
A natural language help system shell through functional programming

Robert Planta,*, Stephen Murrellb

aDepartment of Computer Information Systems, University of Miami, Coral Gables, FL 33124, USA
bDepartment of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33124, USA

Received 30 November 2003; accepted 21 April 2004

Available online 7 June 2004

Abstract

This paper investigates the development of a natural language (NL) interface for mixed initiative dialogues within a constrained domain

and demonstrates the applicability of the functional approach to NL system development. The system consists of two major components,

a natural language subsystem comprises a general-purpose parser that interprets a ‘plug and play’ tagged BNF grammar (which may be

ambiguous), to parse natural language input and extract semantic information. The knowledge-based subsystem uses the semantic tags

extracted by the natural language subsystem to generate a focused query to select the most appropriate script for a guided dialogue with the

user. The system was written entirely in a purely functional language, which resulted in a surprisingly small and simple program.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Natural language processing; Functional programming; Automated responses; Scripts

1. Introduction

With the deregulation of the Internet and the develop-

ment of ever more complex and sophisticated systems such

as enterprise resource planning, customer relationship

management systems, OLAP systems and operating systems

it was inevitable that a parallel requirement for more

sophisticated online user assistance systems would follow.

To this end, academic investigators and commercial

developers have drawn upon diverse research areas includ-

ing natural language understanding (NLU), ergonomics,

database systems, human factors and knowledge-based

systems to make their systems more intuitive, user friendly

and intelligent. Resulting in the emergence of new

technologies and platforms in several areas:

† Email handling systems, e.g. Jeeves Answers (www.

jeevesolutions.com), e-Dialogue’s Quick Reply (http://

www.edialogue.com/) and ROI Direct.com’s Customer

Response (http://www.tele-direct.com/), being deployed

by organizations such as the US Congress and Office

Depot that receive large volumes of email

correspondence.

† Natural-language web site search technology, e.g. Phrase

technology’s (www.iphrase.com), One-Step, utilized by

Charles Schwab to enable its 75 million end users type

simple natural language queries of its site.

† Call Center enhancement, e.g. InQuira (www.inquira.

com) has developed a natural language (NL) interaction

technology that helps simultaneously improve both the

quality of the call center representatives’ responses to

customer queries but also to decrease the time taken to

reach the solution, avoiding the decision tree type of

analysis that is usually performed.

† Computer-based training systems that utilize natural

language interaction have been receiving increased

attention [1] and products such as Wex Tech’s (http://

www.wextech.com/kipr.htm) AnswerWorks ‘question

answering engine’ are aimed at using natural language

understanding to enhance web-based training.

† The use of NL queries of databases remains a difficult

problem [2], however, researchers such as Owei, who

developed a ‘conceptual query language-with-natural

language (CQL/NL)’ [3] to assist in the filtering of

natural language queries, have continued to develop

solutions for subproblem categories.

All of these systems have at their core some form of

computational natural language processing (NLP) system,

an area that has a long history of investigation and research.

0950-7051/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2004.04.002

Knowledge-Based Systems 18 (2005) 19–35

www.elsevier.com/locate/knosys

* Corresponding author. Tel.: þ1-305-284-6105; fax: þ1-305-284-5195.

E-mail address: rplant@miami.edu (R. Plant).

http://www.jeevesolutions.com
http://www.jeevesolutions.com
http://www.edialogue.com/
http://www.edialogue.com/
http://www.tele-direct.com/
http://www.iphrase.com
http://www.inquira.com
http://www.inquira.com
http://www.wextech.com/kipr.htm
http://www.wextech.com/kipr.htm
http://www.elsevier.com/locate/knosys

The most basic technique for analyzing natural language is

that of keyword matching, of which Weizenbaum’s ELIZA

[4,5] system is a well-known example. The major criticism

of this type of NLP is that the dialogues generated tend to be

very shallow and superficial, not allowing users to probe for

solutions, involving, for example, inductive meta-know-

ledge. The second level of NLP techniques was inspired by

Chomsky’s work on grammars [6] whose work has radically

influenced NLP. The grammars being used to ‘parse’ or

break down the structure of the sentence helping establish

their meaning, as opposed to keyword matchers, which are

based upon the expectation of keywords being present in the

sentence presented to them and with very little meaning

being extracted from the input. There have been many types

of grammars used within NL research including ‘phrase

structured grammars’ [7] transformational grammars [6],

case grammars [8] and syntactic grammars [9] and as such

parsing is a central construct upon which NLP is based.

Through the use of these grammatical rules in conjunction

with other knowledge sources, the function of words within

an input stream can be determined and the relations between

them used to extract some degree of meaning from the

sentences. Building upon the work of these early systems,

researchers have taken a variety of approaches to building

computational NLP systems including Refs. [10–22]. For a

significant and comprehensive bibliography of texts in

computational NLU refer to Mark Kantrowitz’s ‘Bibli-

ography of Research in Natural Language Generation’ [23],

the survey from Varile and Zampolli [24] or the digital

archive of research papers in computational linguistics at

the University of Pennsylvania (http://www.cis.upenn.edu/

~adwait/penntools.html).

This paper builds upon the previous research to present a

new two-part computational NLP system based upon the use

of an executable set of functional equations and through this

notation demonstrates its applicability to the creation of

knowledge-based online help systems. A prototype solution

to the UNIX help assistant problem [13] is presented, this

was felt to be a suitable domain through which the

operational aspects of the approach could be tested as its

solution space is formally defined, yet facilitates mixed

initiative dialogues.

