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1. Introduction

How do stock markets respond to a crisis? A rich literature �nds ine¢ cient stock price

reactions to common news events.1 There is relatively little research, however, on market

responses to extraordinary news, and in particular, the potentially di¤erent roles retail and

institutional traders play in causing such responses.2 This is surprising because unantici-

pated, extreme news events that a¤ect individual securities (e.g., law suits, revelations of

fraud, and bankruptcy �lings) or a broad cross-section of assets (e.g., oil spills, powerful

weather events, and major industrial accidents) occur frequently. We refer to such extraor-

dinary news events as �super-salient.�

Studies such as Dellavigna and Pollet (2009), Hirshleifer, Lim, and Teoh (2009), and

Louis and Sun (2010) �nd underreaction to news in common stocks. Similarly, Klibano¤,

Lamont, and Wizman (1998) �nd underreaction to news in closed-end funds (CEFs), but

also show that such underreaction is less severe when news is more salient. But what is

the reaction to super-salient news? The literature on underreaction suggests that super

salience could cause underreaction to decline to zero so that, on average, prices fully re�ect

fundamentals. However, there is also literature that �nds �nancial markets can overreact

(e.g., Chopra, Lakonishok, and Ritter, 1992; De Bondt and Thaler, 1985, 1987). Hence,

1For examples, see Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Sub-

rahmanyam (1998), Klibano¤, Lamont, and Wizman (1998), Anderson, Bollerslev, Diebold,

and Vega (2003), Barber and Odean (2008), Barber, Odean, and Zhu (2009), Dellavigna and

Pollet (2009), Hirshleifer, Lim, and Teoh (2009), Louis and Sun (2010), Tetlock (2011), and

Giglio and Shue (2012).
2For example, although Fair (2002) identi�es large movements in the stock market, his

study makes no attempt to understand the trading that led to these movements and his sam-

ple is constructed solely based on extreme price changes instead of extreme news events. Such

price movements could be unrelated to news and instead result from liquidity shocks, herding,

technical trading strategies, or positive feedback trading.



it is possible that a stronger psychological reaction to greater salience will cause prices to

overreact when news is extraordinarily salient.

In this paper, we examine price movements in common stocks and �xed-income closed-

end mutual funds (CEFs) in response to a super-salient news event: the terrorist attacks

of September 11, 2001 (hereafter �nine-eleven�). Our main goals are to investigate whether

securities prices can overreact to super-salient news, and if so, infer whether it is institutional

investors, retail investors, or both that cause the reaction. Although there is now substantial

evidence that retail trading indeed a¤ects prices (e.g., Kumar and Lee, 2009; Barber, Odean,

and Zue, 2008; Hvidkjaer, 2008; Kumar, 2009), there is little, if any, evidence on how retail

and institutional investors trade simultaneously in response to extreme news events, and

whether retail trading can move prices opposite to the direction of trading by institutional

investors.3 ;4

We begin by showing a precipitous drop and recovery in prices, which appears con-

sistent with overreaction followed by recovery during the weeks following nine-eleven (see

Figure 1). Gauging overreaction, however, is di¢ cult without a benchmark, so we use net

asset value (NAV) returns as a benchmark for the CEF price returns. Although NAV returns

for �xed-income funds were fairly stable following nine-eleven, cumulative price returns di-

3Barber, Odean, and Zue (2008) and Hvidkjaer (2008) examine trade level data of stocks

and infer retail trader identity from trade size, while Kumar and Lee (2006) and Kumar

(2009) examine transaction-level data for a sample of retail investors. None of these studies

examines institutional trading, nor do they investigate trading in response to news events.

Dennis and Strickland (2002) �nd that when there are sharp market declines, returns are

more negative for stocks with higher levels of institutional ownership. However, they also do

not examine trading in response to identi�ed news events, and, moreover, such price declines

could be driven by retail selling in stocks that happen to have higher degrees of institutional

ownership.
4Examples of extreme market movements that are di¢ cult to link to speci�c news events

include the October 1987 crash and the "�ash crash" of May 2010.
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verged substantially from cumulative NAV returns in a manner that is indeed consistent with

prices overreacting and recovering (see Figure 3).5 Although we do not have an analogous

benchmark of fundamental values for common stocks, the striking similarity in price-return

patterns between common stocks and �xed-income CEFs suggests that common stock prices

could have overreacted as well.

We next explore whether institutional and retail traders responded di¤erently to nine-

eleven. To infer whether retail and institutional investors traded di¤erently, we use mi-

crostructure trading measures such as trade size and the direction of trade initiation (i.e.,

buy- versus sell-initiated, as indicated by Lee and Ready�s 1991 signing algorithm), and

compare trading patterns among securities well-known to have di¤erent investor clienteles.

For example, retail investors play a more prominent role in the trading of CEFs (Weiss 1989;

Lee, Shleifer, and Thaler 1991). In contrast, institutional investors are more dominant in

the trading of large-cap common stocks (Sias and Starks 1997). We conclude that retail

investors were net sellers while institutional investors were net buyers during the �rst week

following nine-eleven, and yet prices moved lower, even in large-cap stocks.

The main empirical �ndings in our study are summarized as follows:

� Prices in both common stocks and �xed-income CEFs show a pattern that is consistent

with overreaction and recovery following nine-eleven, as manifested by signi�cant price

declines during the �rst post-event trading week and signi�cant price recoveries during

the second and third weeks. The similarity in the patterns of price decline and recovery

for CEFs and common stocks, together with strong evidence of overreaction in CEF

5As we discuss in the paper, our choice of �xed-income funds is motivated by the relatively

moderate degree of disruption that �xed-income securities experienced following nine-eleven.

Trading in the �xed-income markets resumed only two days after nine-eleven, and bond

yields remained fairly stable. NAVs for �xed-income CEFs thus provide a relatively stable

fundamentals benchmark against which to gauge CEF price movements.
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prices as compared to NAVs, is consistent with news-driven price movements lying on

a continuum, from underreaction into overreaction, based on the salience of the news.

Our �ndings also support Tetlock�s (2011) use of a return reversal as a measure of

overreaction.6

� During the �rst post-nine-eleven trading week, signed trades indicate that buy-initiated

dollar volume (relative to sell-initiated dollar volume) declined more signi�cantly for

small-cap stocks than for large-cap stocks, consistent with the price return patterns

we �nd for these two groups. Moreover, the majority of dollar volume during this

�rst week was sell-initiated for small-cap stocks, but buy-initiated for large-cap stocks.

Given that retail investors play a more prominent role in CEFs and small-cap stocks

compared to large-cap stocks, it appears that retail investors were net sellers in the

immediate aftermath of nine-eleven, whereas institutions continued to be net buyers.

For example, the largest trades (those larger than $50,000) in large-cap stocks had more

buy- than sell-initiated trades in every day of trading following nine-eleven.

� Despite net institutional buying during the �rst post-nine-eleven trading week, prices

declined signi�cantly across CEFs and all common stock deciles. Therefore, in the

setting we study, correlated trading by retail investors apparently led to signi�cant

price movements that were opposite to the direction implied by institutional trading.

This �nding extends Kumar and Lee (2006) and Barber, Odean, and Zhu (2009) to show

that correlated retail trading can move prices not only in normal trading conditions,

but also in settings with signi�cant institutional trading in the opposite direction.

� Prices recovered during the second and third post-nine-eleven weeks, and cross-sectional

regressions show that the size of a security�s recovery was signi�cantly related to the

6More speci�cally, Tetlock (page 1,482) measures overreaction as �the extent to which a

�rm�s initial daily return around a news event negatively predicts its return in the week after

the event.�
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security�s initial price decline. Interestingly, these security-speci�c reversals primar-

ily occurred during the second week for CEFs but during the third week for common

stocks. We believe the faster security-speci�c recoveries in CEFs were due to regu-

larly disclosed NAVs, which provide natural benchmarks for fundamental values. This

potential explanation is consistent with classic models such as Grossman and Stiglitz

(1980) in which a higher ratio of informed to uninformed investors improves price ef-

�ciency. The intuition in these models could be extended to predict that overreaction

following a news shock will be reversed faster in assets with more public information

about fundamentals.

Although our research setting results from a single event and is thus a case study in

some respects, it is important to note that we study the reactions of more than 1600 di¤erent

securities in several di¤erent asset classes. The simultaneity across the securities eliminates

the need to align observations into event time that actually occurred at di¤erent times, and

which therefore could have occurred in substantially di¤erent economic environments. In this

sense, our study is a natural experiment that shares similarities with others that examine

how asset prices react to macroeconomic shocks (e.g., Pearce and Roley, 1985; Anderson,

Bollerslev, Diebold, and Vega, 2003).

Super-salient events that have as broad an impact as nine-eleven are relatively infrequent.

However, super-salient events that a¤ect an individual security or group of securities, such

as revelations of fraud or signi�cant weather events, are fairly common. Our �ndings o¤er

valuable insights into how markets react to unanticipated, extraordinary news events marked

by intense uncertainty and market disruption, and add to a growing body of evidence on

the impact of retail trading on asset prices. The pervasiveness of our �ndings across so

many securities points to the intriguing possibility that overreaction to super-salient news is

common� even in the face of institutional trading that acts as a corrective force.
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2. Background and related literature

Nine-eleven needs no justi�cation as an economically relevant event, but it is useful to review

brie�y the climate and timing of the markets�extraordinary closures. In the months prior

to nine-eleven, the U.S. economy had been showing signs of weakness (the S&P 500 index

declined more than 20% during the four months prior to nine-eleven), and many feared the

event would push the economy into a steep decline. The U.S. �nancial markets did not open

the morning of nine-eleven, and the equity markets remained closed until Monday, September

17, 2001. On that day the S&P 500 index declined 4.9%, and continued to fall throughout

the trading week to close 11.6% below its September 10, 2001 level. The �xed-income

markets were also a¤ected� but only moderately. They were closed for only two trading

days (September 11 and 12), and Treasury yields actually declined, in part due to Federal

Reserve interventions to inject liquidity and stimulate the economy. Although spreads on

risky bonds did increase, by Monday, September 17, the 10-year Baa corporate-to-Treasury

spread was only about 50 basis points higher than before nine-eleven.

As reviewed in Dimson (1988) and Hirshleifer (2001), a rich literature examines investor

under- or overreaction to a corporate event (as opposed to a macroeconomic event as in

our study). Many studies examine highly visible but endogenous managerial decisions, and

�nd underreaction (e.g., Kadiyala and Rau 2004; Ikenberry, Lakonishok, and Vermaelen,

1995; Louis and Sun, 2010; Michaely, Thaler, and Womack, 1995). Dellavigna and Pollet

(2009) and Hirshleifer, Lim, and Teoh (2009) argue that investor inattention helps explain

underreaction to earnings announcements. Other studies examine long-run returns follow-

ing extreme price movements, and conclude that �nancial markets overreact (e.g., Chopra,

Lakonishok, and Ritter 1992; De Bondt and Thaler, 1985, 1987).

