A Human Capital Model of the Effects of Ability and Family Background on Optimal Schooling Levels
Tracy L. Regan
and
Ronald L. Oaxaca
and
Galen Burghardt*
RRH: REGAN, OAXACA, & BURGHARDT: HUMAN CAPITAL MODEL
Abstract
This paper develops a theoretical model of optimal schooling levels where ability and family background are the central explanatory variables. We derive schooling demand and supply functions based on individual wealth maximization. Using NLSY79 data we stratify our sample into one-year FTE work experience cohorts for 1985-1989. The estimated Mincerian “overtaking” cohort (the years of work experience at which individuals’ observed earnings approximately equal what they would have been based on schooling and ability alone) corresponds to 13 FTE years of experience yielding an average rate of return of 10.3 percent and an average (optimal) 11.4 years of schooling.

A Human Capital Model of the Effects of Ability and Family Background on Optimal Schooling Levels

Corresponding author: Tracy L. Regan, Department of Economics, University of Miami, P.O. Box 248126, Coral Gables, FL 33124-6550. tregan@miami.edu, [W] (305) 284-5540, [F] (305) 284-2985.

Co-author: Ronald L. Oaxaca, IZA, Bonn, Germany and Department of Economics, University of Arizona, McClelland Hall #401, P.O. Box 210108, Tucson, AZ 85721-0108.

Co-author: Galen Burghardt, Calyon Financial, 550 West Jackson Boulevard, Suite 500, Chicago, IL 60661.
I. Introduction

Human capital investments are of wide ranging interest because they can be used to explain income disparities across people, geography, and time. According to Becker (1962), human capital investments are activities that affect future real income streams through the embedding of resources in people. Examples include schooling, on-the-job-training (OJT), migration, job search, i.e. anything that increases one’s stock of human capital or the value of one’s existing stock. A vast literature supports the social and intellectual interest in income inequality, primarily attributed to differing schooling levels. Schooling is a unique type of investment in that it affects not only current consumption but also future earnings potential as well. Optimizing individuals choose to invest in schooling until their marginal rate of return equals their discounting rate of interest. Equivalently, they choose their schooling levels so as to maximize their expected (discounted) future earnings stream.

This paper specifies and estimates a human capital model that is based on individual wealth maximization along the lines of the original Austrian problem [Blaug, 1962, 506-07]. We use an earnings-schooling relationship to identify individual marginal rates of return to schooling and discounting rates of interest. From these we can identify and estimate supply and demand functions for schooling investment. In this framework the emphasis on rates of return to schooling is misplaced. Emphasis is properly placed on the optimal level of schooling investment. We ultimately arrive at an optimal level of schooling equation that incorporates permanent family income, family size, and ability. Our estimation strategy borrows from Mincer (1974) and involves disaggregating a sample of white males into one-year full time equivalent (FTE) work experience cohorts for 1985-1989. We estimate a log earnings equation to identify the work experience cohort for whom the estimated residual standard error is minimized as well as three other model selection criteria, namely the Akaike information criterion, the Schwarz criterion, and Amemiya’s prediction criterion. This
procedure should help reduce the biases associated with omitted variables, measurement error, and “discount rate.” Once identified, the remaining estimation proceeds with the “overtaking” work experience cohort. We employ the following estimation strategies in this paper: OLS, Nonlinear Seemingly Unrelated Regressions/Nonlinear OLS (NLSUR/NLOLS), and 2SLS.

The paper is organized as follows: Section II provides the background and literature review. Section III discusses the conceptual framework that underlies the analysis. Section IV discusses the data used in the analysis. Section V presents the results while Section VI discusses them and provides alternative estimation strategies as well. Finally, Section VII concludes.

II. Background and Literature Review

A substantial portion of the economics literature has been devoted to studying human capital investments and the economic rates of return, particularly in relation to education. Researchers have exploited the models and theories developed by Mincer (1974) and Becker (1962) in their attempts to obtain better estimates of the rates of return.

A variety of modifications to the traditional Mincerian log earnings regression endeavor to correct the potential measurement error bias and omitted variables bias that afflict OLS estimates. Early work addressing the OLS bias includes Griliches (1976, 1977). Behrman and Birdsall (1983), like Card and Krueger (1992), incorporate a quality of schooling variable into the log earnings regression to correct the omitted variables bias while Altonji and Dunn (1996), Ashenfelter and Zimmerman (1997), Lang and Ruud (1986), and Agnarsson and Carlin (2002) instead include a family background variable. Ashenfelter and Krueger’s (1994) twins-based study not only addresses the omitted variables bias, but also measurement error in schooling through the creative use of both the self- and twin-reported education levels. While Ashenfelter and Krueger’s (1994) large, measurement error adjusted rates of return to education (i.e. 12-16 percent) are now considered an anomaly of the data, their
paper laid the foundation for subsequent work (e.g., Ashenfelter and Rouse, 1998; Rouse, 1999; Neumark, 1999; Behrman and Rosenzweig, 1999). Later work has uncovered rates of return (e.g., 9 percent) which are more reasonable and consistent with earlier findings (e.g., Willis and Rosen, 1979). The consensus reached by researchers is that omitted variables biases the rates of return upwards whereas measurement error in schooling biases the rates downwards. While fixed effects (FE) or instrumental variables (IV) are often used to remedy such problems, Griliches (1979) warns that first differencing can exacerbate measurement error in schooling. Card (1995) provides a survey of this work.

In addition to the biases mentioned above, a recent literature has investigated another source of bias in human capital models. Specifically that stemming from the heterogeneity in students’ access to credit markets for educational decisions. Lang (1993) and Card (1995, 2000) refer to this bias as “discount rate bias.” They argue that this bias can help explain the large IV estimates of the rates of return to schooling. Using data from the National Longitudinal Survey of Youth 1979 (NLSY79), Cameron and Taber (2004) find no evidence of credit constraints when they instrument schooling with foregone earnings and the direct costs of schooling. Kling (2001) adopts a Becker (1975) supply and demand model of schooling to examine the types of biases summarized by Card (1995). Generally speaking, Kling (2001) argues that the choice of instrument for schooling may have effects that differ by individuals/groups. IV estimates of rates of return to schooling are interpreted as weighted averages of individual-specific causal effects.

This paper takes a step back and abstracts from some of the issues occupying researchers’ attention in recent years. We return to Mincer’s (1974) earlier work where he introduces the notion of an “overtaking” year of work experience in which an individual’s observed earnings are most reflective of his investment in school (and innate ability). According to Becker (1962) human capital investments lower observed earnings in the early part of one’s working life because observed earnings are net of the costs of investment. However, as an individual ages his observed earnings rise as he reaps the benefits of the investments.
At the “overtaking” year of work experience observed earnings are equal to earnings based on schooling (and ability). The distortion from post-schooling investments (e.g., OJT) is minimized because the returns on an individual’s prior OJT investment equal the cost of current OJT investment. Thus, an individual’s earnings at this point provide the best test of the simple schooling model.

Murphy and Welch (1990) investigate the (in)appropriateness of the quadratic experience term in Mincer’s (1974) human capital earnings function. Murphy and Welch (1990) is one of the few studies that address the quadratic experience term; much of the prior research was concerned with the form of the dependent variable. Specifically, they ask how do wages vary with age and consider the confounding effects of experience on earnings. Their empirical findings lend support for Mincer’s (1974) emphasis on experience, not age. They note that the severity of problems associated with the quadratic term will depend on how much the variables of interest vary within the experience levels.