The natural language processing subsystem accepts as

input a BNF description of the language. This approach

has the advantage that the language module can be

replaced or upgraded by any user who understands

formal grammars without requiring any programming; it

was largely abandoned in mainstream NLP research

(partly) because of the ambiguous nature of natural

languages. The approach taken here is to produce all

possible parses of the input query. In the relatively

restricted domain of help systems, input are not large:

queries tend not to be multi-paragraph compositions, so

although ambiguities may still produce more than one

possible parse, the sometimes exponential explosion of

possibilities is not a debilitating problem.

The BNF [25] accepted by the parser is extended with

simple semantic tags that essentially say ‘if a successful parse

comes through here, make a note of xxxx’. The output from

the parser is not just a list of possible parse trees, but also a list

of possible tag sets. Each tag set contains the semantic tags

that were encountered in an ultimately successful parse of the

input. For example, in the famous example ‘fruit flies like a

banana’, the word ‘Flies’ can be either a verb or a noun. In the

extended BNF, where ‘flies’ is listed as a possible verb, the

tag ‘action-travel’ could be specified; where it is listed as a

possible noun, the tag ‘actor-insect’ could appear. With a

similar treatment for ‘fruit’, ‘like’, and ‘banana’, the parser

would produce two possible tag sets:

(actor-insect, actor-enjoy, object-food)

(actor-food, action-travel, manner-food)

Of course, the difference between subjects and objects

can be noted by the same means. Associating semantic tags

with a position in a parse tree rather than a linear lexeme

stream allows aubtle but important distinctions of meaning

to be discerned: ‘the broken printer is grey’ may deliver

useful information, but is obviously not reporting a problem,

but ‘the grey printer is broken’ requires a definite reaction,

even though both have the same words used as the same

parts of speech (pos). The disadvantage to this is that input

can only be processed if it conforms exactly to the given

grammar. The ability to handle ambiguity without any

problems means that much more forgiving grammars can be

used, and on-line help systems are more likely to be used by

grammatically competent users, but the need for ‘correct’

input can not be completely ignored.

This simplified, linear representation of meaning would

clearly not be sufficient for a full natural language

understanding system, but in the restricted domain of on-

line help systems with its much smaller expected inputs, it

provides an appropriate level of detail for further analysis.

Given the list of possible tag sets it is often found that all

of them are the same: ambiguities in parsing do not always

reflect semantic ambiguities. When all the syntax has been

discarded and the input reduced to a set of tags that represent

it’s meaning there will often be no ambiguity left. The

matching agent searches through a knowledge base of

scripts and selects those whose indexes most closely match

the tag sets. The knowledge base is stored as an association

list connecting scripts to sets of semantic tags that must be

matched as closely as possibly. This is another process that

helps to resolve ambiguity: similar but not identical tag sets

may select the same script. If more than one script is still

selected the user may be asked to clarify their meaning by

selecting from the topic summaries associated with each

script a simple ‘Did you mean A or B—type question’),

upon which a dialogue is entered into. The process is shown

in Fig. 1.

The script selection process is a variation of the approach

advocated by Hobbs (1995) for the creation of generic

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3520

http://www.cis.upenn.edu/~adwait/penntools.html/
http://www.cis.upenn.edu/~adwait/penntools.html/

information extraction systems and extends of Plant’s work

on knowledge-based help systems [12].

2. Language choice

A major issue to decide upon is how to represent the BNF

syntax as a data structure. However, a pre-requisite factor on

the nature and form of the data structure is the language with

which the whole system is to be implemented. There is a

wide choice of languages with which the implementation

could be performed:

† Procedural (imperative) languages such as Pascal

[26,27], C [28], Perl [29]

† Specialist languages for NLP such as LIFER [10].

† Assumptive Logic Programming [30],

† Object languages such as Visual Basic [31], Object-

orientated Languages such as Cþþ [32], Java [33] and

Smalltalk [34]

† Traditional artificial intelligence languages of Prolog

[35,36] (Clive, 1998) and Lisp [37,38]. Both Practical

Prolog and Common Lisp can be considered as

imperative in nature as they utilize constructs that

possess side effect characteristics. Practical uses of

Prolog frequently utilize features like cuts, side-effects,

and database manipulating predicates [39] and Common

Lisp utilizes such features as set expressions and format

expressions, where as ‘pure’ Lisp such as Lispkit [40]

does not permit constructs with side effects and is

considered a functional language.

† Modern Functional languages have built upon pure

Lisp’s foundations and led to the development of

languages such as Kent Recursive Calculator (Turner,

1982) Miranda [41], and Haskell [42].

The functional language AFL1 was chosen for many

reasons; however the main advantage this class of language

has over traditional procedural languages is that it

effectively reduces the amount of work the programmer

has to perform. It does this in two ways: first, by handling

allocation of storage. The second, which is more important,

is that the system assumes all responsibility for the

evaluation order of the functions, removing the problems

associated with structuring the program in order to obtain

the desired sequence of evaluation.

The ‘lazy evaluation’ strategy (Turner, 1982) used in this

class of language also has the advantage of greatly

simplifying the parsing process. In order to perform the

task of parsing ambiguous grammars, it is essential for the

system undertaking the task, to use a form of lazy evaluation

in order to search for all possible solutions. The logic based

languages such as Prolog use the technique of backtracking

to do this, however, this is not as easy to use as lazy

evaluation. Implementation in AFL also saves the pro-

grammer from having to explicitly write any backtracking

code.

