes implied standard deviation (BSISD) estimated 

and h, defined in Equation (5), where the terms Q3 
and Q, are also defined. These daily estimates yield 

using Whaley’s simultaneous equations procedure on 
December 2 option prices is 15.29%, while Exhibit 3 
reveals that contract-specific Black-Scholes implied 
volatilities range from about 18% for deep in-the- 
money options to about 8% for deep out-of-the- 
money options. 

Given December 2 SPX input values (S = 
$459.65, r = 3.15%, t = 78 days), a deep in-the- 
money option with a strike price of 430 yields call 
contract prices of $3,635.76 and $3,495.68, respec- 
tively, from volatihty values of 18% and 15.29%. Simi- 
larly, a deep out-of-the-money option with a strike 
price of 490 yields call contract prices of $46.02 and 
$395.13, respectively, fiom volatility values of 8% and 
15.29%. These prices correspond to contract price 
deviations of $140.08 for deep in-the-money options 
and $349.11 for deep out-of-the-money options, sig- 
nificantly larger than the average deviation of $56.75 
per contract. 

Price deviations of this magnitude indicate that 
CBOE market makers quote deep in-the-money 
(out-of-the-money) call option prices at a premium 
(discount) compared to Black-Scholes prices, 
although the Black-Scholes formula is a useful first 
approximation to these option prices. 

Skewness- and Kurtosis-Adjusted 
Jarrow-Rudd Model 

To examine the improvement in pricing accu- 
racy obtained by adding skewness- and kurtosis- 
adjustment terms, in the second set of estimation 
procedures, on a given day within a given option 
maturity series, we simultaneously estimate a single 
return standard deviation, a single skewness parame- 
ter, and a single kurtosis parameter by minimizing 
the sum of squares with respect to the arguments 
ISD, L,, and L,, respectively: 

ISD,L,,L, j=l 

The coefficients L, and L2 estimate the parameters h, 

implied coefficients of skewness (ISK) and kurtosis 
(IKT) calculated as follows, where yl(A) and y,(A) are 
as defined in Equation (7): 

ISK = L, + y,[A(ISD)] 

IKT = 3 + L, + y,[A(ISD)] 

Thus ISK estimates the skewness parameter yl(F), and 
IKT estimates the kurtosis parameter 3 + y2(F). 

Substituting estimates of ISD, L,, and L, into 
Equation (4) yields skewness- and kurtosis-adjusted 
Jarrow-Rudd option prices (C ) expressed as the sum 

!R of a Black-Scholes option price plus adjustments for 
skewness and kurtosis deviations fiom lognormality: 

Equation (10) yields theoretical skewness- and kurto- 
sis-adjusted Black-Scholes option prices from which 
we compute deviations of theoretical prices from 
market-observed prices. 

Exhibit 5 summarizes results for the same S&P 
500 index call option prices used to compile Exhibit 
4. Consequently, the stub lists the same even-num- 
bered dates and column (1) the same number of price 
quotations given in Exhibit 4. 

To assess the out-of-sample forecasting power 
of skewness and kurtosis adjustments, the implied 
standard deviation (ISD), implied skewness coefficient 
(ISK), and implied kurtosis coefficient (IKT) for each 
date are estimated from prices observed on the trading 
day immediately prior to each date listed. For exam- 
ple, the first row of Exhibit 5 lists the date December 
2, 1993, but that day’s standard deviation, skewness, 
and kurtosis estimates provided are obtained from 
December 1 prices. Thus, out-of-sample parameters 
ISD, ISK, and IKT reported correspond to one-day 
lagged estimates. 

We use these one-day lagged values of ISD, 
ISK, and IKT to calculate theoretical skewness- and 
kurtosis-adjusted Black-Scholes option prices accord- 
ing to Equation (10) for all price observations on the 
even-numbered dates listed. In turn, these theoretical 
prices based on out-of-sample ISD, ISK, and IKT val- 
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EXHIBIT 5 

OBSERVED PRICES OF $&P 500 OPIIONB 
COMPARISON OF SKEWNESS- AND KURTOSIS-ADJUSTED BLACK-SCHOLES PRICES ANI) 

Average Absolute 
Implied Proportion of Deviation of 

Number of Standard Implied Implied Theoretical Prices Theoretical Price 
Price Deviation Skewness Kurtosis Outside Bid-Ask fiom Spread 

Date Observations (%) (ISK) ( I m )  Spread (%) Boundaries ($) 
12/02/93 3,354 3 2.70 -1.57 4.33 17.73 8.60 
12/06/93 
12/08/93 
12/ 10/93 
12/ 14/93 
12/16/93 
12/20/93 
12/22/93 
12/28/93 

3.,667 
956 

2,445 
3,100 
1,944 

115 
199 
166 

11.90 
12.12 
1 1.58 
12.06 
12.04 
11.42 
11.06 
10.55 

-:I .54 
-1.36 
-1.44 
-1.46 
-1.58 
-2.13 
-2.22 
-1.91 

5.19 
5.68 
4.72 
5.73 
5.32 
5.86 
6.12 
5.21 

23.10 
6.59 
8.06 

11.03 
12.65 
62.61 
72.86 
50.60 

15.15 
17.22 
10.37 
8.15 

14.18 
28.27 
30.82 
12.36 

12/30/93 242 10.75 -1.62 5.77 53.31 13.42 
Average 1,218 11.62 -1.68 5.39 31.85 15.85 

Implied standard deviation (ISD), skewness (ISK), and kurtosis (IKT) parameters estimated from prior-day price observations. Current- 
day theoretical option prices calculated using out-of-sample parameter estimates. 

ues are then used to compute daily proportions of the- 
oretical prices outside bid-ask spreads and daily aver- 
ages of deviations from spread boundaries. Column 
averages are reported in the last row of Exhlbit 5. 