III. Conceptual Framework

We posit the existence of an earnings transformation function for the “overtaking” work experience cohort and define it as follows,\(^3,4\)

\[
Y = F(S, A).
\]

(1)

This function relates an individual’s annual earnings, \(Y\), to his years of schooling, \(S\), and to his natural ability, \(A\). For the earnings function to exhibit the conventional positive but diminishing marginal returns to schooling and positive returns to ability, we need the following inequalities to be satisfied,

\[
F_S, F_A > 0 \text{ and } F_{SS} < 0.
\]

(2)

One might also expect more able people to reap greater returns to schooling\(^5\):
\(F_{SA} = F_{AS} > 0. \) \hfill (3)

In the analysis that follows it is more convenient to think of the earnings transformation function in its log form,
\[\ln Y = \ln F(S, A). \] \hfill (4)

Let the marginal rate of return to schooling, \(r \), be defined as follows:
\[r = \frac{\partial \ln F(S, A)}{\partial S}. \] \hfill (5)

In order for the marginal rate of return to schooling to increase with ability (and hence for the demand for schooling to increase with ability) we need the following inequality to be satisfied,
\[FF_{SA} > F_{A}F_{S}. \] \hfill (6)

(See the Appendix for the proof.) Next, we assume that all relevant costs are foregone earnings and that an individual seeks to maximize the present value of his lifetime earnings over an infinite horizon subject to the constraint imposed by (1). Formally, we can represent an individual’s maximization problem as,
\[\max_S V = \int_0^\infty Y e^{-it} dt \text{ subject to } Y = F(S, A), \] \hfill (7)

where \(V \) is the present value of lifetime earnings, \(i \) is a fixed discounting rate of interest, and \(t \) is the index of integration. We assume there are no borrowing constraints. Work by Lang (1993), Card (1995, 2000), and Cameron and Taber (2004) support this assumption.

We simplify the present value of lifetime earnings expressed in (7) and take the log of the resulting expression to obtain,
\[\ln V = \ln Y - iS - \ln i. \] \hfill (8)

Taking derivatives with respect to \(S \) we arrive at the following first order condition:
\[r = i. \] (9)

Hence, the optimal level of schooling for an individual occurs at the point where his marginal rate of return to schooling exactly equals his discounting rate of interest as noted by Becker (1962).

The above analysis can be couched in a supply and demand framework. Taking the derivative of the log transformation function as defined in (4) with respect to schooling yields an individual’s inverse demand function for schooling,

\[r = r(S, A), \] (10)

which is equivalently expressed as,

\[S_d = S_d(i, A), \]

where \(S_d \) is the level of schooling demanded at each discounting rate of interest for an individual with a given (fixed) ability level \(A \).

An individual’s supply function for schooling investment can be derived using the present value function as defined in (8). Simple manipulation of this expression yields,

\[\ln Y = \ln(iV) + iS. \] (11)

Differentiating this expression with respect to \(S \), for a given \(V \), yields \(i \) which indexes an individual’s supply curve thereby establishing the relationship between the supply of schooling and the discounting rate of interest. An individual’s discounting rate of interest, \(i \), is uniquely fixed and does not vary with the level of schooling. However, since \(i \) can also be interpreted as the marginal opportunity cost of an additional year of school, \(i \) can vary across individuals. For example, the discounting rate of interest would likely be higher for children from poorer families than that for children from wealthier families. The same could be said
of children from larger families as compared to children from smaller families. Hence, we express \(i \) as a function of an individual’s family characteristics,

\[
i = i(X),
\]

where \(X \) denotes a vector of family background variables. In the analysis these include family size and permanent family income.\(^7\) There are a number of models where family background is central to the analysis. At the present, we have chosen to take a parsimonious view and choose to incorporate family background through \(i \).

By combining (9), (10), and (12) the optimal level of schooling, \(S^* \), is obtained as,

\[
S^* = f(X,A).
\]

In our case the optimal level of schooling can be graphically illustrated using a supply and demand framework and a framework involving the log earnings functions. Becker and Chiswick (1966) give a very general discussion of how human capital investment can be nested in the context of a supply- and demand-curve analysis. This can be seen in Figure 1. The top graph relates the log earnings transformation function to the log earnings present value functions as defined in (11). The log earnings transformation function is a concave curve reflecting the positive but diminishing marginal returns to schooling. The log earnings iso-present value functions are represented by a set of parallel lines relating \(\ln Y \) and \(S \) at a given \(i \). \(S^* \) occurs at the point of tangency between these two curves—the point at which discounted lifetime earnings are maximized. Similarly the bottom graph relates the downward sloping demand function, as defined in (10), to the infinitely elastic supply curve, as defined in (12). The intersection of these two curves corresponds to the point \(S^* \) where the discounting rate of interest exactly equals the marginal rate of return to schooling (i.e. the equilibrium as defined in (9)). These two frameworks graphically establish the solution to the maximization problem as defined in (7).
Figure 2 allows A and i to vary across individuals. Fitting a line through the set of tangency points in the top graph parallels the development of Mincer’s (1974) simple schooling model,

$$\ln Y_j = \beta_0 + \beta_1 S_j + u_j,$$

for individual j.\(^8\)

A stochastic approximation to the transformation function as defined in (4) is,

$$\ln Y_j = \beta_0 + \beta_1 S_j + \beta_2 A_j S_j + \beta_3 S_j^2 + \beta_4 A_j + u_{1j},$$

(15)

where u_1 is iid $(0, \sigma_1^2)$. This is a standard human capital functional form that is consistent with the literature. To maintain the restrictions corresponding to (2) and (3), we require

$$\beta_1, \beta_2, \beta_4 > 0 \quad \text{and} \quad \beta_3 < 0.$$ (16)

Differentiating (15) with respect to S yields the schooling investment demand function,

$$r_j = \beta_1 + \beta_2 A_j + 2\beta_3 S_j.$$ (17)

We specify the schooling investment supply function to be a linear function of various family background variables. Consider,

$$i_j = \theta_0 + \theta_1 S_{fj} + \theta_2 S_{mj} + \theta_3 (S_{fj} + S_{mj}) + \theta_4 DV S_{fj} + \theta_5 DV S_{mj} + (\theta_6 + \theta_7) N_j + u_{2j},$$ (18)

where S_f is father’s schooling, S_m is mother’s schooling, N is family size, and u_2 is iid $N(0, \sigma_2^2)$. Permanent family income is proxied with the schooling levels of an individual’s parents.\(^9\) So as to not lose observations, and to maintain a constant sample size across regressions for the NLSUR estimations, we assigned an education level of “0” years for any respondent’s parent whose education level was missing and created dummy variables to indicate whether or not such a value was imposed.\(^{10}\) Hence, $DV S_{f(m)}$ takes on a value of “1” if we replaced a missing value for the respondent’s father’s (mother’s) education level with a “0.”

8
The coefficients in (18) are nicely interpreted. \(\theta_1 \) and \(\theta_2 \) capture the pure wealth effects of family income on an individual’s discounting rate of interest. We would expect these two coefficients to be negative because an individual’s discounting rate of interest (marginal opportunity cost of an additional year of schooling) decreases with his family wealth (i.e. the individual has the luxury to postpone earnings for more schooling). It is intended that \(\theta_3 \) captures the effect of family wealth on potential financial aid. Since financial aid offices base their decisions purely on family wealth, not on individual parental contributions, we sum these two variables together and expect their common parameter, \(\theta_3 \), to be positive. While there are no theoretical predictions concerning the expected sign on \(\theta_4 \) or \(\theta_5 \), a positive estimate clearly means that an individual’s discounting rate of interest is higher once we have made the imputation for a missing level of parental schooling. Children from wealthier families have a decreased likelihood of receiving financial aid which raises their discounting rate of interest. The effects of family size on an individual’s marginal opportunity cost of an additional year of schooling can be decomposed into two separate effects: \(\theta_6 \) captures the pure income effect of family size and \(\theta_7 \) captures the indirect effect via financial aid considerations. We would expect \(\theta_6 \) to be positive because individuals from larger families likely have increased opportunity costs to additional schooling. However, the larger a family, the more widely the (financial) resources are spread and hence the greater the opportunity for financial aid assistance. Thus, \(\theta_7 \) would be negative.

Of course the individual coefficients are not identified in the above specification, so we collect terms to arrive at,

\[
i_j = \alpha_0 + \alpha_1 S_{fj} + \alpha_2 S_{mj} + \alpha_3 DVS_{fj} + \alpha_4 DVS_{mj} + \alpha_5 N_j + u_{2j}, \tag{19}
\]

where,

\[
\begin{align*}
\alpha_1 &= \theta_1 + \theta_3, \\
\alpha_2 &= \theta_2 + \theta_3,
\end{align*}
\]
and
\[\alpha_5 = \theta_6 + \theta_7. \]

The stochastic approximation to (12) is a simple linear model that identifies the differential parental contributions on wealth effects, aside from the financial aid effects since \(\alpha_1 - \alpha_2 = \theta_1 - \theta_2. \) We recognize that if family size is endogenous in the discounting rate of interest (supply equation), this will ultimately lead to endogeneity of family size in the reduced-form schooling equation below. However, we do not model family fertility decisions because of a desire to focus on the explanatory power of a conceptually straight-forward Beckerian schooling demand and supply framework.