The use of infinite (or more precisely, unbounded lazily

constructed) data structures is also of significant advantage

in that they are ideal for processing the input and output of a

parsing program that can be regarded as infinite streams of

information. This approach to input/output, by-passes the

problem of explicit ‘reads’ and having to decide upon

Fig. 1. Components of the mixed initiative dialogue system.

1 AFL is a purely functional programming language, an extension of

KRC developed by Stephen Murrell and Alessandro Warth. The system

together with the programs described in this paper ccan be downloaded

from http://rabbit.eng.miami.edu/afl/download/helper.html.

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 21

http://rabbit.eng.miami.edu/afl/download/helper.html

the sequencing of all events prior to processing, also by

programming in terms of infinite I/O streams this allows

program modules to be combined easily.

Pattern matching is a feature of functional programming

languages that is extremely useful in the domain of NLP.

These techniques allow complex conditions to be expressed

very simply, especially when the functions have many

arguments, reducing the need to use guards.

The functional approach also allows the use of higher

order functions and a recursive equation style of program-

ming. These powerful features combined with the use of set

expressions (Turner, 1982) allow for more readable, shorter

programs to be developed.

3. A functional specification of BNF

Having decided upon the BNF form of grammar and the

use of the functional language AFL with which to ultimately

implement the parser, the next stage was to devise a

representation of the BNF in AFL.

There are four components making up the BNF: (i)

Terminal symbols, e.g. words like ‘dog’, (ii) Non terminal

symbols, e.g. ,noun . these being the name of structural

units and denoted by enclosure within angle-brackets, (iii)

The disjunction of two or more components, the ‘or’ being

represented by the ‘l’ symbol, and (iv) The conjunction of

two or more components with the ‘and’ being represented

by juxtaposition. We extend this with a fifth component

denoting a semantic tag.

For example,

, s . < ¼ ,noun . l , verb .

means ,s . is either a ,noun . or a ,verb . ,

whereas

, s . < ¼ ,noun . ,verb .

means ,s . must consist of a ,noun . followed by a

,verb .

It was decided to represent these components in terms of

lists and by defining some reserved words to be recognized

by the parser.

Translating BNF to AFL, terminal symbols remain in a

similar format; the word dog becomes the string “dog”.
Non-terminal symbols now become single element lists,

e.g. ,noun . would become [“noun”]. The reserved

words ‘or’ and ‘seq’ were then introduced, allowing the

conjunction and disjunction of symbols. For example,

, verb . l , noun .

is represented as

[“or”, [“verb”], [“noun”]]

and the sequence

, verb . ,noun .

by

[“seq”, [“verb”], [“noun”]]

Semantic tags are introduced by the reserved word ‘tag’.

For example:

[“tag”, [“seq”, [“verb”], [“noun”]],
“imperative”]

means that [“seq”, [“verb”], [“noun”]] should

be parsed and a semantic tag added noting the fact that this

sentence is ‘imperative’.

Whole BNF descriptions are collections of named rules.

In AFL BNF is represented as a structured list, the first item

in each sublist is the name of the rule and the rest of each list

is the definition.

, s . < ¼ ,noun . ,verb .

, noun . < ¼ “cat”l“dog”

would be represented by the definition:

bnf ¼ ¼ [[“s”, [“seq”, [“noun”],
[“verb”]]],
[“noun”, [“or”, “cat”, “dog”]]]

Having devised a representation in which to express

these components we were are able to write equations for

any set of BNF definitions.

Thus, the BNF for a very simple subset of English, just

sufficient for these examples can be expressed in the

functional notation:

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3522

And the sentence ‘fruit flies like a banana’ can be

expressed as a list of terminal symbols:

Sentence ¼ [“fruit”, “flies”, “like”, “a”,
“banana”]

Of course for the UNIX help domain the grammar is

larger and more complex but follows the same pattern, it is

included as Appendix B.

4. The parser

Having devised the BNF specification and its functional

representation the next step was to develop a parser which

would accept input in the form of a sentence in English and

the BNF for the grammar, check to see if the sentence is

legal according to the grammar, parse it and extract

semantic information from it.

The utilization of a parser-based system allows the

system to extract meaning from the interaction and not just

attempt to match key words at random. It is important to

note the advantages of this approach over the much simpler

(Eliza-Like) keyword scanning or pattern directing systems.

The word ‘file’ could represent the action of placing a

document in a data store (‘file this under expenses’) or it

could refer to a simple disk file object: two completely

different meanings. In this system, actually parsing the input

provides a context for each word—when ‘file’ is encoun-

tered, we know whether it is in a verb or a noun context, and

can easily provide the appropriate specific semantic tag.

The following example illustrates the advantage of

parser-based systems over pure pattern matching keyword-

based systems. If a user new to the UNIX operating system

needed for some reason to search a file for a pattern, then

under keyword pattern matching this can cause some

problems. Firstly, the user being a novice does not know

the commands mnemonic name, so retrieval of the

information is not available through that approach.