In addition to empirical work, there are theories that o¤er explanations for under- and

overreaction in security prices. For example, Daniel, Hirshleifer, and Subrahmanyam (1998)
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propose a theory based on overcon�dence and self-attribution bias. Barberis, Shleifer, and

Vishny (1998) present a model based on sentiment, and Hong and Stein (1999) provide a

model based on cognitive limits.

Our analysis of CEFs, in particular, is related to Klibano¤, Lamont, andWizman (1998),

who �nd underreaction to new information in closed-end country funds (CEFs whose un-

derlying assets are foreign). They attribute such underreaction to unsophisticated investors

who dominate the trading, and note that CEFs, like small-cap stocks, have a small retail

investor clientele.7 Klibano¤, Lamont, and Wizman do not, however, try to discern any

di¤erences between retail and institutional investor reactions to information events. Papers

that directly focus on individual investor trading include Barber, Odean, and Zhu (2009),

Barber and Odean (2008), Hvidkjaer (2008), and Kumar and Lee (2006), all of whom show

that correlated retail trading can move prices. Dennis and Strickland (2002) and Lipson

and Puckett (2010), in turn, investigate how correlated trading by institutional investors

a¤ects prices. None of these studies investigate di¤erences in retail and institutional investor

trading in response to a news event.

Finally, a substantial body of literature investigates a variety of economic aspects of nine-

eleven.8 Epstein and Schneider (2008) argue that �ambiguity-averse� investors react more

strongly to bad news than to good news. They view nine-eleven as triggering �a learning

process whereby market participants were trying to infer the possibility of a structural change

7Supporting this characterization of CEFs�investor clientele, Weiss (1989) �nds that in-

stitutions own only about seven percent of this asset class, and Lee, Shleifer, and Thaler

(1991) �nd that CEFs have a relatively high proportion of trades smaller than $10,000.
8Papers we do not discuss here include Carter and Simpkins (2004), Charles and Darné

(2006), Drakos (2004), Ito and Lee (2005), Maillet and Michel (2005), and Nikkinen, Omran,

Sahlström, and Äijö (2008).
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to the U.S. economy from unfamiliar signals.�9 The notion that a learning process took place

is consistent with our �nding that the market did not begin to reverse the initial reaction

until the second post-nine-eleven trading week. Burch, Emery, and Fuerst (2003) examine

the behavior of closed-end mutual fund prices across nine-eleven, and argue that broad

small-investor sentiment played an important role in how closed-end fund discounts reacted

to the event. Glaser and Weber (2005) examine changes in the expectations of individual

investors before nine-eleven (around the weekend of August 4-5, 2001) and after nine-eleven

(around the weekend of September 22-23). They �nd a relatively high expected rate of

return and optimism after nine-eleven, and argue their �ndings do not coincide with those

in Graham and Harvey (2003), who report a relatively low expected market return based on

data gathered September 12-14, 2001. As we discuss later, we believe our �ndings reconcile

these two survey results.

3. Data

We study both daily and intraday trading data for common stocks and CEFs compiled from

the Center for Research in Security Prices (CRSP) and the New York Stock Exchange Trade

and Quote (TAQ) databases. Our analysis of the microstructure data covers the period June

1, 2001 to December 31, 2001; we also report pooled cross-sectional time series regressions

over the period September 7, 2000 to October 26, 2001. Common stocks are limited to

those listed on the New York Stock Exchange (NYSE) that have the necessary coverage

in the CRSP and TAQ databases, and we exclude closed-end funds, real-estate investment

trusts, companies incorporated outside the US, primes, scores, depository receipts, certi�-

cates, shares of bene�cial interest, and units. These criteria result in a sample of 1,463

common stocks.

9See Kuhnen (2012) for experimental evidence that investors learn from gains di¤erently

than they do from losses.
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The CEFs we study are those listed on the NYSE, classi�ed as �xed-income funds by

Barron�s, and covered in CRSP and TAQ. The advantage of limiting our focus to �xed-income

funds is that we study funds whose fundamental values primarily depend on interest rates

and credit spreads. Thus, investors in these funds can not only look to reported NAVs for

information about fundamental values, but also to broad interest rate movements and other

information derived from the �xed-income markets. An additional restriction we impose is

that the CEFs must report NAVs on a daily basis over the June 1, 2001 to October 31, 2001

period (we exclude those reporting only weekly).10 Requiring daily NAV disclosure further

improves the information environment of the CEFs. NAVs are from Thomson Reuters. The

various data screens for the CEFs produce a sample of 199 funds, which is slightly larger

than the number of stocks in one decile of our stock sample (around 146).

As already noted, �xed-income securities markets were less a¤ected by nine-eleven and

reopened after only a two-day suspension (compared to the six-calendar-day closure in the

equity markets). Hence, before the NYSE reopened on September 17 (where the CEFs trade),

�xed-income CEF investors could easily observe post-nine-eleven market value information

from two full days of trading (Thursday, 9/13 and Friday, 9/14) in the �xed-income markets

and through NAV disclosures on these days (as we discuss in Appendix A, daily NAVs

were updated and disclosed as usual). This should have greatly mitigated any overreaction

in �xed-income CEFs when their trading resumed on Monday, 9/17, and thus makes the

pattern of overreaction all the more striking.

For each security (common stock and CEF), we construct the following variables:

� Market capitalization (Market cap) is based on September 10, 2001 closing data.

10We also exclude funds that are missing a Friday NAV because some of our analysis

examines weekly returns. The patterns around nine-eleven are completely consistent when

these funds are included, but the dynamic panel data regression procedure we use requires

a balanced panel.

9



� Tradesize is the mean dollar value of all trades during a given day.

� Share price is the closing trading price according to CRSP.

� E¤ective spread is the mean of the e¤ective spread for all trades during a given day,

where the e¤ective spread for a trade equals the bid-ask spread divided by the midpoint,

where the midpoint is the sum of the bid and ask divided by two.

� Turnover is the number of shares traded in a given day, divided by the number of

outstanding shares.

� Percentage of buys is dollar buys divided by the sum of dollar buys and sells during

a given day, where buys and sells are identi�ed by the Lee and Ready (1991) trade

signing algorithm.

� Tradesize proportion is the percentage (based on the number of trades) of all trades

during a given day falling into one of �ve possible size categories (<$5K, $5-10K, $10-

20K, $20-50K, and >$50K).

When we calculate one of these security-level metrics for a given multi-day period, we

calculate the median across security-days in the time period.

Log price returns are calculated on a close-of-trading-day to close-of-trading-day basis.

For example, the return for Monday, 9/17, the �rst day of trading after nine-eleven, is from

the 9/10 close to the 9/17 close. The log price return for a security (stock or CEF) for day

t, denoted RPt, is

RPt = Ln(Pt +Dt) � Ln(Pt�1); (1)

where Pt is the closing price on trading day t, Dt is the dividend on trading day t, and

Ln is the natural log operator. The log NAV return for a CEF for day t (denoted RNt) is
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similarly de�ned, using NAVs in place of closing prices. Because NAVs are calculated using

closing prices of the funds�assets, NAV returns provide a good benchmark for price returns

(Klibano¤, Lamont, and Wizman 1998). Therefore, when analyzing CEFs we sometimes

include abnormal returns (ARt), de�ned as the price return minus the NAV return (ARt =

RPt�RNt). In Appendix A we address concerns regarding potential measurement errors for

the NAVs.

4. Return patterns and investor expectations

We begin our analysis by computing univariate statistics, plotting return patterns, bench-

marking returns for CEFs against NAVs, and comparing the overall patterns to investor

expectations at the time.

4.1. Return patterns

Table 1 reports cumulative returns over six di¤erent time periods for common stocks, CEFs,

and also the S&P 500. As is often done to show patterns in common stock data, we report

statistics by market-capitalization deciles, which in our case, are measured as of September

10, 2001. Cumulative returns for 6/1-9/10 show the down market in the months prior

to nine-eleven. Cumulative returns from the 9/10 close to the 9/21 close showed a large

decline during the �rst post-nine-eleven trading week, followed by a strong rebound in the

subsequent trading week (9/21-9/28), for all of the classes of securities except for common

stock decile 1. In the third week of trading (9/28-10/05), all security classes continued to

recover except for stock deciles 1 and 3. It is interesting to observe that cumulative returns

for the broader time period (9/10-10/5) increased almost monotonically across the deciles,

with smaller deciles experiencing more pronounced cumulative price declines following nine-

eleven. Based on the �ndings in Sias and Starks (1997) that retail investors play a more
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signi�cant role in small-cap stocks due to lower institutional trading, these price patterns

are consistent with pronounced retail selling of small-cap stocks during the initial trading

week following nine-eleven.

Large-cap stocks and the S&P 500 index, by contrast, had considerably smaller price

declines than the rest of the common stock deciles. Although our data do not allow us to

track investor-speci�c rebalancing decisions, the price return patterns are consistent with

an aggregate �ight to quality (or more accurately, a �ight away from lower quality, riskier

assets). In fact, the evidence we present later implies that institutions as a group were net

buyers even during the �rst post-nine-eleven trading week. As institutions play a more active

role in large stocks, it is thus not surprising that the price returns in these stocks displayed

smaller initial price declines.

The CEFs we study are not heavily traded by institutional investors (Weiss 1989; and

Lee, Shleifer, and Thaler 1991), and yet they experienced smaller price declines (and subse-

quent recoveries) than large-cap stocks. One potential reason is that a �xed-income CEF is

a claim on diversi�ed basket of �xed-income securities, and hence has lower risk than indi-

vidual stocks. Also, as Bradley, Brav, Goldstein, and Jiang (2010) note, "closed-end funds

constantly attract arbitrageurs�who attempt to pro�t on any mispricing based on spreads

between prices and NAVs.

It is also plausible that the less dramatic declines in CEF prices are due to at least some

retail investors observing and incorporating NAVs and �xed-income market information into

their trading decisions (e.g., not selling upon observing relatively small declines in NAVs

and bond market prices in general). The availability of NAVs, as well as other information

observed from two full trading days in the �xed-income markets before �xed-income CEFs

resumed trading, implies that both retail investors and arbitrageurs should have been better

informed about the fair values of �xed-income closed-end funds than those of common stocks.
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Classic models such as Grossman and Stiglitz (1980) predict more e¢ cient prices when there

is a larger proportion of informed traders relative to uninformed traders. In our setting, such

models would point toward less initial overreaction and faster reversals in �xed-income CEFs,

due to their superior information environment (i.e., the availability, quality, and timeliness

of useful information regarding fundamental values).

Figure 1 illustrates the �ndings in Table 1 by plotting cumulative price returns during

the September 17-October 5 period. Every category shows a sharp drop in the �rst �ve

days of trading after nine-eleven, followed by a sharp recovery that begins on the sixth day

of trading (9/24) and generally continues throughout days seven through �fteen. The only

exception is decile 1, which experiences a recovery on the sixth trading day but then shows

negative returns throughout the rest of the period.