The reduced-form optimal level of schooling equation is obtained by substituting (17) and (19) into the individual-specific equilibrium condition,

\[r_j = i_j. \quad (21) \]

Solving for \(S, \)

\[S_j = \gamma_0 + \gamma_1 S_{fj} + \gamma_2 S_{mj} + \gamma_3 DV S_{fj} + \gamma_4 DV S_{mj} + \gamma_5 N_j + \gamma_6 A_j + u_3j, \quad (22) \]

where

\[
\begin{align*}
\gamma_0 &= (\alpha_0 - \beta_1)/2\beta_3, \quad \gamma_1 = \alpha_1/2\beta_3, \quad \gamma_2 = \alpha_2/2\beta_3, \quad \gamma_3 = \alpha_3/2\beta_3, \\
\gamma_4 &= \alpha_4/2\beta_3, \quad \gamma_5 = \alpha_5/2\beta_3, \quad \gamma_6 = -\beta_2/2\beta_3, \quad u_3j = u_2j/2\beta_3,
\end{align*}
\]

and

\[\sigma_3^2 = \sigma_2^2/4\beta_3^2. \]

The coefficients' signs establish the net effect of the direct and indirect effects of wealth on schooling. However, \(\gamma_6 \) can be unambiguously signed since more able people reap greater rewards from increased schooling levels. Thus, \(\gamma_6 \) should be positive.

Because an individual's discounting rate of interest and marginal rate of return to schooling
are not directly observable, they must be estimated in order to identify the supply and demand functions. In determining an individual’s marginal rate of return to schooling, \(\hat{r}_j \), we use the estimated parameters \(\hat{\beta}_1, \hat{\beta}_2, \) and \(\hat{\beta}_3 \) obtained from OLS estimation of (15). Specifically, \(\hat{r}_j = \hat{\beta}_1 + \hat{\beta}_2 A_j + 2\hat{\beta}_3 S_j \). Imposing the equilibrium condition as defined in (21) generates an estimated discounting rate of interest, \(\hat{i}_j \), so that \(\hat{i}_j = \hat{r}_j \). We use these estimated marginal rates of return and discounting rates of interest as the dependent variables in the demand of and supply for schooling investment functions, respectively. Note that (19) is estimated explicitly using \(\hat{i}_j \) as the dependent variable and (17) is directly constructed from the OLS estimates of (15).

Our empirical strategy follows Mincer’s (1974) estimation of the simple schooling model of (14). Mincer’s (1974) post-schooling investment model relates earnings to experience and education. Arguably, one might be concerned about potential endogeneity with work experience in a post-schooling investment regression. This problem should be mitigated with Mincer’s (1974) notion of an “overtaking” year of work experience in which an individual’s observed earnings are most reflective of his investment in school (and innate ability). Hence, experience is no longer a regressor in the log earnings equation. At the point of “overtaking,” the distortion from post-schooling investments (OJT) is minimized since observed earnings approximate the earnings based on schooling (and ability) alone.

The empirical implementation involves stratifying our sample into one-year FTE work experience cohorts and running (15) separately for each cohort. This strategy should at least reduce, if not entirely eliminate, the biases typically plaguing log earnings models. Such a procedure allows for a full interaction of each explanatory variable with experience thus minimizing the aforementioned bias. Once the “overtaking” cohort is identified, based on a series of goodness of fit measures, (17), (19), and (22) are estimated.
Goodness of Fit Measures

To identify the “overtaking” year of work experience we considered five separate “goodness of fit” measures for the model described in (15). The most typical and singular way of gauging the “goodness of fit” of an OLS regression is the R^2 measure. Although the number of regressors in (15) do not vary, the degrees of freedom do vary because sample sizes differ for each experience cohort. The R^2 measure adjusts for degrees of freedom but arguably even this measure does not impose a harsh enough penalty for the loss in degrees of freedom. The next three measures attempt to correct this problem by minimizing the mean-squared error (MSE) of prediction [Greene, 2000; Kennedy, 1998; Maddala, 2001; Judge et al., 1988].

Amemiya’s prediction criteria (PC) seeks to minimize,

$$PC = \frac{SSE}{(1 + k/N)} \approx \frac{\hat{\sigma}^2_1}{(1 + k/N)},$$

(24)

where SSE denotes the total sum of squared errors, k is the number of regressors (including the constant term), N refers to the sample size, and $\hat{\sigma}^2_1$ is the estimated variance of u_1.

Akaike’s information criterion (AIC) minimizes,

$$AIC = \ln \left(\frac{SSE}{N} \right) + 2 \frac{k}{N} \approx \ln(\hat{\sigma}^2_1) + 2 \frac{k}{N},$$

(25)

while the Schwarz criterion (SC) seeks to minimize,

$$SC = \ln \left(\frac{SSE}{N} \right) + k \ln(N) \approx \ln(\hat{\sigma}^2_1) + k \ln(N),$$

(26)

The PC, AIC, and SC criterion are usually nested in discussions of regressor selection. Typically researchers test different models using the same data set. We, however, test a common model using different samples to identify the work experience cohort for which the schooling model best explains earnings.

The last “goodness of fit” measure we consider is the estimated standard error of the
regression. We seek to minimize the estimated residual variance,

\[\hat{\sigma}_1^2 = \frac{SSE}{(N - k)}, \]

(or alternatively its square root, S.E.E.).

IV. Data

The data used in this study are from the National Longitudinal Survey of Youth 1979 (NLSY79). The NLSY79 consists of 12,686 young men and women, living in the U.S., who were between the ages of 14 and 22 when the first survey was conducted in 1979.

The demographic variables were collected from the 1979 interview. We limit our analysis to white males who are not enrolled in school, currently or during the remainder of the survey, and who earn at least $500 per year in nominal terms. We also omit anyone who attended school after 1989 to ensure that the wages we observe are truly reflective of the final schooling choices. Measures of a respondent’s family background/income level include the family size and the highest grade completed by the mother and the father. The NLSY79 provides three measures of a respondent’s ability—the Intelligence Quotient (IQ), the Knowledge of the World of Work (KWW), and the Armed Forces Qualification Test (AFQT). Following most of the literature, we focus on the AFQT measure. For a very early discussion of the use of AFQT in the log earnings function see Griliches and Mason (1972).

The dependent variable in the log earnings regression is the log of a respondent’s total income from wages and salary in the respective year. Using the CPI (Consumer Price Index) for all urban consumers, as published by the BLS (Bureau of Labor Statistics), we deflated the income figures and express them in terms of 1985 dollars.

The variables used in the construction of the work experience measures were collected from the supplementary NLSY79 work history file. Due to this detailed collection of actual work experience, we do not have to use less precise, potential work experience mea-
sures. We calculate a respondent’s FTE work experience for a given year by summing the hours worked in that and all prior years (since 1979) and then divide through by 2080 (40 hours per week \times 52 weeks per year). Taking account of the fact that many of our respondents were older than age 18 (the usual age that one graduates from high school in the U.S.) and had potentially been working for several years prior to the first survey, we constructed a variable to approximate their work experience prior to 1979. This variable is calculated as follows,

$$FTE\ Work\ Experience_{prior\ to\ 1979} = (Age_{1979} - Schooling_{1979} - 6) \times (Work\ Experience_{1979}/2080).$$

This provides us with a measure of FTE work experience.14

Like Mincer (1974) we stratified our sample into one-year FTE work experience cohorts for 1985-1989.15 Equation (15) is estimated separately for each work experience cohort which allows for work experience to fully interact with each coefficient. The earnings data in the model defined by (15), (17), (19), and (22) reflect not only ability and schooling investment decisions but post-schooling investments (e.g., work experience, OJT) as well. Unfortunately the NLY79 does not provide adequate information to capture school quality. Ignoring the potential correlation between schooling and work experience in cross-sectional rate of return to schooling models biases OLS. By stratifying our sample into work experience cohorts we purge the model of any post-schooling investment decisions. Thus, there exists an “overtaking” year in which an individual’s earnings are most reflective of his natural ability and schooling levels alone. We reasonably assume that this “overtaking” year varies across individuals, even within a given work experience cohort. Thus, we stratify our sample into one-year FTE work experience cohorts for 1985-1989 to best identify the group whose earnings are on average free of OJT effects.
V. Estimation and Results

As mentioned above, our statistical estimation pertains to white males who nominally earned at least $500 for a given survey year and who were not enrolled in school currently or anytime after 1989. Table 1 provides the descriptive statistics for each variable used in the analysis, when such information is available. On average, our respondents are 18.3 years old and have the equivalent of a high school education while their parent(s) appear to have completed their junior year of high school. The average household size is 3.8 persons.