Secondly, if the keyword ‘search’ was tried and no solution

found, the next step for the user would, perhaps be, to search

under ‘file,’ but this through the keyword lookup facility of

UNIX ‘apropos file,’ produces five screens of possible

commands associated with files. The only way to find the

desired ‘grep’ command would be to divide and conquer the

situation. Thus, extracting meaning from a piece of text is

vital to efficient and effective problem solving.

The first stage in the creation of the parser involves

allowing the user to input an English sentence in free form.

The system then takes the input and translates it into a list of

words.

Thus, the sentence input as:

fruit flies like a banana

becomes:

[“fruit”, “flies”, “like”, “a”, “banana”]

Having achieved this, the next and most important stage

was to devise the functions to parse the list of words. The

most important function upon which the recursive nature of

the parser is based is ‘match’.

Match is a function whose type ideally would be:

match: BNF £ LIST(WORDS) ! PARSE_TREE

It takes two arguments: A fragment of BNF and a list of

words, which it then attempts to match together. In the ideal

case the function having performed its matching operation

would return a single parse tree. This however can only

occur when the grammar produces nothing but unambigu-

ous parses.

Due to the problem of ambiguous grammars the function

Match has the type:

match: BNF £ LIST(WORDS) ! P(PARSE_TREE £

LIST (WORDS))

Meaning that the output from match is a set of pairs

representing all valid parses. The first element of the pair

being the parse tree and the second being the list of, as yet,

unused words that remain after the function match done its

job with to match the input list of words and BNF fragment.

If the match does not succeed then an empty set results.

In the case of an unambiguous parse, match returns a set

containing just one pair where the first element is the only

valid parse and the second element is the remaining input.

When the whole sentence is matched unambiguously again

a set containing only one pair is returned, this being the

whole parse tree and the remaining input which should be

empty as all of the sentence has been parsed.

Thus,

(i) Failure results in the empty set { }

(ii) An unambiguous parse in {, the only possible

parse . , , remaining input . }

(iii) An unambiguous parse of the whole sentence gives:

{, the only possible parse tree . , , . }

The function match has to be able to cope with any

fragment of the BNF that it is given. This can be broken

down into four major cases:

(i) Terminal symbols, e.g. ‘dog’

(ii) Non-terminal symbols, e.g. [“noun”]
(iii) A list of alternatives, e.g. [“or”, alt 1, alt 2,…,alt n]

(iv) A sequence of parts, e.g. [“seq”, part 1,
part 2,…,part n]

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 23

When match encounters a terminal symbol it takes the

symbol and the list of words and tries to match them. If the

symbol matches (i.e. is equal to) the head of the list of words

then this is a unique parse and the result will be a set

containing one pair as in the description above. This pair

consists of the symbol and the remainder of the list of input

words. If the symbol does not match the empty set if

returned indicating failure.

Hence, the equations of match that covers the terminal

symbols are:

match word (word:inp) ¼ [[[word], inp]]
match word (other:inp) ¼ []

The case of non-terminal symbols can now be examined.

If the match function receives as its first argument a non-

terminal symbol then an attempt is made to expand it into the

corresponding fragment of BNF. This being done through a

function called ‘lookup’, which takes as its arguments the

symbol that it is trying to expand and the whole of the BNF

definitions; it then searches the left hand sides of the BNF

productions for a match, if it is successful the expanded

definition is returned, this expanded definition is given along

with the original list of words to another call of match.

The equation that covers non-terminal symbols

therefore is:

match [nts] inp ¼ name (match (lookup
nts bnf) inp) nts

For example when the root of the BNF; ,s . , is given

to match along with a list of words:

match [“s”] [“list”, “of”, “words”]

the lookup function would transform [“s”] into:

[“seq”, [“noun”], [“verb”]]

and the equation above would then call match again, this

time with:

match [“seq”, [“noun”], [“verb”]]
[“list”, “of”, “words”]

If the fragment of BNF to be matched against the list of

words was composed of alternatives any of which could be

matched then a separate case is needed. In this case, each of

the alternatives is matched against the same list of words,

each match resulting in a set of possible parses. For

example, if the list of words to be matched was [“a”,
“b”, “c”] and the BNF is defined by:

[“or”, [“seq”, “a”, [“seq”, “b”, “c”]],
[“seq”, [“seq”, “a”, “b”], “c”],
[“seq”, “c”, “d”, “e”]]

Then the resulting sets would be

{[[“a”, “b”, “c”], []]}
{[[“a”, “b”, “c”], []]}
{ }

The union of which clearly gives all the valid parses for

the whole construct:

{[[“a”, “b”, “c”], []]}

So the union operation is simulated by appending all of

the resulting sets together giving:

[[[“a”, “b”, “c”], []], [[“a”, “b”,
“c”], []]]

The append operation can result in the repetition of pairs

within the list (as above); of course it would be possible to

write a function to look for and remove repetitions, however

this is unnecessary because the appearance of a parse more

than once in the list does not cause concern as it is treated as

another valid ambiguous parse.

The matching of alternatives is handled by the equations:

match (“or”:prodlist) inp ¼ matchor
prodlist inp
matchor [] inp ¼ []
matchor (item: prodlist) inp ¼ match item
inpþþ

matchor prodlist inp

If the fragment of BNF to be matched is a sequence,

then match has to try to match this sequence with the list of

words. The initial attempt is a match between the first part

of the sequence and the first portion of the words in the list.