4.2. Benchmarking return patterns

Tetlock (2011) gauges overreaction from return reversals, and applying this approach would

certainly indicate substantial overreaction after nine-eleven. However, overreaction is di¢ -

cult to establish without an appropriate benchmark. Indeed, Tetlock focuses on the cross-

sectional variation in return reversals precisely because �there are many possible explana-

tions for on-average return reversals.� For example, a short-term pattern of reaction and

subsequent reversal could be due to a short-term change in expected future cash �ows, or

a short-term change in systematic risk. These potential explanations form the root of the

debate over whether post-event abnormal returns are actually anomalous.11

An attractive way to address this issue for CEFs is to benchmark price returns against

NAV returns. NAVs provide a reasonable measure of fundamental value and hence can be

11In particular, some people argue that inadequate asset pricing models and the di¢ culty

of properly controlling for risk may explain return patterns that otherwise seem to indicate

mispricing (e.g., Brav, Geczy, and Gompers, 2000; Eckbo, Masulis, and Norli, 2000).
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used to control for changes in expected cash �ows and systematic risk.12 In addition, applying

this approach to �xed-income CEFs is particularly attractive in the setting we study. As

discussed earlier, both the trading and information environments in the underlying assets

(�xed-income securities) of these funds were considerably less disrupted by nine-eleven as

compared to equity securities.

The approach we use is further supported by Figure 2, which plots March 2001 cumu-

lative price and NAV returns for our sample of �xed-income CEFs and also a sample of 59

equity closed-end mutual funds (whose underlying assets are common stocks), alongside cu-

mulative price returns for the S&P 500 index.13 This �gure illustrates two important points.

First, price and NAV returns move together closely within each class of closed-end fund.

This illustrates that, although discounts (spreads between prices and NAVs) can change,

cumulative NAV returns nonetheless provide a very good benchmark for how cumulative

price returns tend to evolve over time.

Second, equity and �xed-income funds have disparate tendencies to move alongside a

broader equity market downturn. Speci�cally, note that price and NAV returns for the equity

funds are volatile and strongly correlate with the broader market, whereas returns for �xed-

income funds are much more stable and virtually independent of the broader market (this

is also the case in other months we checked). In short, we believe that �xed-income funds

provide an excellent laboratory in which to examine pricing following nine-eleven. Given

that the response to nine-eleven in the �xed-income markets was relatively mild, we would

12The existence of NAVs is often cited as a primary reason for studying various phenomenon

using closed-end mutual funds (Dimson and Minio-Kozerski, 1999; Gemmill and Thomas,

2002; Klibano¤, Lamont, and Wizman, 1998).
13We select March because it is the month during January-August 2001 with the largest

single-day price decline in the S&P 500 index, as well as the month with the largest �ve-

day price decline. Hence, it is especially useful for illustrating how closed-end fund returns

typically behave during short-term market declines.
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expect a similarly mild response in �xed-income CEF prices� unless there is overreaction by

the predominantly retail investors in these securities.14

Figure 3 plots cumulative price and NAV returns, along with cumulative abnormal re-

turns (price returns minus NAV returns) for �xed-income CEFs from September 10 to Oc-

tober 5, 2001. As discussed above and seen in Figure 2, a CEF�s NAV provides a clear

benchmark against which to measure short-term price reaction, and Figure 3 shows that

prior to nine-eleven, cumulative price returns closely tracked NAV returns (note cumulative

abnormal returns were close to zero). Then, as can be seen dramatically, cumulative price

returns fell well below cumulative NAV returns in the �rst week of trading following nine-

eleven, indicating signi�cant overreaction. Cumulative price returns began to recover during

the second week and then moved back to roughly track cumulative NAV returns in the third

week and beyond. Cumulative abnormal returns indicate the same pattern of overreaction

and recovery. In Appendix A we explain why the signi�cant divergence of price from NAV

returns cannot be explained by errors in NAVs. In addition, we discuss why the results

seem unlikely to be explained simply by a lack of market depth or the information-based

closed-end fund discount theory o¤ered in Grullon and Wang (2001).

Figure 3 provides strong evidence of overreaction and recovery in �xed-income CEFs

following nine-eleven. Later, we statistically validate this result through cross-sectional re-

gression analysis, which provides further support for the approach Tetlock (2011) uses in

14There are multiple ways that retail investors could have caused price declines to sig-

ni�cantly exceed NAV declines. Small investors could have become exceedingly risk averse

or more pessimistic about fundamental values than investors trading the assets held by

funds, and accepted large price concessions to liquidate their holdings quickly. Another

(non-mutually exclusive) channel is that investors in closed-end funds could have perceived

a substantial increase in noise trader risk, which in turn would have caused discounts to

widen according to DeLong, Shleifer, Summers, and Waldmann (1990) and Lee, Shleifer,

and Thaler (1991). We view these possibilities as manifestations of overreaction.
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gauging overreaction from return reversals. As discussed later, the regressions also allow us

to explore the extent to which recoveries during the second and third trading weeks following

nine-eleven are systematic (e.g., an improvement in broad sentiment) versus security-speci�c

reversals.

Having provided evidence that �xed-income CEFs overreacted and recovered following

nine-eleven, it is worth revisiting Figure 1 to observe how strikingly similar the price return

patterns for NYSE common stocks are to those of �xed-income CEFs. This similarity sup-

ports the idea that common stocks also overreacted and recovered, to varying degrees based

on their market capitalization.

4.3. Investor expectations

It is interesting to compare the realized price returns shown in Figure 1 with two di¤er-

ent sets of expectations gathered after nine-eleven. Graham and Harvey (2003) conduct

a survey of Chief Financial O¢ cers (CFOs) and �nd that on September 12-14, CFOs had

lower (compared to pre-nine-eleven) forecasts of the one-year equity premium, implying an

expected drop in market prices. In another survey study, Glaser and Weber (2005) �nd that

around the weekend of September 22-23, individual investors expected higher (compared to

pre-nine-eleven) returns, which implies an expected increase in market prices. Glaser and

Weber compare their �ndings to those in Graham and Harvey and conclude that these two

results �do not coincide.�

We believe our �ndings are consistent with both studies, and attribute the seeming

inconsistency to the di¤erence in the timing of the two surveys. The survey from September

12-14 was taken immediately following nine-eleven (during the extraordinary time when the

equity markets were closed), and the respondents�expectation of a drop in market prices

was realized: Subsequently, the market opened substantially below its pre-nine-eleven close,
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and continued to fall throughout the entire week ending September 21. In contrast, the

survey from around the weekend of September 22-23 was taken after a full trading week of

virtually continuous market declines, and those respondents�expectation of an increase in

market prices was also realized: Market prices rebounded sharply on the Monday following

the survey, and continued to recover in the subsequent two weeks (9/21-10/5). Therefore,

subsequent realized returns coincided extremely well with the expectations expressed in both

surveys.

5. Trading statistics

We now report trading statistics for the periods before and after nine-eleven, which in most

cases are derived from TAQ microstructure data. These patterns shed further light on how

investors behaved after nine-eleven, and provide further evidence on the di¤erence in the

behavior of retail versus institutional investors. Although we provide a range of statistics,

for the sake of brevity, our discussion focuses more heavily on those with greater relevance

for our main �ndings.

5.1. Pre-nine-eleven trading statistics

To establish benchmark trading patterns, we �rst examine the period from June 1 through

September 10, 2001. Panel A of Table 2 reports the medians of the various metrics de�ned

in the data section for eleven di¤erent groups of securities. The �rst ten columns report

statistics for the common stocks, partitioned into market capitalization deciles (measured

on September 10, 2001), and the last column reports statistics for the �xed-income CEFs.

As can be seen, the patterns among the deciles of stocks are quite regular. For example,

tradesize, share price, and e¤ective spread change almost monotonically across the decile

columns. Turnover increases to a maximum for decile 8, and then declines with deciles 9
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and 10. Finally, the percentage of buys (the percentage of buys among trades whose signs

have been identi�ed by the signing algorithm in Lee and Ready 1991) increases monotonically

from a low of 44.56% in decile 1 to a high of 56.00% in decile 6, and then remains around

55-56% for the remaining deciles.

Weiss (1989) and Lee, Shleifer, and Thaler (1991) note that closed-end fund investors are

predominantly small, retail investors. This could result in their trading characteristics most

closely matching those of small stocks, since trading in these stocks is also more heavily

in�uenced by small, retail investors (Sias and Starks 1997). On the other hand, �xed-

income CEFs di¤er from small stocks in that fund shares represent a claim on a diversi�ed

basket of �xed-income securities. The trading characteristics of the CEFs could thus di¤er

substantially from those of individual, small stocks, and in fact we �nd the similarity to

small stocks is somewhat mixed.

The �xed-income CEFs are quite similar to small-cap stocks with respect to turnover

and share price. Turnover for �xed-income CEFs is 0.077%, which is only slightly larger

than that of decile 1 (0.063%), and share price for �xed-income CEFs is $12.81, which is

slightly larger than it is for decile 2 ($11.49).15 Despite these similarities, �xed-income CEFs

have signi�cantly lower values of e¤ective spread than small-cap stocks (deciles 1 and 2), and

hence trading costs are less than one might expect given the primarily retail-investor base. It

seems reasonable that this enhanced liquidity is due to a superior information environment,

because of regularly disclosed NAVs and underlying assets that are �xed-income securities.

Such a superior information environment should presumably lower the costs and risks of

providing liquidity.

15It could be that CEFs deliberately maintain a relatively low share price in order to appeal

to a small-investor shareholder base. See Fernando, Krishnamurthy, and Spindt (1999) for

an analysis of share price management by open-end fund managers.
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In Panel B of Table 2, we report the mean distribution of trades in terms of tradesize

(trade value in dollars). The patterns among the deciles are also quite regular across tradesize.

For example, the proportion of trades in the smallest dollar category (<$5K) decreases

monotonically from the smallest to the largest decile, while the proportion in the two largest

dollar value categories ($20K-$50K and >$50K) increases monotonically.16 The percent of

trades in the smallest tradesize categories for CEFs is similar to that of NYSE stocks in

deciles 6-7. However, the tradesize proportion of large trades (>$50K) for CEFs is between

that of deciles 2 and 3, and hence closer to small-cap stocks. Therefore, although CEFs

are not like small-cap stocks in their portions of very small trades, they are fairly similar to

small-cap stocks in their lack of very large trades.

Barber, Odean, and Zhu (2009) �nd that small trades of $5K or less whose signs have

been identi�ed by Lee and Ready�s (1991) signing algorithm can be used as a proxy to identify

the trades of individual investors. Similarly, Lee and Radhakrishna (2000), and Malmendier

and Shanthikumar (2007) use trades of $20K or less to identify small investors and trades of

more than $50K to identify institutional investors. With the exception of Malmendier and

Shanthikumar (2007), whose data run through July 2001, these studies are based on pre-2001

data. Barber, Odean, and Zhu warn that, starting in 2001, decimalization and increased use

of computers to break up institutional trades increases the number of small trades that

actually originate from institutions. Nevertheless, the overall tradesize distributions are

certainly consistent with a signi�cantly smaller institutional presence in the trading of the

16Tradesize is markedly skewed for small- and mid-cap stocks, with small trades dominating

trading in deciles 1-8, but then being the smallest proportion for decile 10 (the largest-cap

stocks). For decile 1, the portions of trades by category decrease monotonically from smallest

(< $5K) to largest (>$50K). A similar pattern holds for deciles 2-9, but becomes progressively

less pronounced as market cap increases. In decile 10 the pattern is also monotonic� but in

the opposite direction, with small trades less common than large trades.
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small-cap stocks (consistent with Sias and Starks, 1997) and CEFs (consistent with Weiss,

1989 and Lee, Shleifer, and Thaler, 1991).