All daily skewness coefficients are negative, 
with a column average of -1.68. Daily kurtosis coeffi- 
cients average 5.39. These option-implied coefficients 
may be compared with sample coefficients reported in 
E h b i t  1 for the decade 1986-1995. 

For example, option-implied skewness of 
-1.68 compares to log-relative return skewness of 
-1.67 and arithmetic return skewness of -1.19 calcu- 
lated including the October 1987 return, but option- 
implied kurtosis of 5.39 is less extreme than arithmetic 
return kurtosis of 9.27 and log-relative return kurtosis 
of 11.92 calculated including the October 1987 
return. Ths appears to suggest that any memory of 
the October 1987 crash embodied in S&P 500 option 
prices is more strongly manifested by negative option- 
implied skewness than option-implied excess kurtosis. 

The next-to-last column in Exhibit 5 lists the 
proportion of skewness- and kurtosis-adjusted prices 
lying outside their corresponding bid-ask spread 

boundaries. The average proportion is 31.85%. The 
last column lists average absolute deviations of theo- 
retical prices from bid-ask spread boundaries for only 
those prices lying outside their bid-ask spreads. The 
column average is $15.85, which is about one-fourth 
the size of the average bid-ask spread of $69.77 
reported in Exhibit 4. 

Moreover, Exhibit 3 reveals that implied 
volatilities from skewness- and kurtosis-adjusted 
option prices (hollow markers) are unrelated to 
option moneyness. In turn, this implies that the cor- 
responding price deviations are also unrelated to 
option moneyness. 

Comparison of implied volatility values in 
Exhbits 4 and 5 suggests that the implied volatdity 
series obtained using the Jarrow-Rudd model is 
smoother than the series obtained using the Black- 
Scholes model. Indeed, the average absolute value of 
daily changes in implied volatility is 0.42% for the 
Jarrow-Rudd model, less than half the 0.91% of the 
Black-Scholes model. Using a matched-pairs t-test 
on absolute values of daily changes in implied volatil- 
ities for both models, we obtain a t-value of 4.0, 
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indicating a significantly smoother time series of 
implied volatilities from the Jarrow-Rudd model. 
Thus the Jarrow-Rudd model not only flattens the 
implied volathty skew, but it also produces more sta- 
ble volatility estimates. 

The empirical results will vary slightly 
depending on the interest rate assumed. If the 
assumed rate is too low, implied standard deviation 
estimates will be biased upward. Likewise, if the 
assumed rate is too high, implied volatility estimates 
will be biased downward. 

We follow the standard research practice, and 
use Treasury bill rates, which may understate the true 
cost of funds to option market participants. Treasury 
bill repurchase (repo) rates likely better represent the 
true cost of borrowed funds to securities firms. For 
individual investors, the broker call money rate would 
better represent the true cost of funds. 

To assess the robustness of our results to the 
interest rate assumed, we repeat all empirical analyses 
leadmg to Exhibits 4 and 5 using Treasury bill repur- 
chase rates and broker call money rates. On average, 
repurchase rates were 7 basis points higher than Trea- 
s u r y  bill rates in December 1993. Call money rates 
were on average 196 basis points higher. 

Average daily Black-Scholes implied standard 
deviations are 12.81% using repurchase rates and 
10.72% using call money rates. These are both 
lower than the 12.88% average implied volatility 
reported in Exhibit 4. Using repurchase rates for the 
Jarrow-Rudd model yields an average daily implied 
volatility of 11.55%, and using call money rates 
yields an average volatility of 9.69%. Both are lower 
than the 11.62% average implied volatility reported 
in Exhibit 5. 

Using repurchase rates for the Jarrow-Rudd 
model ylelds an average daily skewness coefficient of 
-1.66 and an average daily kurtosis coefficient of 
5.34, while using call money rates yields an average 
daily skewness Coefficient of -1.1 1 and an average 
daily excess kurtosis coefficient of 3.46. These are all 
smaller than the average skewness of -1.68 and aver- 
age kurtosis of 5.39 reported in Exhibit 5. Yet 
whichever interest rate is used to measure the cost of 
funds to S&P 500 options market participants, the 
option-implied distributions of S&P 500 returns are 
still noticeably non-normal. 

Overall, we conclude that skewness and kurto- 
sis adjustment terms added to the Black-Scholes for- 
mula significantly improve pricing accuracy for deep 
in-the-money or deep out-of-the-money S&P 500 
index options. Furthermore, these improvements are 
obtainable from out-of-sample estimates of skewness 
and kurtosis. 