Sample Stratification

As was previously mentioned, we stratified our sample into one-year FTE intervals of work experience for 1985-1989. Table 2 lists the number of people in each respective cohort and the corresponding percentage of the sample they comprise. The procedure for constructing the FTE work experience intervals worked as follows: For example, in constructing the one-year work experience cohort, we included individuals for whom we calculated having between one (inclusive) and two (not inclusive) years of work experience at any time between 1985 and 1989. Below we describe how the experience calculations were done. In using such a decision rule we encountered the possibility of individuals having say, 1.2 years of work experience in 1985 and 1.9 years of work experience calculated for 1986. To ensure that an individual entered a particular work experience cohort only once we manually identified those individuals who were double- or even triple-counted. For these individuals, we chose to use the most recent year in which their work experience fell within the specified range. Once this year was identified we chose the individual’s corresponding education and income levels. Of course individuals can and do appear in more than one experience cohort over the period 1985-1989.

We performed similar procedures for all other relevant work experience cohorts and separately estimated the log earnings function specified in (15) for each cohort, excluding ability as a separate regressor. Including ability as an independent regressor in (15), as is often
standard practice, does not affect the overall fit of the model and hence our estimate of the “overtaking” cohort. In addition the estimated coefficient on linear ability is never statistically significant except for the 2-year cohort. For this cohort only linear ability and linear schooling achieve statistical significance. Consequently, in the log earnings regressions that follow we assume $\beta_4 = 0.16$.

13-Year Work Experience Cohort

As can be seen from Table 3 the AIC, SC, PC, and estimated residual standard error are minimized for the 13-year work experience cohort while the R^2 is maximized for the 14-year cohort. The 13-year work experience cohort includes a larger sample and the estimated coefficients are statistically significant and of the expected signs. While the estimated coefficients from the 14-year work experience cohort are of the appropriate signs, the only statistically significant coefficient (at the 10 percent level) is the schooling-ability interaction term. Thus, our preferred estimate of the “overtaking” year is 13 FTE years of work experience.

As was previously noted, the AIC, SC, and PC criterion are typically nested in discussions of regressor selection. We, however, employ such criterion to determine which cohort (of varying sample sizes) best fits our proposed log earnings functional form (where the number of regressors is fixed). Thus, the differing degrees of freedom across our regressions are due to variations in the sample size as opposed to the number of explanatory variables. Holding other factors constant (i.e. $\hat{\sigma}_1^2$), the AIC, SC, and PC criterion would favor larger samples. Thus, the use of such criterion would bias our results towards finding earlier work experience cohorts as the “overtaking” year(s). Given that we estimate the “overtaking” year to be as high as 13 FTE years of work experience, we believe the bias to be negligible.

Table 4 lists the descriptive statistics for the 13-year work experience cohort. On average, the “overtaking” cohort is 28.7 years old (at any point between 1985 and 1989) and earns a real (nominal) annual income of $19,594.42 ($25,417.10). The respondents have been out of
school for 11.3 years after completing their junior year of high school. Many of these individuals are either working over-time or are multiple-job holders because the average experience level is 13.5 years. The NLSY79 reports the respondent’s mother (father) completing 10.6 (10.1) years of schooling on average. However, including zero for missing values lowers the average level by one year. The mean family size is 3.7 persons.

The remainder of the estimation will be based on the 13-year “overtaking” cohort. Table 5, column 2, lists the OLS results for (15). As theory predicts, the coefficients on schooling and the schooling-ability interaction are positive while schooling squared is negative. The estimates are statistically significant.

Table 5, column 1, lists the results from the simple schooling model (14). As might be expected when ability is not controlled for, the rate of return to schooling estimated from the simple schooling model is greater than that estimated directly from (15). The simple schooling model predicts a rate of return of 14 percent while the estimates from (15) suggest a 9.7 percent rate of return.

The results from the schooling investment demand function are presented in Table 5, column 3. Because the coefficients on the demand function are taken directly from (15), the coefficient on ability is positive and that on schooling is negative.

VI. Estimation Strategies

VI(i). Unrestricted/OLS

1. Reduced-Form Optimal Level of Schooling. The initial estimation strategies are based on the assumption that A is uncorrelated with u_1 and u_3 (and hence u_2) and that S is also uncorrelated with u_1. The first estimation strategy involves the direct estimation of the schooling investment supply function (19) by OLS. Since our estimation procedure constrains the model to be in equilibrium, the marginal rates of return calculated from (15) are directly imposed as the dependent variable for (19) (i.e. the discounting rates of interest).
Table 5, column 4, lists these results. The negative coefficient estimates on the permanent family income proxies, the parental education levels, suggests that children from wealthier families have lower discounting rates of interest. This implies that the pure wealth effects of increased parental schooling levels outweigh the indirect effects that family wealth has on the likelihood of receiving financial aid. The estimated coefficients on the parental missing schooling dummies are negative, but only statistically significant for the father. Thus, the marginal opportunity cost of an additional year of schooling is lower for those whose father’s education level is missing. The coefficient estimate on family size is negative but statistically insignificant which implies that the pure wealth effects of family size completely offset the indirect wealth effects on financial aid. Alternatively, it could be the case that family size has no effect on the discounting rate of interest or that the parameter is imprecisely estimated. Shea (2000) finds that changes in parents’ income due to luck have a negligible impact on their children’s human capital except when the father has a low level of schooling.

The estimated coefficients from (15) and (19), corresponding to columns 2 and 4 in Table 5, are used to derive the parameters in (22). Thus,

\[\bar{\gamma}_0 = \frac{\hat{\alpha}_0 - \hat{\beta}_1}{2\hat{\beta}_3}, \quad \bar{\gamma}_1 = \frac{\hat{\alpha}_1}{2\hat{\beta}_3}, \quad \bar{\gamma}_2 = \frac{\hat{\alpha}_2}{2\hat{\beta}_3}, \quad \bar{\gamma}_3 = \frac{\hat{\alpha}_3}{2\hat{\beta}_3}, \]

\[\bar{\gamma}_4 = \frac{\hat{\alpha}_4}{2\hat{\beta}_3}, \quad \bar{\gamma}_5 = \frac{\hat{\alpha}_5}{2\hat{\beta}_3}, \quad \bar{\gamma}_6 = -\frac{\hat{\beta}_2}{2\hat{\beta}_3}, \]

and

\[\tilde{\sigma}_3^2 = \hat{\sigma}_2^2 / 4\hat{\beta}_3^2. \]

Table 5, column 7, lists these results. The standard errors, hence the t-statistics, have been computed using the Delta Method [Greene, 2000]. It is assumed that \(\text{cov}(\hat{\beta}, \hat{\alpha}) \approx 0 \). The optimal level of schooling is higher for more able individuals from wealthier families. The optimal level of schooling based on these coefficients for this work experience cohort is 11.4 years.