If this match is successful then the parser will attempt to

match the rest of the sequence with the rest of the words. In

order for the rest of the sequence to be matched it is

necessary to know which words remain unparsed. This is

why successful matches return a remaining word list along

with each parse tree. When a successful match for the rest

of the sequence is found, the new parse tree and the

previous one are combined to form a single tree. Match

thus produces a new list of pairs and by doing this for all

parts in the sequence, producing all possible parses for the

whole sequence.

The functions that handle sequences being:

match (“seq”:prodlist) inp ¼ matchseq
prodlist inp
matchseq [] inp ¼ [[[], inp]]
matchseq (item:prodlist) inp ¼

matchseq’ (match item inp) prodlist
matchseq’ [] prodlist ¼ []
matchseq’ ([tree,inp]:rest) prodlist ¼

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3524

combine tree (matchseq prodlist inp)þþ

matchseq’ rest prodlist

‘combine’ is the function that combines trees together. It

takes the tree produced by a new application of match and

appends it onto the end of the previous version of the tree,

building a new tree from the two subtrees. ‘combine’ is

defined by:

combine t1 [] ¼ []
combine t1 ([t2, i2]:rest) ¼ [t1þþ

t2,i2]:(combine t1 rest)

This covers the fundamental elements of BNF. There are

other clauses to the definition of match, which cover the

processing of semantic tags and the preservation of the

syntactic structure, for details the reader is referred to

Appendices A and B, which contain the complete parsing

and processing program, and the grammar.

As it is currently implemented, the system has its entire

vocabulary built into the grammar (for example, there is a

production in the grammar saying , place . < ¼

africalatlantalcanadal…, see Appendix B). For a complete

system this would be most unsatisfactory, but it is not a

difficult matter to make the system actively look up words in

a database instead. In fact, the WordNet system [43]

provides an ideal source for this information: it is an

extensive list of English words and proper nouns, complete

with semantic tags and other information, in a fairly easy to

interface format.

In reality, the processing of the input is a little more

complicated than suggested above. It would be very

inconvenient to leave semantic tags in the parse tree, and

require later stages of the program to scan for them. Instead,

the parser keeps the tags separately, and creates lists of three

items: parse tree, remaining input words, and tag set. Of

these three items, only the tag set is ultimately useful. When

parsing is complete, only the list of tag sets from successful

parses is kept. Due to ambiguity in natural languages, there

may be a number of different tag sets; they are all provided

in a list, to the knowledge base processor.

5. The knowledge base processor

Having constructed the parser and a functional specifica-

tion of the BNF grammar, the next stage was to make the

system respond to the user queries with meaningful answers.

This was achieved through the use of a knowledge base that

used as its representational structure an association list.

The association list connects pre-constructed scripts and

informative texts to patterns or templates for semantic tag

lists. For example, a user wanting to know how to print a file

may type ‘I want to print a file’, which would be reduced by

the parser to the tag set [[“action”, “print”],
[“object”, “datafile”]]. Information about how to

print files may have as its index in the association list

[[“action”, “print”], [“object”, “*”]],
indicating that it would be a relevant response to a question

about printing something. All of the possible tag sets are

compared against all of the possible association list indexes,

and a score is computed for closeness of match. The entry

with the highest score is selected for presentation to the user

as the answer. In a more sophisticated version, it would of

course be possible to offer the user a ‘menu’ of the highest

scoring entries to select from. The knowledge base appears

in Appendix C.

This form of knowledge base provides a means of

outputting textual answers to direct questions. An example

of the kind of dialogue that can be achieved is:

Thus, it can be seen that even from this limited BNF

grammar it is possible to answer a variety of query types

ranging from questions on specific topics to general queries.

However, it became apparent that another format of query

that had to be catered for was the input of abbreviated

queries. For example, one of the first things that people try

when experimenting with a help system is to input the

mnemonic of the command under investigation (this may be

due to the lack of adequate help systems in the past [13].

Thus, interactions such as the following were developed:

this is the UNIX help system—how can I
help you?
ctrl-D to exit, then:exit to leave

AFL)
I want to print the budget
best score ¼ 100: print-something…
If you want to print a file, the ‘lpr’

command is what you need. If what you
want to print isn’t in a file yet, you need
to get it in a file first; see the
documentation for the application you
are using. If you simply want to print
output that would normally appear on
your terminal, type the usual command,
followed by ‘l lpr’ on the same line, e.g.
cal 2003 l lpr

this is the UNIX help system—how can I
help you?
ctrl-D to exit, then:exit to leave

AFL)
cal
best score ¼ 100: cal-command…
The cal command produces a calendar

for any given month or year. It takes
as parameters: (optionally) the month
[1–12], followed by the year [all
digits]. It can also work out the date of
Easter.

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 25

A one-sided dialogue of this type could produce

responses no better than the existing Unix help systems;

one word of input does not provide enough information for

anything better. An improvement on this basis, is the

provision of a ‘mixed initiative’ dialogue capability to

provide the user with a more stimulating interaction,

allowing far more probing questions to be asked and more

meaningful answers given.

6. Towards a mixed initiative dialogue

In order to build a mixed initiative framework it was

necessary to extend the knowledge base. However, it was

felt that the specialized knowledge required for a dialogue

should be separated from the general information and facts

stored in the knowledge base [44].

One of the underlying aims of developing this functional

online help system was to utilize the functional program-

ming systems formality. This powerful aspect of the

language was beneficial in several ways, for example the

heterogeneous set of system components could be inte-

grated together, and the knowledge base could be

modularized in a fashion that was felt to be beneficial

from the perspective of both verification and validation [45].