Below, we investigate the extent to which institutional investors were net buyers after

nine-eleven. Therefore, for completeness we provide a benchmark in Panel C by reporting the

median percentage of buys based only on trades larger than $50,000. This panel indicates net

institutional buying in all categories except decile 1 and the CEFs during the pre-nine-eleven

period.

5.2. Post-nine-eleven trading statistics

In Table 3, we report summary statistics during �ve time periods, which cover June 1, 2001

through December 31, 2001. In the �rst row of each panel, we repeat the statistics for the pre-

nine-eleven period to aid in making comparisons. In the remaining rows, we report statistics

for four post-nine-eleven periods. As in Table 2, the �rst ten columns report statistics for the

common stocks, categorized into market-cap deciles, and the last column reports statistics

for �xed-income CEFs.

Panel A of Table 3 reports the median percentage of buys (based on signed dollar volume)

for the �ve di¤erent time periods. We observe that in the second row (the week of 9/17-

9/21), percentage of buys increases almost monotonically across deciles 1 through 10. In

addition, percentage of buys was smallest for decile 1 by a wide margin and second smallest

for decile 2, also by a wide margin. This suggests that during the �rst post-nine-eleven

trading week, sell-initiated trades were especially dominant in small-cap stocks. To a lesser

extent, deciles 3 and 4 also had more sells than buys. For deciles 5 through 10, however,

note that the median percentage of buys indicates that there were more buy-initiated trades

than sell-initiated trades. In fact, in results not tabulated here (but available upon request),

there were more buys than sells in deciles 6 through 10 on each individual day during the
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�rst trading week. We also note that the percentage of buys decreased signi�cantly from pre-

nine-eleven levels, but that the decrease was much less severe for large-cap stocks compared

to small-cap stocks.

Selling was also pervasive in �xed-income CEFs, as the percentage of buys was only

33.37% in the week of 9/17-9/21, slightly lower than for decile 1. We conclude that overall,

there was a massive rush by retail investors to sell small-cap stocks and �xed-income CEFs,

and that there continued to be more buying than selling in mid- and large-cap stocks just

as before the event (although the percentages are slightly lower). Among common stocks,

these results are consistent with a relative �ight to quality: Large-cap stocks had much lower

declines in buy-initiated trades than small-cap stocks, and for large-cap stocks the percentage

of buys remained above 50%.17

Figure 1 shows that price returns rebounded during the second and third post-nine-

eleven trading weeks. Thus, it is not surprising to see that percentage of buys increased for

all common stock categories and �xed-income CEFs during these two weeks (9/24�10/05),

and that the swing was strongest in the CEFs and small-cap stocks.18 On average, net

buying continued through the rest of the year as well (10/08�12/31), except for in decile 1

and the CEFs.

Panel B reports the percentage of buys based only on signed trades >$50K, which were

those likely executed for institutional investors. For every security category, the percent of

buys is smaller in the week following nine-eleven (9/17�9/21) than beforehand. Strikingly,

17For evidence of a parallel �ight to quality in the banking system, see Caballero and

Krishnamurthy (2008) and McAndrews and Potter (2002).
18Although not calculated in the panel, percentage of buys increased from the �rst week

(9/17-9/21) to the third week (10/01-10/05) by an absolute 11.20%, 10.06%, and 20.02% for

decile 1, decile 2, and the CEFs, respectively. These increases were considerably larger than

for deciles 3 through 10.
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however, there remained net institutional buying in deciles 5 and larger, which provides

further evidence consistent with a �ight to quality. Furthermore, in untabulated results we

�nd that for the overall sample of stocks for this week, the median percentage of buys for

trades >$50K was 53.04%.

On the basis of the dramatic reduction in buy-signed trades for both CEFs and small-

cap stocks (deciles 1 and 2), together with the small-investor base of these securities, we

conclude that retail traders engaged in heavy selling during the �rst trading week after nine-

eleven. The fact that the percentage of buys for mid- and large-cap stocks exceeded 50%

suggests that if retail investors also sold these stocks heavily, institutional investors must

have bought them, on average. Indeed, trades $50,000 and larger indicate institutional net

buying in these deciles. This is key because these buying and selling patterns, together with

Figure 1, show that in the wake of super-salient news, correlated retail trading moved prices

opposite to the direction implied by institutional trading.

Panel C of Table 3 reports tradesize statistics. The �xed-income CEFs and most stock

deciles showed modest increases in average tradesize in the week following nine-eleven, but

decile 10 showed an increase of $35,414 (a relative increase of 52%) from $67,951 to $103,366.

This does not seem to have been caused by one-sided trading aimed at liquidating large

positions, because Panel B shows that the percentage of buys for trades larger than $50K

only fell to 53.33% during this week, from 55.41% beforehand. Hence, any increase in sell-

initiated trade size must have been o¤set by larger buy trades such that the majority of

larger trades remained buy-initiated.

Panel D reports changes in median turnover. Not surprisingly, turnover increased across

all deciles and the CEFs. The largest increase was in decile 10, for which median turnover

increased from 0.277% to 0.600%, a 116% increase in relative terms (and a 0.32% increase in
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absolute terms). This is consistent with the substantial increase in tradesize for this decile

as reported in Panel C.

Panel E of Table 3 reports statistics for e¤ective spread. As one might expect in a crisis,

e¤ective spread was substantially larger for the CEFs and every decile during the week of

9/17-9/21 than during the pre-nine-eleven period. As one might also expect, the largest

increases were in the CEFs and deciles 1 and 2. The percentage of buys during the �rst

post-nine-eleven trading week (see panel A) indicate that selling pressure was heaviest in

these securities, and so it is not surprising that liquidity providers took advantage and were

able to increase their compensation for providing such liquidity. In terms of levels, we note

that the average spread of 0.82% for the CEFs after nine-eleven places them between deciles

3 and 4, the same as in the pre-nine-eleven statistics.

In summary, the trading patterns show that in the immediate aftermath of nine-eleven

there was more dollar selling than buying in common stock deciles 1-4, and more dollar

buying than selling in deciles 5-10. The collective evidence is also consistent with retail-

investor selling and institutional-investor buying. Given the respective investor bases of

small- and large-cap stocks, such disparate trading behavior could explain the di¤erences in

return patterns we observe in Figure 1 for small- versus large-cap stocks, in which small-cap

stocks had much larger price declines than large-cap stocks. It is also particularly interesting

that large-cap stocks su¤ered signi�cant price declines after nine-eleven despite institutional

buying as indicated by more dollar-weighted buys than sells, both overall and in trades

>$50K. This �nding demonstrates that in the wake of super-salient news, correlated trading

by retail investors can temporarily drive prices in the opposite direction of that implied by

active institutional trading.
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6. Pooled, cross-sectional time series regressions

We now consider cross-sectional regressions of weekly (Friday-to-Friday) returns, to (1) sta-

tistically validate the return patterns reported earlier, and (2) learn whether recoveries result

solely from a general improvement in sentiment or whether there is also substantial security-

speci�c reversal.

6.1. Regressions of pre-nine-eleven returns

We begin by estimating baseline regressions using 48 weeks of pre-nine-eleven data. These

regressions identify weekly autocorrelation patterns that are typical in the various asset

classes during the 48-week period prior to nine-eleven. For example, we establish the extent

to which a security�s return in a given week relates to its return in each of the prior two

weeks, thus revealing any patterns of signi�cant price reversal or momentum. All models

include unreported security-speci�c constants (i.e., �xed e¤ects) and allow for autocorrelated

and heteroskedastic error terms.19

We use a pooled, cross-sectional time-series approach. For all securities, we regress

weekly (Friday-to-Friday) price returns on lagged price returns, an event indicator variable,

lagged event indicator variables, and interaction terms. For the CEFs, we also estimate

19We estimate time-series, cross-sectional models using the Gauss-Newton method of

Davidson and McKinnon (1980) to allow for �rst-order autocorrelation among the resid-

uals of each fund and obtain unbiased estimates of this correlation. In addition, we allow

for heteroskedasticity both between funds and between event and non-event weeks. Our

approach may di¤er from that in Klibano¤, et al. (1998) in that we allow for �rst-order

autocorrelation in the residuals. The overreaction and reversal e¤ects in the regressions

we document are qualitatively the same if we use alternative techniques, including simple

ordinary least squares both with and without �xed e¤ects.
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the regression with abnormal returns in place of price returns, where an abnormal return is

de�ned as the price return minus the contemporaneous NAV return.

The model we estimate and report in Table 4 is:

Ri;t = �i + �1Ri;t�1 + �2Ri;t�2 + "i;t; (2)

where Ri;t is the return for security i in week t, and �i is a security-speci�c constant (�xed

e¤ects).

The �rst column, which reports regressions of �xed-income CEF price returns, shows a

positive coe¢ cient of 0.176 on Ri;t�1 that is signi�cant both statistically and economically.

This indicates a one-week security-speci�c price momentum of 0.176% for every 1% return in

the prior week. The coe¢ cient on Ri;t�2 is insigni�cant. The regression in the next column

replaces price returns with abnormal (price minus NAV) returns on both the left- and right-

hand sides of equation (2), and we observe that the CEFs have modest one-week abnormal

return momentum (coe¢ cient for Ri;t�1 = 0.068, p-value = 0.069), followed by signi�cant

two-week reversal (coe¢ cient for Ri;t�2 = -0.083, p-value < 0.001).

Table 4 also reports baseline regressions for the common stock deciles that show that,

on average, stock prices are signi�cantly reversed with a two-week lag during the pre-nine-

eleven period as indicated by the signi�cantly negative coe¢ cients on Ri;t�2 for every decile.

The coe¢ cients on Ri;t�1, however, are mixed� insigni�cant for some deciles, signi�cant and

positive for others, and signi�cant and negative for yet others.

6.2. Regressions of returns before, across, and after nine-eleven

We now turn to regressions that include 48 pre-nine-eleven weekly return observations, the

return across the event itself, and �ve post-nine-eleven weekly observations (a total of 54
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weekly observations for each security). Note that the return across nine-eleven spans two

calendar weeks, 9/8 to 9/21, because of the market closure. Therefore, we allow for a

distinct error term for the return across nine-eleven, which corrects for increased volatility

due to the event itself and the greater than usual number of calendar days over this return�s

measurement period.