Of course, there is an added cost, in that two 
additional parameters must be estimated. But this 
cost is slight, because once the computer code is in 
place, the additional computation time is trivial on 
modern computers. 

$7. PIEDGING IMPLICATIONS 
OF THE JARRQW-RUDD MODEL 

To explore the Jarrow-Rudd model's implica- 
tions for hedging strategies using options, we derive 
formulas for an option's delta and gamma based on 
the model. Delta is used to calculate the number of 
contracts needed to form an effective hedge based on 
options. Gamma states the sensitivity of a delta- 
hedged position to stock price changes. By definition, 
delta is the first partial derivative of an option price 
with respect to the underlymg stock price. Sindarly, 
gamma is the second partial derivative. 

Takmg first and second derivatives of the Jar- 
row-Rudd call option price formula yields delta and 
gamma formulas, where the variables h. and Q. are 
defined as in Equation (5): 

J J 

ac 
as0 

Delta: - = N(d,) + 

Gamma: - a2c = n(dl)(Soo&)-l + 
as; 

The first terms on the right-hand sides of 
Equations (11A) and (11B) are the delta and gamma 
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for the Black-Scholes model. Adding the second and 
third terms yields the delta and gamma fbr the Jar- 
row-Rudd model. 

Exhibit 6 illustrates how a hedging strategy 
based on the Jarrow-Rudd model might differ f‘rom a 
hedging strategy based on the Black-Scholes model. 
In this example, S&P 500 index options are used to 
delta-hedge a hypothetical $10 mdlion stock portfo- 
lio with a beta of one. The example assumes an 
index level of So = $700, an interest rate of r = 576, a 
dividend yield of y = 2%, and a time until option 
expiration o f t  = 0.25. For the volatihty parameter in 
the Black-Scholes model, we use the average implied 
volatility of 12.88% reported in Exhibit 4. For the 
Jarrow-Rudd model, we use the average implied 
volatility of 11.62% and the average skewness and 
kurtosis values of h, = -1.68 and h, = 5.39 reported 
in Exhibit 5. 

Strike prices range from 660 to 750 in incre- 
ments of 10. For each strike price, the BS and J R  
columns list the number of S&P 500 index option 
contracts needed to delta-hedge the assumed $10 d- 
lion stock portfolio, according to the Black-Scholes 
and the Jarrow-Rudd models. 

In both cases, numbers of‘ contracts required 
are computed as follows, where the option contract 
size is 100 times the index level (Hull [1993]): 

EXHIBIT 6 

DELTA-HEDGE $10 MILLION STOCK: PORTFOLIO 
NUMBER OF OPTION CONTRACTS NEEDED TO 

WITH BETA OF ONE 
~ 

In-the-Money Options Out-of-the-Money Options 

660 167 161 710 303 302 
670 179 173 720 370 377 
680 197 190 730 465 486 
690 221 215 740 601 65 1 
700 256 250 750 802 900 

Strike (BS) m) Strike (BS) (JHa) 

Index level So = $700, interest rate r = 5%, dividend yield y = 
2%, time until option expiration t = 0.25. Black-Scholes (BS) 
model assumes volatility of (3 = 12.813%. Jarrow-Rudd UR) 
model assumes (T = 11.62%, and skewness and kurtosis parame- 
ters of h, = -1.68 and h, = 5.39. 

Number of Contracts = 

Portfolio Value/Contract Size 
Option Delta 

Exhbit 6 reveals that for in-the-money options 
a delta-hedge based on the Blacyk-Scholes model 
specifies more contracts than a delta-hedge based on 
the Jarrow-Rudd model. But for out-of-the-money 
options, a delta-hedge based on the Jarrow-Rudd 
model requires more contracts (except in one case). 

Differences in the number of contracts speci- 
tied by each model are greatest for out-of-the-money 
options. For example, in the case of a delta-hedge 
based on options with a strike price of 740, the 
Black-Scholes model specifies 601 contracts, while 
the Jarrow-Rudd model specifies 65 1 contracts. 

VI. SUiMMARY rn CONCLUSION 

We have empirically tested an expanded ver- 
sion of the Black-Scholes [1973] option pricing 
model developed by Jarrow and Rudd [1982] that 
accounts for skewness and kurtosis deviations from 
lognormahty in stock price distributions. The Jarrow- 
Rudd model is applied to estimate coefficients of 
skewness and kurtosis implied by S&P 500 index 
option prices. 

We find signlficant negative skewness and posi- 
tive excess kurtosis in the option-implied distribution 
of S&P 500 index prices. This observed negative 
skewness and positive excess kurtosis induces a volatil- 
ity smile when the Black-Scholes formula is used to 
calculate option-implied volatihties across a range of 
strike prices. 

By adding skewness and kurtosis adjustment 
terms developed in the Jarrow-Rudd model, the 
volatility smile is effectively flattened. We conclude 
that skewness and kurtosis adjustment terms added to 
the Black-Scholes formula signlficantly improve accu- 
racy and consistency for pricing deep in-the-money 
and deep out-of-the-money options. 
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