Utilizing this factor, it was decided that the use of script

based processing would be an applicable technique to

employ. The original concept behind scripts was that they

specify the normal or default sequence of events; as well as

exceptions and possible errors, associated with a particular

situation.

Recent research, developed from this area has focused

upon the idea of ‘Information Extraction,’ (IE) which has

been defined as ‘a process aiming at combining, within a

priori defined structures, data extracted out of texts. The

result of the combinations may correspond to information

contained either implicitly or explicitly in texts’ [46]. The

interesting aspect of IE versus traditional ‘Information

Retrieval’ (IR) is that within IE the focus is upon the

‘structure of texts’ [47] rather than the IR perspective where

‘texts are just bags of words’ [47]. The ability to extract

information is based upon the structures used within texts,

more specifically template structures. The methodology in

this paper builds upon and modifies Hobbs [48] generic IE

System parameters as this research develops an online help

system through a functional equations style of programming

and uses the dialogue to develop the scripting technique

rather than extracting data from other data sources, although

this is a possible future extension to the project.

In our prototypes’ domain, the UNIX operating system,

users frequently have problems memorizing the parameters

associated with a given command. Thus, this was felt to be a

suitable area with which to experiment with the use of

knowledge-based scripting. The parser again needed to be

modified in order to enable the most appropriate script

selection to be performed. The selection process take into

account the current situation and context upon which the

query is based. In order to decide which script is the most

appropriate the information list produced by the parser is

utilized. The script control system matching the information

list with the association list. If the attempt is successful the

control of the dialogue is passed on to the script. However, if

no existing script is appropriate for that query the system

prompts the user for the next query.

The structure content and use of a script is best explained

through the use of an example:

If a user were to ask the question:

how can I see a calendar?

Based on the semantic tags, the system selects two

objects: a non-interactive knowledge based article (perhaps

just a ‘man page’) for display as the primary response, and

an interactive script that the user may then elect to run

through.

The system includes a scripting language so that users

unfamiliar with programming can easily set up scripts to

explain any situation. We do not expand upon the exact

details of the scripting language here, the beginning of the

script for the lpr command is shown below, and the whole

interpreter with two complete scripts can be seen in

Appendices D and E.

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3526

The use of scripts provides a means by which users can

do more than just access a help system that gives them

textual information in a standard form leaving the user to

decipher its often-cryptic content. Its intention is to animate

the manual and for the system to act as an advisor rather

than a reference. This is illustrated through the following

example, where the system guides the user through the

intricacies of the sort command:

From this simple example we can see the potential of the

scripting system to provide a very useful extension to

the knowledge-based component, filling the gap between

the standard help facility and the human ‘help desk’ advisor.

The utilization of a scripting template approach follows

from the premise that they ‘provide a method for organizing

large amounts of knowledge needed to perform cognitive

tasks’ [49]. The functional approach to the construction of

the system presents several advantages that were described

at the outset of the paper, including: Brevity, clarity,

polymorphism, lazy evaluation, encapsulated abstraction

and memory management (http://www.haskell.org/) [57]

which facilitate the scalability of the approach and the

ability of functional language be embedded in script slots,

facilitates the potential extension of this feature to provide

‘active scripts’ that fire dynamic functions as required. The

functional style of programming is an active research area

and issues surrounding the run time performance of

compiled functional programming systems have been

under investigation [50,51] as have graphical user interface

run time environments that significantly aid system devel-

opment [22].

7. Future work

Research in this area can be extended in both the

development of the theory of NLP and in the develop-

ment of functional programming as applied to the area of

NLP. The two areas could be extended along the lines

suggested by Hobbs (1995) and allow for the automatic

generation of the functional equations of specified

grammars, together with the automatic generation of

scripts and templates from databanks as suggested in the

emerging area of information extraction [47]. Adaptive

systems that learn the behavior of their user group would

also be an area for study.

Developing functional programming systems to meet

these challenges will benefit from the research in compiled

functional programming as well as benefit from the

utilization of a graphical interface facility within a

functional programming environment as developed by

Addis [22].

Appendix A. Parser and controlling program

The material of the appendices, together with the

software required to run the system under unix, can be

downloaded from http://rabbit.eng.miami.edu/afl/

download/helper.html

this is the UNIX help system—how can I
help you?
ctrl-D to exit, then:exit to leave

AFL)
how can I see a calendar?
best score ¼ 200: view-calendar…
The cal command produces a calendar

for any given month or year. It takes as
parameters: (optionally) the month [1–
12], followed by the year [all digits].
It can also work out the date of Easter.
Would you like to run through a use of

the ‘cal’ command? Yes
Do you want a calendar for a whole year

(Y) or just a month (M)
or do you just want to be told when

easter is (E)?
(enter ‘Y’, ‘M’, or ‘E’): M
Which year do you want to know about?

2003
Which month do you want the calendar

for? August
a month must be between 1 and 12,
Which month do you want the calendar

for? 8
The command to type is ‘cal 8 2003’

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 27

http://www.haskell.org/
http://rabbit.eng.miami.edu/afl/download/helper.html
http://rabbit.eng.miami.edu/afl/download/helper.html

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3528

Appendix B. Grammar

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 29

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3530

Appendix C. Knowledge base

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 31

Appendix D. Scripting language

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3532

Appendix E. Sample scripts

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 33

References

[1] M. Bannert, P. Reimann, Approaches to the design of software

training, Journal of Computer Assisted Learning 16 (4) (2000)

281–284.