2. Derived Supply Equation. The second estimation strategy directly estimates the log
earnings equation (15) and the optimal level of schooling reduced-form equation (22)—the two equations in which we observe the dependent variable—by OLS. We can derive consistent estimators of the parameters in the supply equation (19) from

$$\begin{align*}
\tilde{\alpha}_0 &= 2\hat{\beta}_3 \hat{\gamma}_0 + \hat{\beta}_1, \\
\tilde{\alpha}_1 &= 2\hat{\beta}_3 \hat{\gamma}_1, \\
\tilde{\alpha}_2 &= 2\hat{\beta}_3 \hat{\gamma}_2, \\
\tilde{\alpha}_3 &= 2\hat{\beta}_3 \hat{\gamma}_3, \\
\tilde{\alpha}_4 &= 2\hat{\beta}_3 \hat{\gamma}_4, \\
\tilde{\alpha}_5 &= 2\hat{\beta}_3 \hat{\gamma}_5,
\end{align*}$$

(30)

and

$$\tilde{\sigma}_2^2 = 4\hat{\beta}_3\sigma_3^2.$$

Table 5, column 6, lists the OLS results for (22). The signs and magnitudes on the coefficients are similar, but not identical, to those derived above based on the OLS estimates of α and β because the system is overidentified. The estimated coefficients on the parental schooling levels and the associated dummies are smaller for direct OLS while the coefficients on AFQT and family size are larger. The estimated coefficients on the parental schooling levels and AFQT are statistically significant.

Table 5, column 5, lists the derived results of (19). Again, we use the Delta Method to calculate the standard errors of the estimates. While the signs on the estimated coefficients are identical to those based on the OLS estimates, the magnitudes differ somewhat.

VI(ii). Restricted/NLSUR

3. NLSUR. Another estimation strategy involves the following recursive, constrained system of equations,

$$\begin{align*}
S_j &= \gamma_0 + \gamma_1 S_{fj} + \gamma_2 S_{mj} + \gamma_3 D V_{fj} + \gamma_4 D V_{mj} + \gamma_5 N_j + \gamma_6 A_j + u_{3j} \\
\ln Y_j &= \beta_0 + \beta_1 S_j + \beta_2 A_j S_j + \beta_3 S_j^2 + u_{1j}
\end{align*}$$

(31)

subject to

$$\gamma_6 = -\beta_2/2\beta_3.$$
We used NLSUR to estimate this restricted recursive system (which requires the sample sizes to be equal). The equations were stacked with the OLS estimates providing the starting values for the iteration. We imposed two alternative variance-covariance matrices for the error terms, Σ, that allowed us to test the following hypothesis,

$$H_0 : \Sigma \text{ is diagonal}; \quad H_1 : \Sigma \text{ is not diagonal.}$$

(32)

Under the null hypothesis there is no correlation between the two errors, u_1 and u_3, and each equation could be estimated separately by NLOLS. The estimated residual variances and covariances were obtained from the OLS estimates of (15) and (22). We tested the null hypothesis using a Breusch Pagan lagrange multiplier (LM) test. The LM test is based on the restricted model where Σ has zero off-diagonal entries. Because the calculated test-statistic is less than the critical $\chi^2_{1,0.95}$ we cannot reject the null hypothesis and therefore assume that there is no covariance between the error terms. Consequently, each equation could have been estimated separately by NLOLS producing consistent but biased results with no loss in efficiency.

Next, we turn to testing the cross-equation restriction,

$$H_0 : \gamma_6 = -\beta_2/2\beta_3; \quad H_1 : \gamma_6 \neq -\beta_2/2\beta_3.$$

(33)

We were able to test the null hypothesis using a likelihood-ratio test. We cannot reject the null hypothesis and thus conclude that the system of equations is in fact constrained but that there is no correlation between the error terms.

Table 5, columns 8-11, provide the restricted NLSUR results for (15), (17), (19), and (22). All of the coefficient estimates from (15), with the exception of that on schooling and the schooling-ability interaction term, increase in statistical significance because estimation of this set of equations by NLSUR imposes cross-equation restrictions that tighten the standard errors making the estimates more precise. Overall, the coefficient estimates decrease in
magnitude. The coefficient estimates on (17), derived from (15), are of the expected signs and have similar statistical significance. The derived coefficient estimates on (19), from (15) and (22), are of the same sign as those from the unrestricted OLS estimates, but the magnitudes differ somewhat. The t-statistics are larger than those on the previous derived form (i.e. column 5) but smaller than those when estimated directly (i.e. column 4). The latter finding may be due to the fact that (19) is not directly part of the constrained system of equations. The estimated coefficients on (22) are nearly identical to those from unrestricted OLS. One could consider estimating a three-equation system (i.e. (15), (19), and (22)) by NLSUR. However, this strategy is not feasible because the variance-covariance matrix is singular.

4. Corr\((A, u_3) \neq 0\). Measures of ability pose continuing problems for researchers. The importance of incorporating such a measure is well-documented in the literature; however, choosing an appropriate measure/proxy is a persistent challenge. “First, even our cognitive abilities as adults are heavily influenced by the social environment that we experienced during childhood, making it hard to discern any influence of preexisting genetic differences. Second, tests of cognitive ability (like IQ tests) tend to measure cultural learning and not pure innate intelligence, whatever that is” [Diamond, 1999, 20]. Some researchers (e.g., Ashenfelter and Krueger, 1994) have devised resourceful ways of overcoming such problems, but most are left using various potentially error-ridden proxies in their analyses.

Fortunately the NLSY79 does provide some measures of ability; the question, however, remains as to what type of ability is actually being measured. It is reasonable to question just how well the AFQT score proxies for true, innate ability. The AFQT score comes from the Armed Services Vocational Aptitude Battery (ASVAB) test, which was administered in 1980, and used by the Armed Forces to assess a respondent’s measure of trainability. Thus, there are any number of reasons to think that \(corr(A, u_3) \neq 0\), e.g., simultaneity bias, omitted variables bias, etc. In testing for the possible correlation between \(A\) and \(u_3\) we instrumented AFQT with the inverse of a respondent’s age in 1980 (the year in which
the test was administered) and a set of occupational dummies for the adult present in a respondent’s home when he was age 14 along with the other pre-determined variables. The inverse of the respondent’s age in 1980 allows ability to be concave with respect to age. Thus, we expect ability to increase, but at a decreasing rate, with age conditional on family background characteristics. The positive relationship between a child’s ability and family’s resources (financial and time equivalents) is well-known (e.g., Cameron and Heckman, 1998; Cameron and Taber, 2004).

The occupational dummies were constructed based on the respondent’s answers to whom he lived with when he was age 14. If there was an adult male present in the household, we used this individual’s occupation. If there was no adult male present, but an adult female was present, we used her occupation instead. Individuals with other arrangements, those who lived by themselves, and those with no adults present were coded as missing values. We lose 32 observations due to missing values. We constructed a set of occupational dummies based on the 1970 Census of the Population’s Occupational Classification System.

We tested for the potential correlation that exists between A and u_3 using a Hausman specification test [Greene, 2000]. We tested the following hypothesis,

$$H_0 : \lim(\gamma^{OLS} - \gamma^{2SLS}) = 0; H_1 : \lim(\gamma^{OLS} - \gamma^{2SLS}) \neq 0.$$ (34)

The p-value for the Hausman χ^2 statistic is 0.22 so we cannot reject OLS. Thus, our ability proxy, AFQT, does not appear to be correlated with u_3.

VII. Concluding Remarks

This paper develops a model of earnings and optimal schooling. The analysis and estimation strategy is inspired by the Mincerian (1974) schooling model. The estimated coefficient on schooling in the simple schooling model (14) generally overstates the returns because it does not control for ability. In addition the simple schooling model is subject to an identification
problem if the data in log earnings-schooling space are generated by tangencies between concave earnings functions and linear iso-present value curves. We incorporate human capital investment (i.e. schooling) into a model based on individual wealth maximization while controlling for ability and work experience. The model incorporates the effects of family background on the individual’s discounting rate of interest. From this model we derive individual schooling supply and demand functions that determine optimal schooling levels from the equilibration of the marginal rate of return from an additional year of schooling to the individual’s discounting rate of interest.

Using data from the NLSY79, we stratify our sample into one-year FTE work experience cohorts over the period 1985-1989 and estimate a log earnings model that incorporates both schooling and ability for each cohort. Our measures of work experience correspond to actual hours worked in past calendar years and allow for lapses in employment and differing employment statuses (i.e. part-, full-, or over-time). Because we impose a FTE status, our measures of work experience do not necessarily correspond to an actual calendar year. Based on the estimates of (15) and the “goodness of fit” measures, we conclude that the “overtaking” cohort corresponds to individuals with 13 FTE years of work experience (11 calendar years). The earnings of this cohort are most reflective of natural ability and schooling investments.