One goal of these regressions is to test whether the negative returns across the �rst

post-nine-eleven trading week, and the return reversals that followed during the next two

weeks, are statistically signi�cant. Another is to show the extent to which the reversals

are systematic versus security-speci�c. That is, the approach we take distinguishes between

general price recoveries, which could be due to a broad-based improvement in investor senti-

ment, and security-speci�c reversals that are directly tied to the magnitude of each security�s

�rst-week price reaction to nine-eleven.

The model we estimate is:

Ri;t = �i + �0Et + �1Et�1 + �1(�Et�1Ri;t�1) + �2Et�2

+�2(�Et�2Ri;t�2) + �3(1� Et�1)Ri;t�1 + �4(1� Et�2)Ri;t�2 + "i;t; (3)

where Ri;t is the return for security i in week t, �i is a security-speci�c constant (�xed

e¤ects), and Et is an indicator variable equal to 1 if the weekly return Ri;t spans nine-eleven

(the return over Friday, 9/7 to Friday, 9/21). Hence, �0 measures the systematic reaction

to nine-eleven (the �rst-week reaction), and �1 and �2 measure systematic recoveries in

the second and third weeks, respectively. We also use the Et indicators to partition how

the current return (the left-hand-side variable) depends on lagged returns Ri;t�1 and Ri;t�2,

based on whether the lagged returns span nine-eleven. Speci�cally, Ri;t�1 is partitioned into

Et�1Ri;t�1 and (1�Et�1)Ri;t�1, and Ri;t�2 is partitioned into Et�2Ri;t�2 and (1�Et�2)Ri;t�2.

26



For our purposes, the key variables here are Et�1Ri;t�1 and Et�2Ri;t�2. Their coe¢ cients,

�1 and �2, measure the extent to which security-speci�c recoveries are directly tied to the

initial security-speci�c price declines. Note that we perform simple transformations and

actually use (�Et�1Ri;t�1) and (�Et�2Ri;t�2) in the speci�cations we estimate. By making

these terms negative, positive values for �1 and �2 indicate recovery, or positive returns.

This is because for a given security i, the return Ri;t�1 is negative when Et�1 = 1 due to

the security�s negative return reaction to nine-eleven, and similarly, Ri;t�2 is negative when

Et�2 = 1. To help clarify the coding scheme, Appendix B illustrates with a numerical

example.

6.2.1. CEF regressions

Table 5 presents the results. For the CEF price-return regression (the �rst column of num-

bers), the coe¢ cient for Et is -0.056 which is both economically and statistically signi�cant

(p < 0.001). This implies that the average �rst-week price reaction to nine-eleven was -5.6%,

after controlling for returns in the prior two weeks. This average return is somewhat smaller

than the -7.8% mean return reported in Table 1, but note that the regression controls for

the prior two weeks of returns by including the variables (1�Et�1)Ri;t�1 and (1�Et�2)Ri;t�2.

As shown in Table 1, the mean recovery return was 4.56%. The regression shows that the

systematic component of this return is statistically signi�cant, but only 0.6% (the coe¢ cient

for Et�1 = 0.006, with p-value = 0.047). In marked contrast, the fund-speci�c component

of this second-week recovery return is quite large: The coe¢ cient on (�Et�1Ri;t�1) is 0.409,

implying that 40.9% of each fund�s distinct initial price return decline over the �rst post-

nine-eleven trading week was reversed during the second week. The systematic return in the

third week is similar to that in the second week at 0.006, and the third week�s fund-speci�c

recovery component is insigni�cant.
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The regression of abnormal (price minus NAV) returns for the CEFs show fairly sim-

ilar results. One di¤erence, however, is that the security-speci�c recovery coe¢ cients on

both (�Et�1Ri;t�1) and (�Et�2Ri;t�2) are positive and signi�cant. Speci�cally, the coe¢ -

cient and p-value for (�Et�1Ri;t�1) are 0.557 and less than 0.001, respectively, and those for

(�Et�2Ri;t�2) are 0.077 and 0.036. Hence, this regression provides substantial direct evidence

of overreaction: Negative abnormal returns in the �rst week of trading after nine-eleven were

signi�cantly reversed on a fund-speci�c basis during both of the subsequent two weeks.20

It is important to note that the security-speci�c post-nine-eleven event reaction of �xed-

income CEFs is in marked contrast to the reaction during non-event time periods. The

positive and signi�cant coe¢ cients on (1�Et�1)Ri;t�1 in the two CEF regressions, along

with the positive and signi�cant coe¢ cients on Ri;t�1 in the pre-nine-eleven regressions in

Table 4, imply momentum, and hence underreaction to information. This is consistent with

the �ndings in Klibano¤, Lamont, and Wizman (1998), who conclude that closed-end fund

prices underreact to news as measured by contemporaneous changes in NAVs. They further

conclude that in salient news weeks, such underreaction is signi�cantly smaller. Our results

show that abnormal returns were signi�cantly negative in the nine-eleven return week, which

given that nine-eleven was a negative news shock, implies overreaction. This interpretation

is buttressed by the fact that there were signi�cant fund-speci�c reversals following nine-

20In an alternative approach, we construct a systematic sentiment factor which is, for each

week, the cross-sectional mean of the di¤erence between the fund price and NAV returns. In-

cluding this as a regressor results in a coe¢ cient (p-value) on (�Et�1Ri;t�1) of 0.472 (<0.001).

Separately, we also estimate a regression in which we include the sentiment factor times a

fund-speci�c sentiment beta (estimated using pre-nine-eleven data). In this regression, the

coe¢ cient (p-value) on (�Et�1Ri;t�1) is 0.311 (<0.001). Hence, we conclude the evidence

of fund-speci�c recoveries is robust to these alternative ways of controlling for systematic

sentiment.
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eleven.21 Thus, our �ndings support the idea that when the salience of news is su¢ ciently

great, not only can there be less underreaction, but in fact overreaction.22

6.2.2. Common stock regressions

The right-most ten columns in Table 5 show the regression results for the common stock

deciles. As expected, the coe¢ cients on Et, which measure the average price return during

the �rst post-nine-eleven trading week, are signi�cantly negative for every decile group. In

the second week, there was signi�cant systematic market-wide recovery in all but decile 1, as

coe¢ cients on Et�1 are positive and signi�cant. Except for deciles 4 and 9, however, there

is no signi�cant evidence of security-speci�c recovery in the second week, as the coe¢ cients

for (�Et�1Ri;t�1) are insigni�cant.

The results for the third week are quite di¤erent than those for the second week. During

this week, there is no evidence of systematic recovery� none of the coe¢ cients on Et�2 are

signi�cantly positive in any of the deciles.23 Of note, however, the regressions do show signif-

icant security-speci�c recoveries during the third week following nine-eleven: The coe¢ cients

on (�Et�2Ri;t�2) are uniformly positive and both economically and statistically signi�cant

for all deciles. This implies that for common stocks, like �xed-income CEFs, there was a

security-speci�c reversal of the nine-eleven price declines. The di¤erence is that the security-

21Evidence in Klibano¤, Lamont, and Wizman shows that prices react to changes in NAVs

instead of vice versa, and Figure 3 suggests this was the case after nine-elven. In results

we do not tabulate but that are available from the authors, we con�rm this econometrically

using a vector error-correction model.
22Note that Klibano¤, Lamont, and Wizman�s �nding that CEF prices underreact less to

more salient news is an average e¤ect across many distinct news events. It is possible their

set of events contains a subset of super-salient news events that result in overreaction instead

of just less underreaction.
23Note that deciles one and three have signi�cant but negative coe¢ cients for Et�2.
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speci�c reversals for common stocks occur during the third week following nine-eleven instead

of the second. We comment further on this result below.

7. Comparing common stocks to CEFs

Benchmarks to calculate abnormal stock price returns are controversial at best, so we do not

attempt to create a direct measure of a stock�s abnormal return. However, for CEFs, the

evidence for abnormal returns leads us to conclude that there was signi�cant overreaction. It

is therefore interesting to compare price returns for common stocks with those of �xed-income

CEFs.

Figure 1 shows a striking similarity between the pattern of price returns for common

stocks and the pattern for �xed-income CEFs. Moreover, both the common stock and CEF

regressions statistically validate signi�cant negative returns followed by both systematic

and security-speci�c reversals during the second or third post-nine-eleven trading weeks. In

addition, we note that both Figure 1 and the regressions show that initial reactions were more

severe for common stocks than for �xed-income CEFs. Finally, our �ndings of less severe

overreaction and faster security-speci�c reversals in �xed-income CEFs, relative to common

stocks, support the intuition in classic models such as Grossman and Stiglitz (1980) in which

greater numbers of informed traders make pricing more e¢ cient. Compared to common

stocks, CEFs have a superior information environment due to the regular disclosure of NAVs,

which should naturally increase the number of informed relative to uninformed traders.

Taken together, we believe these results provide substantial evidence that there was

overreaction and recovery in common stocks in the wake of nine-eleven.
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8. Conclusion

We exploit the nine-eleven terrorist event to study the roles of retail and institutional traders

in the wake of super-salient news. Our analysis benchmarks price returns against NAV

returns for �xed-income CEFs, and we �nd signi�cant retail-investor overreaction during

the �rst post-nine-eleven trading week followed by a security-speci�c reversal during the

second and third weeks. Comparing price returns of these funds to those of NYSE common

stocks suggests a similar three-week period of overreaction and security-speci�c reversal in

common stocks. Interestingly, this �nding applies even to the largest-cap stocks, despite

microstructure data indicating net buying of these stocks by institutional investors in the

initial aftermath of the event. This indicates that in the wake of super-salient news, even

when institutional investors trade in one direction, correlated trading by retail investors can

drive prices in the other direction.

Our study extends the literature in at least four important respects. First, while prior

studies examine trading by retail or institutional investors, we examine how both sets of

investors trade simultaneously in response to news, and show that correlated trading by

retail investors can swamp that of institutional investors and move prices in the opposite

direction. This could have implications for how prices respond to super-salient �rm-speci�c

news such as major industrial accidents, revelations of fraud, etc. Second, while prior studies

�nd that greater salience leads to less underreaction to news, our results imply that investor

reaction to news lies on a continuum wherein greater salience can lead to overreaction when

news is su¢ ciently salient. Third, we �nd that prices reverse sooner in �xed-income closed-

end funds than in common stocks, potentially due to the superior information environment

CEFs have as a result of regularly disclosed NAVs. This interpretation is consistent with

classical microstructure theory, wherein a greater proportion of informed traders leads to
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more e¢ cient prices. Finally, our evidence supports Tetlock�s (2011) approach of identifying

overreaction on the basis of a return reversal.

Our research examines a super-salient negative news shock. Parallel unresolved questions

are whether an analogous pattern of overreaction follows super-salient positive news, and

whether correlated retail trading can swamp institutional trading in the opposite direction

following such positive news. We leave these questions to future research.
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Appendix A: Robustness Checks

In this appendix we discuss the robustness of our �nding of overreaction in �xed-income

CEFs to nine-eleven, and rule out several alternative explanations for the pattern of severe

price declines and recoveries.