[2] A.F. Borthick, P.L. Bowen, D.R. Jones, M. Hung Kam Tse, The

effects of information request ambiguity and construct

incongruence on query development, Decision Support Systems 32

(1) (2001) 3–30.

[3] V. Owei, Natural language querying of databases: an information

extraction approach in the conceptual query language, International

Journal of Human Computer Studies 53 (4) (2000).

[4] J. Weizenbaum, A computer program for the study of natural language

communication between man and machine, Communications of ACM

9 (1966) 36–45.

[5] J. Weizenbaum, Contextual understanding by computers, Communi-

cations of ACM 10 (1967) 327–360.

[6] N. Chomsky, Syntactic Sstructures, Mouton, The Hague, 1957.

[7] P. Postal, Limitations of phrase structured grammars, in: J.A. Fodor,

J.J. Katz (Eds.), The Structure of Language, Prentice Hall, Englewood

Cliffs, NJ, 1964, pp. 137–151.

[8] C. Filmore, The case for case, in: E. Bach, R. Harms (Eds.),

Universals in Linguistic Theory, Reinhart & Winston, New York,

1968, pp. 1–88.

[9] M.A.K. Halliday, Categories of the theory of grammar, Word 17

(1961) 241–292.

[10] G.G. Hendrix, E.D. Sacerdoti, D. Sagalowick, J. Slocum, Developing

a natural language interface to complex data, ACM Transaction

Database System (1978) 105–147.

[11] J. Slocum, A Practical Comparison of Parsing Strategies, 1981, http://

acl.ldc.upenn.edu/P/P81/p81-1001.pdf.

[12] R.T. Plant, An investigation of knowledge-based help facilities. MSc

Dissertation. Oxford University Computing Laboratory, Program-

ming Research Group, Oxford, England, 1985.

[13] G.M. Gwei, E. Foxley, Towards a consultative on-line help system,

International Journal of Human–Computer Studies 32 (1990)

363–383.

[14] K. Sikel, How to compare the structure of parsing algorithms, in: G.

Pighizzini, P. San Pietro (Eds.), Proceedings of ASMICS, Workshop

on Parsing Theory, Milano, Italy, Oct 1994, 1994, pp. 21–39.

[15] J. Peterson, K. Mahesh, A. Goel, Situating natural language under-

standing within experience-based design, International Journal of

Human Computer Studies. 1. 41 (6) (1994) 881–913.

[16] M. Mosny, Semantic information preprocessing for natural language

interfaces to databases, 33rd Annual Meeting of the Association for

Computational Linguistics, MIT, 26–30th June, 1995, pp. 314–316.

[17] C.I. Guinn, Mechanisms for mixed-initiative human–computer

collaborative discourse, in: A. Joshi, M. Palmer (Eds.), Proceedings

of the Thirty-fourth Annual Meeting of the Association for

Computational Linguistics, Morgan Kaufmann, San Francisco,

1996, pp. 278–285.

[18] P. Callaghan, An evaluation of LOLITA and related natural language

processing systems. PhD Thesis. University of Durham, August 1997.

[19] N. Webb, A. De Roeck, U. Kruschwitz, P. Scott, S. Steel, R. Turner,

Natural language engineering: slot-filling in the YPA, Proceedings of

the Workshop on Natural Language Interfaces, Dialogue and Partner

Modeling, at the Fachtagung fur Kunstliche Intelligenz KI’99 at the

Fachtagung fur Kunstliche Intelligenz KI’99, Bonn, Germany (1999).

[20] N. Lesh, C. Rich, C. Sidner, Using plan recognition in human–

computer collaboration, Proceedings of the Seventh International

Conference on User Modeling, Banff, Canada, June 20–24, 1999, pp.

23–32.

[21] R. Mooney, Learning for semantic interpretation: scaling up without

dumbing down, in: J. Cussens (Ed.), Proceedings of the First

Workshop on Learning Language in Logic, Bled, Slovenia, 1999,

pp. 7–15.

[22] T.R. Addis, J.J. Townsend Addis, An introduction to clarity: a

schematic functional language for managing the design of complex

systems, International Journal of Human–Computer Studies 56

(2002) 331–374.

[23] M. Kantrowitz, Bibliography of Research in Natural Language

Generation, Research Working Paper CMU-CS-93-216, Department

of Computer Science, CMU, Pittsburgh, PA, 1993.

[24] G. Varile, A. Zampolli (Eds.), Survey of the State of the Art in Human

Language Technology (Studies in Natural Language Processing),

Cambridge University Press, Cambridge, 1998.

[25] J. Backus, The syntax and semantics of the proposed international

language in Zurich, ACM-GAMM Conference, Proceedings of the

International Conference on Information Processing UNESCO, June,

1959, pp. 125–132.

[26] J.R. Hobbs, Monotone decreasing quantifiers in a scope-free logical

form, in: K. van Deemter, S. Peters (Eds.), Semantic Ambiguity and

Underspecification. CSLI Lecture Notes No. 55, Stanford, California,

1995, pp. 55-76.

[27] J. Welsh, J. Elder, Introduction to Pascal, second ed., Prentice Hall,

London, 1982.