Based on our empirical findings we conclude that we have a constrained system of equations relating earnings determination and optimal schooling. We assume that the error term in the log earnings function is normally distributed and determine that it is not correlated with the error term in the optimal level of schooling equation. According to a Hausman specification test we cannot reject OLS and conclude that measured ability (AFQT) is uncorrelated with u_3 (and hence exogenous to the system). Thus, our most preferred set of estimates correspond to columns 8-11 of Table 5.

Since the schooling equation parameters vary across experience cohorts, the full interaction of experience with the schooling production function parameters in the “overtaking” cohort
addresses the bias inherent in estimating a pooled earnings model with additive experience and its square. According to Mincer’s (1974) rule of thumb (1/“overtaking” year), 13 years of FTE work experience corresponding to 11 years beyond the completion of schooling yield approximate rates of return of 7.7 percent and 9.1 percent. Our model estimates that the (average) marginal rate of return to schooling is 10.3 percent and the optimal level of schooling is 11.4 years. Our estimate of the rate of return to schooling is consistent with past findings.
References

Altonji, J.G. and T.A. Dunn. “The Effects of Family Characteristics on the Return to Edu-

Arkes, J. “What Do Educational Credentials Signal and Why Do Employers Value Creden-

Economy*, 70(5), 1962, 9-49.

Notes

2 Using data from the 1982 Employment Opportunity Pilot Program (EOPP) Survey and the 1992 Small Business Administration (SBA) Survey, Barron et al. (1998) find that OJT is associated with a small reduction in one’s starting wage. OJT has a larger impact on one’s productivity growth than on one’s wage growth.

3 As Rosen (1974) points out, the transformation function is derived from a production function of knowledge whose arguments are schooling and ability. The units of knowledge (human capital) are multiplied by a constant market rental rate on human capital to yield earnings. The production function itself is derived from a learning function that governs the rate at which knowledge can be produced from prior schooling and ability. Certainly other reasonable explanatory variables could be included in this functional form, at the expense of parsimony. However, unless these variables are interacted with schooling, they do not affect the theoretical model because the optimal level of schooling is determined by differentiating with respect to schooling. Furthermore, experience does not appear separately as it is implicitly controlled for in the overtaking model described in Section V.

4 Lazear (1977) frames his discussion of education in the context of a production function.

5 For an early, general discussion of the effects of schooling and ability (and their interaction) on log earnings, see Hause (1972).

6 This infinite horizon is imposed for mathematical simplicity. An infinite horizon model has been used by numerous other researchers as well (e.g., Lang and Ruud, 1986).

7 Certainly X could include other variables to address the possibility that i varies across a child’s age, birth order, and number of siblings. For example, the number of minutes a parent reads to his/her child could influence i and is probably related to the child’s birth order and spacing between siblings. For the most part, such detailed information is not contained in the NLSY79. All we can determine is if a respondent is the oldest child.

8 Note that the model is not identified. Thus, β1 has no economic meaning. However, its interpretation as an average rate of return to schooling is maintained throughout the analysis.

9 We considered several other proxies for permanent family income, namely the Duncan Socioeconomic Index and variations of the parental schooling levels—the average, maximum, and head of household’s. Such alternatives were not pursued because we lost too many observations due to missing information.

10 Using the NLSY79, Lang and Zagorsky (2000) examine the effects of growing up in a single parent home on a variety of outcome variables.

11 For comparison’s sake, pooling the experience cohorts and including X and X^2 as explicit regressors produces the usual results—the coefficient estimate on X is positive (and statistically significant) and the coefficient estimate on X^2 is negative (and statistically significant). Doing so, however, produces statistically insignificant coefficient estimates on all the other variables (and that on A is negative as well.)

12 This of course is a problem if our actual work experience variable is incorrectly measured, but using actual work experience is superior to the use of potential work experience measures (see Regan and Oaxaca (2006)).

13 The term “final schooling” is used somewhat loosely here because we can only observe individual schooling choices/enrollment through 1998, the most recent wave of the NLSY79 survey that we had at the time of our study. Beginning in 1994 the NLSY79 survey was conducted bi-annually.

14 Note that most often these “years” of work experience do not coincide with calendar years and
that the composition of the cohorts would differ somewhat with alternative definitions of FTE. Furthermore, implicit in the construction of this measure is the assumption that children begin school at age 6, complete one grade per year (i.e. no acceleration or retention in schooling), and that the fraction of hours worked in 1979 is proportional to that in previous years.

15We chose to confine our attention to 1985-1989 for a couple of reasons. First, Mincer (1974) finds that the correlation between log earnings and education is strongest in the first decade of work experience. The NLSY79 began in 1979 and a decade later corresponds to 1989. Second, Mincer (1974) finds that the “overtaking” year occurs eight years after an individual has left school and has acquired seven to nine “years” of work experience. In the first year of the survey, our respondents are between ages 14 and 22. Roughly, half are under age 18 and are most likely still enrolled in school. By 1985 the youngest respondents could reasonably have acquired four years of work experience.

16We also controlled for “sheepskin effects” in our log earnings function by including a dummy variable indicating whether a respondent holds a high school diploma or a G.E.D. Cameron and Heckman (1993) find that the two are not equivalent. Research on “sheepskin effects” is a growing literature and includes work by Hungerford and Solon (1987), Frazis (1993), Kane and Rouse (1995), Jaeger and Page (1996), Arkes (1999), Ferrer and Riddell (2002), and Agnarsson and Carlin (2002). Augmenting (15) with a high school diploma dummy does not affect our choice of the “overtaking” cohort.

17Cameron and Heckman (1998) address the spurious correlation that potentially exists between AFQT and schooling by conditioning on a subset of individuals who were between ages 14 and 17 when the test was administered, and hence still in school. Doing so eliminates any causal effect of schooling on ability.
Appendix

Proof of \(FF_{SA} > F_{A}F_{S} \).

\[
\begin{align*}
r & = \frac{\partial \ln F(S, A)}{\partial S} = \frac{F_{S}}{F} \\
\implies \frac{\partial r}{\partial A} & = (F F_{SA} - F_{S} F_{A})/F^{2} > 0 \\
\implies FF_{SA} & > F_{A}F_{S}.
\end{align*}
\]
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Nobs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE 1979</td>
<td>18.345</td>
<td>2.257</td>
<td>2761</td>
</tr>
<tr>
<td>NOMINAL WAGE 1985</td>
<td>15,959.550</td>
<td>9,995.254</td>
<td>1950</td>
</tr>
<tr>
<td>NOMINAL WAGE 1986</td>
<td>18,488.490</td>
<td>11,527.950</td>
<td>1872</td>
</tr>
<tr>
<td>NOMINAL WAGE 1987</td>
<td>20,675.170</td>
<td>12,354.530</td>
<td>1918</td>
</tr>
<tr>
<td>NOMINAL WAGE 1988</td>
<td>23,859.100</td>
<td>33,124.600</td>
<td>1899</td>
</tr>
<tr>
<td>NOMINAL WAGE 1989</td>
<td>24,615.260</td>
<td>17,483.510</td>
<td>1878</td>
</tr>
<tr>
<td>SCHOOLING 1985</td>
<td>12.133</td>
<td>2.254</td>
<td>2032</td>
</tr>
<tr>
<td>SCHOOLING 1986</td>
<td>12.149</td>
<td>2.256</td>
<td>1962</td>
</tr>
<tr>
<td>SCHOOLING 1987</td>
<td>12.178</td>
<td>2.241</td>
<td>1917</td>
</tr>
<tr>
<td>SCHOOLING 1988</td>
<td>12.175</td>
<td>2.253</td>
<td>1940</td>
</tr>
<tr>
<td>SCHOOLING 1989</td>
<td>12.157</td>
<td>2.261</td>
<td>1939</td>
</tr>
<tr>
<td>AFQT</td>
<td>46.045</td>
<td>28.657</td>
<td>2539</td>
</tr>
<tr>
<td>EXPERIENCE 1985</td>
<td>4.470</td>
<td>3.168</td>
<td>2758</td>
</tr>
<tr>
<td>EXPERIENCE 1986</td>
<td>5.187</td>
<td>3.435</td>
<td>2758</td>
</tr>
<tr>
<td>EXPERIENCE 1987</td>
<td>5.906</td>
<td>3.721</td>
<td>2758</td>
</tr>
<tr>
<td>EXPERIENCE 1988</td>
<td>6.641</td>
<td>4.044</td>
<td>2758</td>
</tr>
<tr>
<td>EXPERIENCE 1989</td>
<td>7.379</td>
<td>4.395</td>
<td>2758</td>
</tr>
<tr>
<td>MOTHER’S SCHOOLING</td>
<td>10.993</td>
<td>3.074</td>
<td>2600</td>
</tr>
<tr>
<td>FATHER’S SCHOOLING</td>
<td>11.041</td>
<td>3.829</td>
<td>2494</td>
</tr>
<tr>
<td>FAMILY SIZE 1979</td>
<td>3.802</td>
<td>2.224</td>
<td>2761</td>
</tr>
</tbody>
</table>

Note: sample is based on those individuals whose wages ≥$500 and who are not enrolled in school currently or anytime after 1989.