A.1 Errors in net asset values

We �rst consider whether the evidence is potentially explained by errors in reported

NAVs. Suppose NAVs during the �rst week after nine-eleven (and on Friday, 9/21, in partic-

ular) were overstated because they were not updated after non-eleven due to the disrupted

environment. If that were the case, negative abnormal returns could be due to errors in the

NAVs. However, we �nd that only one fund has the same NAV both on the last trading day

prior to nine-eleven and at the end of the �rst trading week (9/21) after nine-eleven. Thus,

NAVs were updated during the �rst trading week following nine-eleven.

Another possibility is that, although reported NAVs were updated, some of the asset

prices used in NAV calculations were stale. This could have resulted in valuation errors

immediately after nine-eleven. For example, suppose the risk of default increased immedi-

ately following nine-eleven. If bond prices for NAV calculations were stale or matrix-priced

based on a pre-nine-eleven risk assessment, they would have been too high (relative to true

fundamentals), which would have caused overstated �xed-income NAVs.

Figure A1 plots the Baa-rated corporate bond yield spread (above the 10-year treasury

yield) and shows that the default premium did increase following nine-eleven. However, the

patterns of price and NAV returns are not consistent with NAVs being overstated because

of increased default risk. As shown in Figure A1, default premium remain somewhat higher

through 10/05. And yet, cumulative price returns recovered to the level of cumulative NAV

returns instead of cumulative NAV returns converging to cumulative price returns (see Figure
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3). If bond prices were erroneously high and did not re�ect the increased default premium

at �rst, then as bond prices became increasingly accurate, cumulative NAV returns should

have converged to cumulative price returns instead of vice versa.

As an additional check, we spoke with multiple people responsible for the NAV calcu-

lations of a variety of CEFs. They assured us that prior to Friday, 9/21, accurate, updated

secondary-market based prices were being used to calculate the NAVs of �xed-income CEFs.

The evidence strongly supports the idea that NAVs for Friday 9/21 are appropriately up-

dated and therefore not stale.

A.2 Market depth e¤ects in the closed-end fund shares

The lack of su¢ cient market depth to accommodate panicked sellers is another potential

explanation for severe price declines in CEFs following nine-eleven. Investors could have been

willing to pay a premium to liquidate their shares immediately. This is another manifestation

of overreaction, where panicked investors liquidated their holdings immediately because they

were concerned that liquidation prices in the future would be even lower. Liquidity providers

could have taken advantage of this and pro�ted from buying shares at transaction prices that

were arti�cially low compared to NAVs.

To explore the lack of market depth explanation, we calculate each fund�s average share

turnover during the 20 trading days preceding nine-eleven. This variable is a proxy for the

ability to sell shares without causing signi�cant price movement (i.e., the depth the overall

market provides to sellers). We rank order �xed-income CEFs by this variable, and partition

them into three equal-sized groups.

The market depth explanation predicts that panicked sellers of funds with lower pre-

nine-eleven turnover (i.e., lower market depth) will accept lower prices to attract buyers.

Therefore, overreaction and reversal patterns should be more (less) pronounced in funds with
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lower (higher) turnover. We add a term to the regression model explaining CEF abnormal

returns in Table 5 that interacts the event variable (Et) with the turnover-rank variable.

A positive coe¢ cient on this additional variable would indicate that the negative abnormal

return is less negative for funds with higher turnover. In fact, we �nd that the coe¢ cient is

signi�cantly negative, indicating more pronounced overreaction for funds with higher liquidity

(as measured by pre-nine-eleven turnover). Hence, we conclude the overreaction in �xed-

income CEFs is not explained by a lack of market depth.

A.3 Closed-end fund discount explanations

A third potential explanation is that price and NAV returns diverge because a closed-end

fund�s premium or discount has changed. It is therefore possible that explanations for closed-

end fund discounts play a role in the patterns of price and NAV returns. Grullon and Wang

(2001) present a model in which closed-end fund discounts (negative premiums) occur when

investors in the closed-end funds are less informed than investors in the fund�s underlying

assets. Their information di¤erential theory is potentially important in our setting because

any information di¤erential would have been exacerbated by nine-eleven and the market

closure. This implies, however, that the divergence between prices and NAVs (i.e., the

widening of discounts) should have been at its most severe at the market�s reopening on

Monday, 9/17, and then this divergence should have dissipated over the 9/17 �9/21 trading

week as prices and NAVs should have converged (i.e., discounts should have narrowed)

throughout the week as CEF investors became more informed about fundamental values by

observing market activity, and in particular, disclosed NAVs. Neither of these predictions

hold, because the divergence between prices and NAVs steadily grows throughout the 9/17

�9/21 trading week to its maximum on Friday, 9/21 (see Figure 3).

There are, of course, other proposed explanations for closed-end fund discounts. Among

these are unrealized capital gains, managerial performance and agency problems, segmented
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markets, restricted or illiquid stock holdings, and excessive turnover within the fund�s assets

(for a review, see Dimson and Minio-Kozerski, 1999). None of these explanations are likely to

explain the patterns we observe. To varying degrees, these explanations imply that discounts

should have been una¤ected around nine-eleven or at their widest on Monday, 9/17, when

the market reopened. None of these explanations imply that discounts should have become

steeper throughout the �rst post-nine-eleven trading week of 9/17 �9/21, only to return to

their pre-nine-eleven levels over the second and third trading weeks.reaction.
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Fig. A1. The spread of the Moody's seasoned Baa corporate bond yield spread over 10-year constant maturity Treasury yields.  Both yields 
are from the Federal Reserve Bank of St. Louis. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

9
/4
 (
‐5
)

9
/5
 (
‐4
)

9
/6
 (
‐3
)

9
/7
 (
‐2
)

9
/1
0
 (
‐1
)

9
/1
3
 (
n
.a
.)

9
/1
4
 (
n
.a
.)

9
/1
7
 (
+1
)

9
/1
8
 (
+2
)

9
/1
9
 (
+3
)

9
/2
0
 (
+4
)

9
/2
1
 (
+5
)

9
/2
4
 (
+6
)

9
/2
5
 (
+7
)

9
/2
6
 (
+8
)

9
/2
7
 (
+9
)

9
/2
8
 (
+1
0
)

1
0
/1
 (
+1
1
)

1
0
/2
 (
+1
2
)

1
0
/3
 (
+1
3
)

1
0
/4
 (
+1
4
)

1
0
/5
 (
+1
5
)

C
o
rp
o
ra
te
 b
o
n
d
 y
ie
ld
 s
p
re
ad

Numbers in parentheses are equity market trading days relative to nine‐eleven.



Appendix B: Numerical Illustration of Coding for Table 5 Re-

gressions

To illustrate the codings and coe¢ cient sign interpretations, consider the simple example

in Appendix Table B1 in which a security has a negative 10% return over the nine-eleven

trading week (which is week 49 in the regression data). Note that the left-hand side variable

is Rt, and that Rt�1 and Rt�2 are not included on the right-hand side on their own� they

are only shown to clarify how the interaction-term variables are coded. For the week-49

observation, the non-zero regressor variables are coded as Et = 1, (1�Et�1)Ri;t�1 = 3%, and

(1�Et�2)Ri;t�2 = 1%. Because Et is coded zero for all other weeks, the estimated coe¢ cient

for Et in the cross-sectional regression will measure the average nine-eleven return that is

not explained by the prior two lagged returns.

For the �rst recovery return week (which is week 50, the second week of trading after

nine-eleven), the security experiences a positive return of Rt = 7%. Our goal is to determine

how much of the 7% recovery return is systematic across all securities in the regression, and

how much is tied to a security-speci�c reversal of the security�s prior-week return of -10%.

The non-zero regressors for this observation (t = 50) are Et�1 = 1, (�Et�1Ri;t�1) = 10%,

and (1�Et�1)Ri;t�1 = 3%. Note that Et�1 is coded zero in all other weeks. The coe¢ cient

estimated for Et�1 in the cross-sectional regression will thus measure the recovery return

that is common across all securities in the regression, and the coe¢ cient on (�Et�1Ri;t�1)

will measure the extent to which the recovery returns are directly proportional to the security-

speci�c initial return reactions to nine-eleven. Note also that recoveries (positive returns)

are indicated by positive coe¢ cients on these two variables. For example, given that Et�1

= 1 for t = 50, a coe¢ cient of 0.05 on Et�1 would imply that 5% out of the 7% return

in the t = 50 recovery week, or 71.4% (5/7), is due to a systematic recovery shared by all

securities in the regression. And given that (�Et�1Ri;t�1) = 10% for the t = 50 recovery

38



week, a coe¢ cient of 0.15 on (�Et�1Ri;t�1) would imply that another 1.5% (which is 0.15

x 10%) out of the 7% recovery return, or 21.4% (1.5/7), is directly tied to the security�s

speci�c 10% loss during the nine-eleven trading week of t = 49.

The interpretations are similar for Et�2 and (�Et�2Ri;t�2). The codings for week t = 51

(the second week of recovery) imply that the coe¢ cient on Et�2 will measure the second week

of recovery common across all securities, and that on (�Et�2Ri;t�2) will measure the portion

of the second week�s recovery return that is directly linked to a security�s initial nine-eleven

return reaction.
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Appendix Table B1 
 
Illustrative coding for one security, in which Rt  = return (either price return or abnormal return) for week t.  Et = 1 if 
the return for week t includes nine-eleven. 
 
 

 
 

Trading Friday‐to‐Friday Dep Var.

week return week period Rt Rt‐1 Rt‐2 Et Et‐1 Et‐2 (‐Et‐1Rt‐1) (‐Et‐2Rt‐2) (1‐Et‐1)Rt‐1 (1‐Et‐2)Rt‐2

46 8/17 ‐ 8/24 ‐3% ‐1% ‐2% 0 0 0 0% 0% ‐1% ‐2%

47 8/24 ‐ 8/31 1% ‐3% ‐1% 0 0 0 0% 0% ‐3% ‐1%

48 8/31 ‐ 9/7 3% 1% ‐3% 0 0 0 0% 0% 1% ‐3%

9/11 week 49 9/7 ‐ 9/21 ‐10% 3% 1% 1 0 0 0% 0% 3% 1%

50 9/21 ‐ 9/28 7% ‐10% 3% 0 1 0 10% 0% 0% 3%

51 9/28 ‐ 10/5 8% 7% ‐10% 0 0 1 0% 10% 7% 0%

52 10/5 ‐ 10/12 2% 8% 7% 0 0 0 0% 0% 8% 7%

53 10/12 ‐ 10/19 1% 2% 8% 0 0 0 0% 0% 2% 8%

54 10/19 ‐ 10/26 0% 1% 2% 0 0 0 0% 0% 1% 2%

Regressor variables included in Table 4, Panel B regressions

(These are not

included as stand‐

alone regressors)
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Table 1 
 
Means of cumulative log price returns during six different time periods before, across, and after nine-eleven, for ten market-capitalization-based deciles of 1,463 NYSE-
listed stocks, 199 fixed-income closed end funds, and the S&P 500 Stock Index.  Decile partitions for common stocks (D1-D10) are based on market capitalizations as 
of September 10, 2001. 