[28] N. Dale, C. C. Weems, Introduction to Pascal and Structured Design,

fourth ed., Jones and Bartlett, 1996.

[29] B.W. Kerningham, D.M. Ritchie, The C Programming Language,

second ed., Prentice Hall, Englewood Cliffs, NJ, 1988.

[30] R. Schwartz, T. Phoenix, Learning Perl, third ed., O’Reilly, 2001.

[31] K.D. Voll, T.P. Yeh, V. Dahl, An assumptive logic programming

methodology for parsing, International Journal on AI Tools 10 (4)

(2001) 573–588.

[32] F. Balena, Programming Microsoft Visual Basic 6.0 (Mps), Microsoft

Press, 1999.

[33] B. Stoustrup, The Cþþ Programming Language, special third ed.,

Addison-Wesley, Reading, MA, 2000.

[34] D. Flanagan, Java in a Nutshell, fourth ed., O’Reilly, 2002.

[35] A. Goldberg, D. Robson, Smalltalk 80: The Language, Addison-

Wesley, Reading, MA, 1989.

[36] G. Gazar, C. Mellish, Natural Language Processing in PROLOG: An

Introduction to Computational Linguistics, Addison-Wesley, Read-

ing, MA, 1989.

[37] I. Bratko, Prolog Programming for Artificial Intelligence, third ed.,

Addison-Wesley, Reading, MA, 2001.

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–3534

http://acl.ldc.upenn.edu/P/P81/p81-1001.pdf
http://acl.ldc.upenn.edu/P/P81/p81-1001.pdf

[38] G. Gazar, C. Mellish, Natural Language Processing in Lisp: An

Introduction to Computational Linguistics, Addison-Wesley, Read-

ing, MA, 1989.

[39] P. Graham, ANSI Common LISP, first ed., Prentice Hall, Englewood

Cliffs, NJ, 1995.

[40] G. Gupta, V. Santos Costa, Complete and efficient methods for

supporting side effects and cuts in And–Or parallel Prolog,

Proceedings of IEEE International Symposium on Parallel and

Distributed Processing, IEEE Computer Society Press, 1992,

pp. 288–295.

[41] D.A. Turner, Recursive equations as a programming language, in: J.

Darlington, P. Henderson, D.A. Turner (Eds.), Functional program-

ming and its Applications, Cambridge University Press, 1982.

[42] P. Henderson, Lispkit Lisp: purely functional version of LISP, in: P.

Henderson (Ed.), Functional Programming, Application and

Implementation, Prentice Hall, Englewood Cliffs, NJ, 1980.

[43] S. Thompson, Laws in Miranda, ACM Communications 2 (3) (1986).

[44] R. Bird, Introduction to Functional Programming using Haskell,

Prentice Hall, Englewood Cliffs, NJ, 1988.

[45] C. Fellbaum, WordNet: An Electronic Lexical Database, Bradford

Books/MIT Press, 1998.

[46] L.M. Iwanska, S.C. Shapiro, Natural Language Processing and

Knowledge Representation, MIT Press, Cambridge, MA, 2000.

[47] A. Preece, Evaluating verification and validation methods in knowl-

edge engineering, in: R. Roy (Ed.), Micro-level Knowledge Manage-

ment, Morgan-Kaufman, San Francisco, 2001, pp. 123–145.

[48] M. Rajman, J. Chappelier, Information extraction out of textual data,

Course notes: TIDT/NLP Course (IC-16), AI Lab, Ecole Polytechni-

que Federale de Lusanne, Switzerland, 2003.

[49] J. Cowie, Y. Wilks, Information extraction, in: R. Dale, H. Moisl, H.

Somers (Eds.), Handbook of Natural Language Processing, Marcel

Dekker, New York, 2000, pp. 241–260.

[50] J. Hobbs, D. Appelt, M. Tyson, J. Bear, D. Israel, SRI international:

description of the FASTUS system, Proceedings of the Fourth

Message Understanding Conference (MUC-4), Morgan Kaufmann,

Los Altos, CA, 1992, pp. 268–275.

[51] A. Barr, E. Feignbaum, The Handbook of Artificial Intelligence, vol.

1, Pitman Books, London, 1981.

[52] M. Wallace, C. Runciman, The bits between the Lambdas—binary

data in a lazy functional language, Proceedings of the International

Symposium on Memory Management, Vancouver, Oct (1998).

[53] C. Runciman, N. Rojemo, Heap profiling for space efficiency, Second

International School on Advanced Functional Programming, LNCS

1129, Springer, Olympia, WA, 1996, pp. 159–183.

[54] J. Hughes, Why functional programming matters, Computer Journal

32(2) (1989) 1989.

[55] G. Dejong, Prediction and substantiation: a new approach to natural

language processing, Cognitive Science 3 (1979) 251–273.

[56] R. Schank, R. Ableson, Scripts Plans Goals and Understanding,

Lawrence Erlbaum, Hillside, NJ, 1977, p. 187.

[57] C. Matthews, An Introduction to natural language processing through

prolog, Longman (Series: learning about language), 1998.

R. Plant, S. Murrell / Knowledge-Based Systems 18 (2005) 19–35 35

	A natural language help system shell through functional programming
	Introduction
	Language choice
	A functional specification of BNF
	The parser
	The knowledge base processor
	Towards a mixed initiative dialogue
	Future work
	Parser and controlling program
	Grammar
	Knowledge base
	Scripting language
	Sample scripts
	References