Source of data: NLSY79
TABLE 2
Work Experience Cohort Frequency Distribution: 1985-1989

<table>
<thead>
<tr>
<th>FTE Years of Work Experience 1985-1989</th>
<th>Nobs.</th>
<th>% of sample</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>206</td>
<td>4.69%</td>
</tr>
<tr>
<td>1</td>
<td>483</td>
<td>10.99%</td>
</tr>
<tr>
<td>2</td>
<td>728</td>
<td>16.57%</td>
</tr>
<tr>
<td>3</td>
<td>997</td>
<td>22.70%</td>
</tr>
<tr>
<td>4</td>
<td>1157</td>
<td>26.34%</td>
</tr>
<tr>
<td>5</td>
<td>1221</td>
<td>27.79%</td>
</tr>
<tr>
<td>6</td>
<td>1186</td>
<td>27.00%</td>
</tr>
<tr>
<td>7</td>
<td>1060</td>
<td>24.13%</td>
</tr>
<tr>
<td>8</td>
<td>916</td>
<td>20.85%</td>
</tr>
<tr>
<td>9</td>
<td>786</td>
<td>17.89%</td>
</tr>
<tr>
<td>10</td>
<td>584</td>
<td>13.29%</td>
</tr>
<tr>
<td>11</td>
<td>422</td>
<td>9.61%</td>
</tr>
<tr>
<td>12</td>
<td>342</td>
<td>7.79%</td>
</tr>
<tr>
<td>13</td>
<td>215</td>
<td>4.89%</td>
</tr>
<tr>
<td>14</td>
<td>149</td>
<td>3.39%</td>
</tr>
</tbody>
</table>

Note: sample is based on those individuals whose wages ≥$500 and who are not enrolled in school currently or anytime after 1989.

Source of data: NLSY79
<table>
<thead>
<tr>
<th>FTE Work Experience Cohort</th>
<th>Nobs.</th>
<th>AIC</th>
<th>SC</th>
<th>PC</th>
<th>S.E.E.</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>206</td>
<td>0.267</td>
<td>0.332</td>
<td>1.307</td>
<td>1.132</td>
<td>0.046</td>
</tr>
<tr>
<td>1</td>
<td>483</td>
<td>-0.476</td>
<td>-0.442</td>
<td>0.621</td>
<td>0.785</td>
<td>0.174</td>
</tr>
<tr>
<td>2</td>
<td>728</td>
<td>-0.670</td>
<td>-0.644</td>
<td>0.512</td>
<td>0.713</td>
<td>0.193</td>
</tr>
<tr>
<td>3</td>
<td>997</td>
<td>-0.899</td>
<td>-0.879</td>
<td>0.407</td>
<td>0.637</td>
<td>0.228</td>
</tr>
<tr>
<td>4</td>
<td>1157</td>
<td>-0.963</td>
<td>-0.946</td>
<td>0.382</td>
<td>0.617</td>
<td>0.199</td>
</tr>
<tr>
<td>5</td>
<td>1221</td>
<td>-1.048</td>
<td>-1.032</td>
<td>0.351</td>
<td>0.591</td>
<td>0.183</td>
</tr>
<tr>
<td>6</td>
<td>1186</td>
<td>-1.051</td>
<td>-1.033</td>
<td>0.350</td>
<td>0.590</td>
<td>0.161</td>
</tr>
<tr>
<td>7</td>
<td>1060</td>
<td>-1.211</td>
<td>-1.192</td>
<td>0.298</td>
<td>0.545</td>
<td>0.175</td>
</tr>
<tr>
<td>8</td>
<td>916</td>
<td>-1.240</td>
<td>-1.219</td>
<td>0.290</td>
<td>0.537</td>
<td>0.200</td>
</tr>
<tr>
<td>9</td>
<td>786</td>
<td>-1.123</td>
<td>-1.099</td>
<td>0.325</td>
<td>0.569</td>
<td>0.184</td>
</tr>
<tr>
<td>10</td>
<td>584</td>
<td>-1.201</td>
<td>-1.171</td>
<td>0.301</td>
<td>0.547</td>
<td>0.212</td>
</tr>
<tr>
<td>11</td>
<td>422</td>
<td>-1.107</td>
<td>-1.069</td>
<td>0.330</td>
<td>0.572</td>
<td>0.136</td>
</tr>
<tr>
<td>12</td>
<td>342</td>
<td>-0.474</td>
<td>-0.430</td>
<td>0.622</td>
<td>0.784</td>
<td>0.083</td>
</tr>
<tr>
<td>13</td>
<td>215</td>
<td>-1.461</td>
<td>-1.398</td>
<td>0.232</td>
<td>0.477</td>
<td>0.299</td>
</tr>
<tr>
<td>14</td>
<td>149</td>
<td>-1.317</td>
<td>-1.236</td>
<td>0.268</td>
<td>0.511</td>
<td>0.353</td>
</tr>
</tbody>
</table>

AIC=Akaike Information Criterion
SC=Schwarz Criterion
PC=Amemiya’s Prediction Criterion

Bolded figures correspond to the minimum AIC, SC, PC, and S.E.E., and maximum R².

Note: samples are based on those individuals whose wages ≥$500 and who are not enrolled in school currently or anytime after 1989.

Source of data: NLSY79
TABLE 4
Descriptive Statistics 13-Year Work Experience Cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Nobs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>28.693</td>
<td>1.691</td>
<td>215</td>
</tr>
<tr>
<td>AGE IN 1980</td>
<td>20.693</td>
<td>1.414</td>
<td>215</td>
</tr>
<tr>
<td>NOMINAL WAGE</td>
<td>25,417.10</td>
<td>16,957.80</td>
<td>215</td>
</tr>
<tr>
<td>LOG REAL WAGE</td>
<td>9.883</td>
<td>0.566</td>
<td>215</td>
</tr>
<tr>
<td>SCHOOLING</td>
<td>11.377</td>
<td>2.044</td>
<td>215</td>
</tr>
<tr>
<td>AFQT</td>
<td>44.823</td>
<td>27.800</td>
<td>215</td>
</tr>
<tr>
<td>EXPERIENCE</td>
<td>13.469</td>
<td>0.294</td>
<td>215</td>
</tr>
<tr>
<td>YEARS OUT OF SCHOOL</td>
<td>11.316</td>
<td>2.205</td>
<td>215</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING</td>
<td>10.621</td>
<td>2.819</td>
<td>195</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING</td>
<td>10.130</td>
<td>3.750</td>
<td>192</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING DUMMY</td>
<td>0.093</td>
<td>0.291</td>
<td>215</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING DUMMY</td>
<td>0.107</td>
<td>0.310</td>
<td>215</td>
</tr>
<tr>
<td>FAMILY SIZE 1979</td>
<td>3.693</td>
<td>1.864</td>
<td>215</td>
</tr>
</tbody>
</table>

Note: sample is based on those individuals whose wages ≥$500 and who are not enrolled in school currently or anytime after 1989.