 

  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 CEFs S&P 500

Pre: 6/1‐9/10 ‐21.89% ‐9.82% ‐8.29% ‐5.35% ‐11.61% ‐6.70% ‐5.34% ‐12.37% ‐8.04% ‐11.20% 4.38% ‐13.93%

9/10‐9/21 ‐16.69% ‐19.14% ‐21.02% ‐17.89% ‐16.71% ‐13.95% ‐14.54% ‐15.79% ‐12.49% ‐12.49% ‐7.80% ‐12.33%

9/21‐9/28 ‐2.11% 1.26% 6.62% 6.46% 5.79% 5.87% 6.55% 6.14% 6.13% 6.81% 4.56% 7.49%

9/28‐10/5 ‐1.53% 1.72% ‐0.51% 2.46% 2.99% 2.68% 2.42% 2.97% 2.24% 2.05% 1.50% 2.88%

9/10‐10/5 ‐20.33% ‐16.17% ‐14.91% ‐8.97% ‐7.93% ‐5.41% ‐5.57% ‐6.68% ‐4.12% ‐3.63% ‐1.74% ‐1.96%

10/5‐12/31 2.89% 11.26% 15.57% 14.17% 13.60% 15.18% 12.63% 12.16% 6.43% 3.88% 6.91% 7.16%

Common stock deciles partitioned by market capitalization



Table 2 
 
Summary statistics during the pre-nine-eleven period, June 1 through September 10, 2001, for ten market-capitalization-based deciles of 1,463 NYSE-listed stocks and 
199 fixed-income closed end funds.  Decile partitions for common stocks (D1-D10) are based on market capitalizations (Market Cap) as of September 10, 2001.  The 
reported statistics are medians of security-day observations, except Tradesize distributions (panel B) which are means.  Tradesize is the mean dollar value of all trades 
during a given day.  Share price is the closing price.  Effective spread is the mean of the effective spread for all trades during a given day, where the effective spread for 
a trade equals the bid-ask spread divided by the midpoint (i.e., the sum of the bid and ask divided by 2).  Turnover is the number of shares traded in a given day, divided 
by the number of outstanding shares.  Percentage of buys is dollar buys divided by the sum of dollar buys and sells during a given day, where buys and sells are 
identified by the Lee and Ready (1991) trade signing algorithm.  Distribution of trades by Tradesize shows the percentage (by number of trades) of all trades during a 
given day falling into a particular size category. 
 

 

  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 CEFs

Panel A:  Median characteristics

Market Cap  ($m) 52               170           331          539          860          1,290       2,077         3,470       6,996       23,985    194     

Tradesize  ($) 3,218         6,576        9,360       12,236    16,772    19,667    25,844      30,987    39,243    67,951    11,835

Share price  ($) 3.37           11.49        15.85       19.90       25.11       27.08       31.39         30.40       39.90       44.81       12.81 

Effective Spread 2.27% 0.84% 0.57% 0.41% 0.30% 0.26% 0.20% 0.17% 0.14% 0.10% 0.46%

Turnover 0.063% 0.127% 0.175% 0.208% 0.294% 0.310% 0.345% 0.376% 0.327% 0.277% 0.077%

Percentage of buys 44.56% 51.44% 53.30% 54.66% 55.46% 56.00% 55.87% 56.09% 55.30% 55.03% 49.45%

Panel B:  Distribution of trades by Tradesize
Trades < $5K 77.11% 65.98% 57.77% 49.85% 42.13% 37.05% 30.39% 26.64% 20.63% 12.07% 34.75%

Trades $5‐$10K 12.44% 15.87% 18.04% 19.75% 19.69% 20.69% 19.39% 19.75% 20.56% 16.95% 23.31%

Trades $10‐$20K 6.51% 9.77% 12.69% 14.90% 17.73% 18.73% 19.96% 19.56% 20.15% 18.42% 23.46%

Trades $20‐$50K 3.08% 5.80% 7.84% 10.55% 13.52% 15.12% 18.43% 19.80% 22.04% 25.26% 15.31%

Trades > $50K 0.85% 2.57% 3.66% 4.94% 6.93% 8.41% 11.83% 14.25% 16.62% 27.30% 3.17%

Trades < $20K 96.06% 91.62% 88.49% 84.50% 79.55% 76.47% 69.73% 65.95% 61.34% 47.44% 81.52%

Panel C:  Percentage of buys  ($ buys / ($ buys + $sells)) among Lee and Ready signed trades larger than $50,000

Percentage of buys (>$50K) 46.37% 54.03% 56.29% 57.28% 57.17% 57.59% 56.57% 57.12% 56.10% 55.41% 41.34%

Common stock deciles partitioned by market capitalization



Table 3 
 
Summary statistics during five different time periods between June 1 and December 31, 2001 for ten market-capitalization-based deciles of 1,463 NYSE-listed stocks 
and 199 fixed-income closed end funds.  Decile partitions for common stocks (D1-D10) are based on market capitalizations as of September 10, 2001 (Market Cap).  
The reported statistics are medians of security-day observations in the time period.  Percentage of buys is dollar buys divided by the sum of dollar buys and sells during 
a given day, where buys and sells are identified by the Lee and Ready (1991) trade signing algorithm.  Tradesize is the mean dollar value of all trades during a given 
day.  Turnover is the number of shares traded in a given day, divided by the number of outstanding shares.   Effective spread is the mean of the effective spread for all 
trades during a given day, where the effective spread for a trade equals the bid-ask spread divided by the midpoint (i.e., the sum of the bid and ask divided by 2). 
 

 

   

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 CEFs

Panel A:  Percentage of buys  ($ buys / ($ buys + $sells)) among Lee and Ready signed trades
Pre: 6/1‐9/10 44.56% 51.44% 53.30% 54.66% 55.46% 56.00% 55.87% 56.09% 55.30% 55.03% 49.45%

9/17‐9/21 33.65% 41.99% 47.24% 48.22% 50.98% 52.11% 53.37% 53.66% 53.31% 53.37% 33.37%

Change (from pre‐nine‐eleven) ‐10.9% ‐9.5% ‐6.1% ‐6.4% ‐4.5% ‐3.9% ‐2.5% ‐2.4% ‐2.0% ‐1.7% ‐16.1%

9/24‐9/28 47.55% 51.71% 56.06% 56.68% 56.29% 56.81% 56.25% 56.84% 55.61% 56.36% 53.35%

Change (from pre‐nine‐eleven) 3.0% 0.3% 2.8% 2.0% 0.8% 0.8% 0.4% 0.8% 0.3% 1.3% 3.9%

10/1‐10/05 44.85% 52.05% 53.64% 56.62% 56.77% 57.15% 56.53% 57.58% 57.08% 57.56% 53.39%

Change (from pre‐nine‐eleven) 0.3% 0.6% 0.3% 2.0% 1.3% 1.2% 0.7% 1.5% 1.8% 2.5% 3.9%

10/8‐12/31 48.02% 51.51% 53.85% 55.85% 56.13% 56.48% 56.70% 56.70% 56.18% 55.86% 45.31%

Change (from pre‐nine‐eleven) 3.5% 0.1% 0.6% 1.2% 0.7% 0.5% 0.8% 0.6% 0.9% 0.8% ‐4.1%

Panel B:  Percentage of buys  ($ buys / ($ buys + $sells)) among Lee and Ready signed trades larger than $50,000
Pre: 6/1‐9/10 46.37% 54.03% 56.29% 57.28% 57.17% 57.59% 56.57% 57.12% 56.10% 55.41% 41.34%

9/17‐9/21 41.58% 43.96% 49.34% 46.38% 52.04% 54.78% 53.78% 54.38% 53.34% 53.33% 9.89%

Change (from pre‐nine‐eleven) ‐4.8% ‐10.1% ‐6.9% ‐10.9% ‐5.1% ‐2.8% ‐2.8% ‐2.7% ‐2.8% ‐2.1% ‐31.5%

9/24‐9/28 60.67% 62.07% 59.62% 57.48% 56.30% 56.17% 56.07% 56.86% 56.48% 56.64% 59.84%

Change (from pre‐nine‐eleven) 14.3% 8.0% 3.3% 0.2% ‐0.9% ‐1.4% ‐0.5% ‐0.3% 0.4% 1.2% 18.5%

10/1‐10/05 68.49% 56.66% 53.58% 59.08% 57.36% 58.25% 56.25% 58.71% 58.10% 58.13% 48.19%

Change (from pre‐nine‐eleven) 22.1% 2.6% ‐2.7% 1.8% 0.2% 0.7% ‐0.3% 1.6% 2.0% 2.7% 6.9%

10/8‐12/31 53.00% 56.61% 57.23% 57.54% 57.22% 57.39% 57.41% 57.99% 56.77% 56.46% 31.16%

Change (from pre‐nine‐eleven) 6.6% 2.6% 0.9% 0.3% 0.1% ‐0.2% 0.8% 0.9% 0.7% 1.0% ‐10.2%

Common stock deciles partitioned by market capitalization



Table 3 (continued) 
 

  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 CEFs

Panel C:  Tradesize  (dollars)
Pre: 6/1‐9/10 3,218 6,576 9,360 12,236 16,772 19,667 25,844 30,987 39,243 67,951 11,835

9/17‐9/21 3,115 6,990 10,294 14,164 18,505 22,287 29,613 35,639 45,795 103,366 13,407

Change (from pre‐nine‐eleven) ‐103 414 933 1,928 1,734 2,620 3,769 4,652 6,552 35,414 1,572

9/24‐9/28 2,824 6,374 9,560 11,641 15,536 19,290 24,314 29,970 38,581 75,036 11,779

Change (from pre‐nine‐eleven) ‐395 ‐202 200 ‐595 ‐1,236 ‐377 ‐1,530 ‐1,017 ‐662 7,085 ‐56

10/1‐10/05 2,518 5,720 8,167 10,181 14,292 16,660 22,806 26,935 35,964 64,083 11,587

Change (from pre‐nine‐eleven) ‐700 ‐856 ‐1,194 ‐2,055 ‐2,480 ‐3,007 ‐3,038 ‐4,051 ‐3,278 ‐3,868 ‐248

10/8‐12/31 2,729 5,217 7,736 9,960 12,923 15,844 21,478 25,326 33,362 59,301 11,456

Change (from pre‐nine‐eleven) ‐489 ‐1,359 ‐1,624 ‐2,276 ‐3,849 ‐3,823 ‐4,366 ‐5,661 ‐5,880 ‐8,651 ‐379

Panel D:  Turnover  (shares traded / shares outstanding)
Pre: 6/1‐9/10 0.063% 0.127% 0.175% 0.208% 0.294% 0.310% 0.345% 0.376% 0.327% 0.277% 0.077%

9/17‐9/21 0.096% 0.185% 0.260% 0.322% 0.445% 0.477% 0.579% 0.693% 0.599% 0.600% 0.142%

Change (from pre‐nine‐eleven) 0.03% 0.06% 0.08% 0.11% 0.15% 0.17% 0.23% 0.32% 0.27% 0.32% 0.07%