Source of data: NLSY79
<table>
<thead>
<tr>
<th>MODEL/ESTIMATION STRATEGY:</th>
<th>COHORT:</th>
<th>DEP. VARIAB.:</th>
<th>14</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>UNRESTRICTED/OLS</th>
<th>13 FTE YEARS</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ:</td>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>CONSTANT</td>
<td></td>
<td></td>
<td>8.295</td>
<td>7.619</td>
<td>0.290</td>
<td>0.151</td>
<td>0.153</td>
<td>7.317</td>
<td>7.420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(43.632)***</td>
<td>(14.426)***</td>
<td>(2.965)***</td>
<td>(14.764)***</td>
<td>(4.075)***</td>
<td>(13.449)***</td>
<td>(2.440)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.140</td>
<td>0.290</td>
<td>-1.871E-02</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8.528)***</td>
<td>(2.965)***</td>
<td>(-2.056)**</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AFQT*SCHOOLING</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>4.008E-04</td>
<td>---</td>
<td>---</td>
<td>3.089E-02</td>
<td>2.142E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3.241)***</td>
<td></td>
<td></td>
<td>(6.738)****</td>
<td>(1.844)*</td>
</tr>
<tr>
<td>AFQT</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SCHOOLING²</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>-9.356E-03</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-2.056)**</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-2.442E-03</td>
<td>-1.975E-03</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-3.717)***</td>
<td>(-1.670)*</td>
<td></td>
<td>(2.862)***</td>
<td>(1.799)*</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-3.092E-03</td>
<td>-2.757E-03</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-3.494)***</td>
<td>(-1.711)*</td>
<td></td>
<td>(3.088)***</td>
<td>(1.707)*</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING DUMMY</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-2.851E-02</td>
<td>-2.499E-02</td>
<td>1.335</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-3.062)***</td>
<td>(-1.626)</td>
<td></td>
<td>(2.659)***</td>
<td>(0.858)</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING DUMMY</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-1.089E-02</td>
<td>-9.796E-03</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-0.945)</td>
<td>(-0.790)</td>
<td></td>
<td>(0.855)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>FAMILY SIZE</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-3.895E-05</td>
<td>-5.542E-04</td>
<td>2.962E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-0.035)</td>
<td>(-0.481)</td>
<td></td>
<td>(0.495)</td>
<td>(0.504)</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td>0.255</td>
<td>0.299</td>
<td>---</td>
<td>0.235</td>
<td>---</td>
<td>0.446</td>
<td>---</td>
</tr>
<tr>
<td>adj. R²</td>
<td></td>
<td></td>
<td>0.251</td>
<td>0.289</td>
<td>---</td>
<td>0.216</td>
<td>---</td>
<td>0.430</td>
<td>---</td>
</tr>
<tr>
<td>S.E.E.</td>
<td></td>
<td></td>
<td>0.490</td>
<td>0.477</td>
<td>---</td>
<td>2.912E-02</td>
<td>2.889E-02</td>
<td>1.544</td>
<td>1.556</td>
</tr>
<tr>
<td>Estimated at sample mean r, i</td>
<td></td>
<td></td>
<td>0.140</td>
<td>0.097</td>
<td>0.097</td>
<td>0.103</td>
<td>---</td>
<td>11.377</td>
<td>11.359</td>
</tr>
<tr>
<td>Estimated at sample mean optimal years of schooling</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

(t-statistic)

*, **, *** = significant at the 10, 5, and 1% level

note: sample is based on individuals whose wages ≥ $500 and who are not enrolled in school currently or anytime after 1989
(5), (7)= derived form

Source of data: NLSY79
TABLE 5 CONTINUED
Estimated Schooling Model

<table>
<thead>
<tr>
<th>MODEL/ESTIMATION STRATEGY: COHORT:</th>
<th>RESTRICTED/NLSUR 13 FTE YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ:</td>
<td>15</td>
</tr>
<tr>
<td>DEP. VARIAB.:</td>
<td>17</td>
</tr>
<tr>
<td>In(earnings) (8)</td>
<td>estimated r (9)</td>
</tr>
<tr>
<td></td>
<td>estimated i (10)</td>
</tr>
<tr>
<td></td>
<td>years of school completed (11)</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>7.865</td>
</tr>
<tr>
<td></td>
<td>(35.685)***</td>
</tr>
<tr>
<td></td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td>(6.051)***</td>
</tr>
<tr>
<td>SCHOOLING</td>
<td>-0.01316714</td>
</tr>
<tr>
<td></td>
<td>(-2.759)***</td>
</tr>
<tr>
<td>AFQT*SCHOOLING</td>
<td>3.981E-04</td>
</tr>
<tr>
<td></td>
<td>(2.941)***</td>
</tr>
<tr>
<td>AFQT</td>
<td>3.981E-04</td>
</tr>
<tr>
<td></td>
<td>(2.941)***</td>
</tr>
<tr>
<td>SCHOOLING²</td>
<td>-6.584E-03</td>
</tr>
<tr>
<td></td>
<td>(-2.759)***</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING</td>
<td>-1.400E-03</td>
</tr>
<tr>
<td></td>
<td>(-1.940)*</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING</td>
<td>-1.977E-03</td>
</tr>
<tr>
<td></td>
<td>(-2.094)**</td>
</tr>
<tr>
<td>FATHER'S SCHOOLING DUMMY</td>
<td>-1.786E-02</td>
</tr>
<tr>
<td></td>
<td>(-1.963)**</td>
</tr>
<tr>
<td>MOTHER'S SCHOOLING DUMMY</td>
<td>-6.832E-03</td>
</tr>
<tr>
<td></td>
<td>(-0.857)</td>
</tr>
<tr>
<td>FAMILY SIZE</td>
<td>-3.580E-04</td>
</tr>
<tr>
<td></td>
<td>(-0.467)</td>
</tr>
<tr>
<td>R²</td>
<td>0.297</td>
</tr>
<tr>
<td>adj. R²</td>
<td>---</td>
</tr>
<tr>
<td>S.E.E.</td>
<td>---</td>
</tr>
<tr>
<td>Nobs.</td>
<td>215</td>
</tr>
<tr>
<td>Estimated at sample mean r, i</td>
<td>---</td>
</tr>
<tr>
<td>Estimated at sample mean optimal</td>
<td>---</td>
</tr>
<tr>
<td>years of schooling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(t-statistic)

*, **, *** = significant at the 10, 5, and 1% level

Note: sample is based on individuals whose wages ≥ $500 and who are not enrolled in school currently or anytime after 1989

Source of data: NLSY79
lnY = ln(iV*) + iS*

lnY = ln[F(S,A)]

FIGURE 1
*We would like to thank the workshop participants at the University of Arizona, the IZA/SOLE Summer 2003 Conference, and two anonymous referees for their helpful comments and insights. Special thanks to Price Fishback and Alfonso Flores-Lagunes. We also appreciate the research assistance provided by Laura Martinez.

Corresponding author: Tracy L. Regan, Department of Economics, University of Miami, P.O. Box 248126, Coral Gables, FL 33124-6550. tregan@miami.edu, [W] (305) 284-5540, [F] (305) 284-2985.

Co-author: Ronald L. Oaxaca, IZA, Bonn, Germany and Department of Economics, University of Arizona, McClelland Hall #401, P.O. Box 210108, Tucson, AZ 85721-0108.

Co-author: Galen Burghardt, Calyon Financial, 550 West Jackson Boulevard, Suite 500, Chicago, IL 60661.
Abbreviations:
2SLS: Two-Stage Least Squares
AFQT: Armed Forces Qualification Test
AIC: Akaike’s information criterion
ASVAB: Armed Services Vocational Aptitude Battery
BLS: Bureau of Labor Statistics
CPI: Consumer Price Index
EOPP: Employment Opportunity Pilot Program Survey
FE: fixed effects
FTE: full time equivalent
G.E.D.: General Educational Development Test
IQ: Intelligence Quotient
IV: instrumental variables
KWW: Knowledge of the World of Work
LLM: Lagrange Multiplier
MSE: mean-squared error
NLOLS: Nonlinear OLS (NLSUR/NLOLS)
NLSUR: Nonlinear Seemingly Unrelated Regressions
NLSY79: National Longitudinal Survey of Youth 1979
OJT: on-the-job-training
OLS: Ordinary Least Squares
PC: Amemiya’s prediction criteria
SBA: Small Business Administration Survey
SC: Schwarz criterion
S.E.E.: Standard error of estimated residual
SSE: total sum of squared errors