9/24‐9/28 0.085% 0.196% 0.238% 0.281% 0.411% 0.465% 0.508% 0.568% 0.497% 0.453% 0.100%

Change (from pre‐nine‐eleven) 0.02% 0.07% 0.06% 0.07% 0.12% 0.16% 0.16% 0.19% 0.17% 0.18% 0.02%

10/1‐10/05 0.068% 0.144% 0.172% 0.239% 0.353% 0.377% 0.437% 0.525% 0.426% 0.386% 0.089%

Change (from pre‐nine‐eleven) 0.00% 0.02% 0.00% 0.03% 0.06% 0.07% 0.09% 0.15% 0.10% 0.11% 0.01%

10/8‐12/31 0.082% 0.118% 0.177% 0.213% 0.282% 0.317% 0.352% 0.394% 0.352% 0.309% 0.086%

Change (from pre‐nine‐eleven) 0.02% ‐0.01% 0.00% 0.01% ‐0.01% 0.01% 0.01% 0.02% 0.02% 0.03% 0.01%

Common stock deciles partitioned by market capitalization



Table 3 (continued) 
 

 

 

 

 

 

 

  

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 CEFs

Panel E:  Effective spread
Pre: 6/1‐9/10 2.27% 0.84% 0.57% 0.41% 0.30% 0.26% 0.20% 0.17% 0.14% 0.10% 0.46%

9/17‐9/21 3.47% 1.33% 0.88% 0.61% 0.43% 0.37% 0.29% 0.25% 0.19% 0.15% 0.82%

Change (from pre‐nine‐eleven) 1.2% 0.5% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.4%

9/24‐9/28 3.51% 1.27% 0.80% 0.59% 0.41% 0.32% 0.26% 0.22% 0.17% 0.13% 0.70%

Change (from pre‐nine‐eleven) 1.2% 0.4% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.2%

10/1‐10/05 3.46% 1.15% 0.72% 0.52% 0.38% 0.31% 0.24% 0.20% 0.16% 0.12% 0.63%

Change (from pre‐nine‐eleven) 1.2% 0.3% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2%

10/8‐12/31 2.62% 0.97% 0.60% 0.42% 0.30% 0.25% 0.20% 0.17% 0.13% 0.10% 0.54%

Change (from pre‐nine‐eleven) 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

Common stock deciles partitioned by market capitalization



Table 4 
 
Pooled, cross-sectional time-series regressions for ten market-capitalization-based deciles of 1,463 NYSE-listed stocks and 199 fixed-income closed end funds that 
explain weekly Friday-to-Friday returns for the 48 return-weeks immediately preceding nine-eleven.  Decile partitions for common stocks (D1-D10) are based on 
market capitalizations as of September 10, 2001. The regression specification is Ri,t = αi + β1Ri,t-1 + β2Ri,t-2  + ei,t, where Ri,t is the cumulative log return for security i in 
week t, and αi is a security-specific constant (i.e., fixed effects, the coefficients on which are not reported in the table for brevity).  Cumulative log price returns are used 
except for the closed-end fund regression with the dependent variable labeled abnormal, in which case the return is the cumulative log price return minus the cumulative 
log NAV return.  Heteroscedasticity is modeled between funds and also within funds for event and non-event weeks; in addition, first-order autocorrelation is permitted 
in the error terms of each fund, as well as a distinct error term across nine-eleven.  The Chi-square p-value measures the joint significance of only the coefficients 
reported (it excludes the unreported fixed effects indicator variables), and p-values are shown in parentheses beneath coefficients. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% level, respectively. 

 

 

  

Sample CEFs CEFs D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Dependent var. return type: price abnormal price price price price price price price price price price

Rt‐1  (lagged return)   0.176***   0.068*   ‐0.034   0.184***   0.108**   ‐0.117**   ‐0.032   ‐0.051   ‐0.110**   0.011   ‐0.049   ‐0.028

(<0.001)       (0.069)       (0.474)       (<0.001)      (0.024)       (0.023)       (0.551)       (0.298)       (0.045)       (0.833)       (0.264)       (0.545)      

Rt‐2  (twice‐lagged return)   ‐0.016   ‐0.083***   ‐0.038***   ‐0.089***   ‐0.067***   ‐0.074***   ‐0.061***   ‐0.051***   ‐0.068***   ‐0.069***   ‐0.108***   ‐0.132***

(0.348)       (<0.001)       (0.004)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

Wald Statistic 33.53*** 44.84*** 9.26*** 25.91*** 15.75*** 26.51*** 23.40*** 16.46*** 23.36*** 28.72*** 76.36*** 116.97***

Chi‐square p‐value (<0.001)       (<0.001)       (0.010)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

Common stock deciles partitioned by market capitalization



Table 5 
 
Pooled, cross-sectional time-series regressions for ten market-capitalization-based deciles of 1,463 NYSE-listed stocks and 199 fixed-income closed end funds that 
explain weekly Friday-to-Friday returns over the 48 weeks immediately preceding nine-eleven, the return across nine-eleven, and five weekly returns after the nine-
eleven return week (54 total return week observations).  Decile partitions for common stocks (D1-D10) are based on market capitalizations as of September 10, 2001.  
The regression specification is Ri,t = αi + λ0 Et + λ1 Et-1 + β1 (-Et-1Ri,t-1) + λ2 Et-2 + β2 (-Et-2Ri,t-2) + β3 (1-Et-1)Ri,t-1 + β4(1-Et-2)Ri,t-2 +  ei,t, where Ri,t is the cumulative log 
return for security i in week t, αi is a security-specific constant (i.e., fixed effects, the coefficients on which are not reported in the table for brevity), and Et is and 
indicator variable set to one if the return Ri,t spans nine-eleven (the return over 9/7 – 9/21).  The negative signs on -Et-1Ri,t-1 and -Et-2Ri,t-2 are so that positive coefficients 
indicate recoveries in the second and third return weeks following nine-eleven.  Cumulative log price returns are used except for the closed-end fund regression with the 
dependent variable labeled abnormal, in which case the return is the cumulative log price return minus the cumulative log NAV return.  Heteroscedasticity is modeled 
between funds and also within funds for event and non-event weeks; in addition, first-order autocorrelation is permitted in the error terms of each fund, as well as a 
distinct error term across nine-eleven.  The Chi-square p-value measures the joint significance of only the coefficients reported (it excludes the unreported fixed effects 
indicator variables), and p-values are shown in parentheses beneath coefficients. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 
respectively. 

 

  

 
 
 

   

Fixed Inc. CEFs
S&P 500 

 
D10 
D9 
 

D6 
D7 

D8 
 

D5 
 

D4 
 
 
 
 
 

 
D3 
 

D2 
 
 
 

Sample CEFs CEFs D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Dependent. var. return type: price abnormal price price price price price price price price price price

First‐week reaction to nine‐eleven (negative coefficient indicates negative return reaction)

Et (Systematic reaction)   ‐0.056***   ‐0.042***  ‐0.117***  ‐0.141***   ‐0.150***  ‐0.143***   ‐0.144***   ‐0.132***   ‐0.136***  ‐0.135***  ‐0.118***   ‐0.111***

(<0.001)       (<0.001)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

Second‐week systematic and security‐specific reactions to nine‐eleven (positive coefficients indicate recovery)

Et‐1 (Systematic reaction)   0.006**  0.005**  0.001  0.034***  0.066***  0.029***   0.042***  0.062***  0.054***  0.057***  0.043***  0.070***

(0.047)       (0.033)       (0.928)       (0.002)       (<0.001)      (0.008)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

‐Et‐1Rt‐1 (Security‐specific reaction   0.409***  0.557***  0.015  ‐0.092  ‐0.008  0.159**   0.089  ‐0.067  0.041  ‐0.023  0.130*  0.002

(<0.001)       (<0.001)       (0.839)       (0.135)       (0.891)       (0.021)       (0.229)       (0.349)       (0.578)       (0.710)       (0.066)       (0.977)      

Third‐week systematic and security‐specific reactions to nine‐eleven (positive coefficients indicate recovery)

Et‐2 (Systematic reaction)   0.006***  ‐0.001  ‐0.031***  ‐0.010  ‐0.018**  0.001   ‐0.004  ‐0.006  ‐0.004  ‐0.009  0.001  ‐0.007

(0.001)       (0.755)       (0.001)       (0.253)       (0.038)       (0.852)       (0.644)       (0.470)       (0.596)       (0.227)       (0.858)       (0.308)      

‐Et‐2Rt‐2 (Security‐specific reaction   ‐0.014  0.077**  0.143**  0.087*  0.073*  0.109**   0.133***  0.185***  0.138***  0.184***  0.115**  0.126***

(0.644)       (0.036)       (0.017)       (0.063)       (0.053)       (0.014)       (0.009)       (<0.001)      (0.003)       (<0.001)      (0.023)       (0.010)      

Correlations with non‐nine‐eleven lagged returns (positive coefficients indicate momentum, negative coefficients indicate reversals)

(1‐Et‐1)Rt‐1 (Once‐lagged return)   0.192***  0.083**  ‐0.019  0.195***  0.064  ‐0.024   0.026  0.018  ‐0.029  0.120***  ‐0.008  0.088**

(<0.001)       (0.023)       (0.696)       (<0.001)      (0.169)       (0.620)       (0.618)       (0.696)       (0.581)       (0.008)       (0.858)       (0.031)      

(1‐Et‐2)Rt‐2 (Twice‐lagged return)   ‐0.047***  ‐0.095***  ‐0.031**  ‐0.094***  ‐0.060***  ‐0.055***   ‐0.055***  ‐0.048***  ‐0.050***  ‐0.079***  ‐0.103***  ‐0.132***

(0.006)       (<0.001)       (0.016)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

Wald Statistic 2329.50*** 1728.60*** 207.77*** 459.91*** 513.09*** 688.67*** 629.46*** 584.76*** 623.30*** 685.60*** 677.09*** 703.50***
Chi‐square p‐value (<0.001)       (<0.001)       (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      (<0.001)      

Common stock deciles partitioned by market capitalization



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
   

  

‐0.22

‐0.20

‐0.18

‐0.16

‐0.14

‐0.12

‐0.10

‐0.08

‐0.06

‐0.04

‐0.02

0.00

9/10 9/17 9/18 9/19 9/20 9/21 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 10/4 10/5

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 S&P 500 Fixed Inc. CEF

Fig. 1. Cumulative log price returns for ten market-capitalization-based deciles of 1,463 NYSE-listed stocks, the S&P 500 Stock Index, and 199 
fixed-income closed-end funds over the September 10 through October 5, 2001 period.  Decile partitions for common stocks (D1-D10) are based on 
market capitalizations as of September 10, 2001.
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Fig. 2. Cumulative log price returns and cumulative log NAV return for 199 fixed-income funds and 59 equity closed-end funds, and cumulative 
price returns for the S&P 500 Stock Index, during March 2001. 
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Fig. 3. Cumulative log price returns, cumulative log NAV returns, and cumulative abnormal returns (log price returns minus log NAV returns) for 
199 fixed-income funds during August 20, 2001 and October 31, 2001. 


