
J. SYSTEMS SOFIWARE 141
1992: 19:141-146

Expert System Development and Testing:
A Knowledge Engineer’s Perspective

R. T. Plant
Department of Computer r~fo~atio~ Systems, Unkersiry of Miami, Coral Cables, Florida

This article discusses the problems found in the vali-
dation and verification of a knowledge-based system
for equity selection. These problems include the selec-
tion of test data, poor methodology, and the difficulties
associated with using prototypes. The article then
examines the possible techniques available to the
knowledge engineer for improving validation and veri-
fication. The article discusses exhaustive testing,
case-based testing, formal specifications, functional
programming, critical testing, mutation testing, and
reliability. Finally the article discusses the approach
that the knowledge engineer would take in rewriting
the equity selection system, one based on a rigorous
development methodology that uses as many formal
validation techniques as possible to raise the quality
of the software produced.

INTRODUCTION

In this article we examine an aspect of expert system
development with which we encountered difficult
during the creation of a knowledge-based system for
equity selection-validation and verification. In cre-
ating our system, we underestimated both the
amount of testing and resources required to ade-
quately test the system so that it would satisfy user
requirements.

The first section of this article details our original
approach to validation and verification of our sys-
tem, i.e., using random test data, and we discuss the
weakness of this approach. A discussion of the alter-
native strategies to random testing and how each is
applicable to testing different aspects of the system
follows. We conclude by advocating the use of a
rigorous development methodology that incorpo-

Address correspondence to Professor Robert T. Plant, Dept. of
Computer Information Science, University of Miami, Coral Rubles,
FL 33124.

0 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010

rates validation techniques and promotes software
quality.

INITIAL SYSTEM DEVELOPMENT

The initial development of our equity selection and
portfolio advisory system was undertaken using an
approach similar to that advocated by Hayes-Roth et
al [l] which involved an iterative five-stage model:

1. Identification: characterize the important aspects
of the problem, e.g.,
l Participant identification and roles
l Problem identification
l Recourse identification
l Goal identification

2. Conceptualization: the key concepts and relations
identified in the first phase are made explicit, e.g.,
l What knowledge types to be used?
l What is the interreIationship of the objects in

the domain knowledge?
l What is the heuristic content of the knowl-

edge?
l What are the constraints?
l What is the information flow?

3. Formalization: the third phase of development
aims at creating a model of the solution process.
This is done through looking at characteristics of
the data and the domain, e.g.,
l Is there a need for certainty factors?
l Is the data reliable?
l Is the information a heuristic?
l Is temporal information important?
- What are the elicitation considerations?

4. Implementation: the mapping of the formalized
conceptual info~ation onto more concrete rep-
resentations and their associated control struc-
tures.

5. Testing: the use of test examples in validating the

0164.1212/92/$5.00

142 J. SYSTEMS SOFTWARE
1992; 19:141-146

R. T. Plant

system with the aim of locating errors in the
control structure, knowledge base, and inference
rules.

This approach was followed and resulted in the
creation of a working system that we considered to
be a prototype. However, we found that the size and
complexity of our prototype was too large to easily
facilitate the recreation and experimentation neces-
sary to achieve satisfactory results at low cost. To a
large extent, this was because the system was written
in LISP 121 and had extensive I/O operations. Thus,
we learned that (1) it is extremely difficult to achieve
a balance between scale and complexity such that
the results of a prototyping operation are sufficiently
significant and not applicable only to a trivia1 subset
of the domain, and (2) proto~ping should be ap-
proached through the use of a shell or environment
as this would facilitate change more easily than a
customized LISP system.

Having created a large prototype system, we then
began to test it. The initial testing mechanism, advo-
cated in the literature 11, 31 was a case-based ap-
proach in which cases solved by the system are
compared to the same cases solved by a human
expert. This approach is severely limited in its test
coverage, as only the most widespread of conditions
are considered. In testing our system we applied this
method in conjunction with our expert, who checked
the system’s responses. We found that this approach
promoted the testing of obvious situations but did
not facilitate the testing of unusual, complex, or
boundary conditions. Furthermore, because of the
unstructured nature of the testing strategy, the
method used a significant amount of the expert’s
valuable time, mainly because there was no testing
plan from which the knowledge engineer and do-
main expert could test the relevant aspects of the
system in a structured manner. We decided that for
our final version it was necessary to create such a
plan and this required investigation into other ap-
proaches to validation and verification.

TEST STRATEGIES

Validation and verification have been delined as
follows: “Validation: The process of evaluating soft-
ware at the end of the software process to ensure
compliance with software requirements”; “the pro-
cess of determining whether or not the products of a
given phase of the software development cycle fulfill
the requirements established during the previous
phase” 141.

It follows, therefore, that one of the keys to effec-

tive evaluation of the software and, consequently, to
having valid and verified software, is to use effective
techniques. Testing “is the process of executing a
program (or part of a program) with the intention of
finding errors” [5]. The basic principal on which
testing is based is the application of test data (input)
to the program in order to examine the correctness
of the output with respect to the function of the
program over that input.

Output = Program{ Input}

One approach to software testing is to test all
possible inputs and validate their subsequent out-
puts. This has the fundamental problem that for a
practical system (even if finite in nature), the num-
ber of test paths necessary is extremely high; even
with the aid of test data generators, the task for
nontrivial systems is infeasible.

This problem is magnified for expert systems such
as our equity selection system, as they tend to be
nondeterministic; they represent partial rather than
total functions. In addition, as expert systems often
have to reason with incomplete input data, this
raises the number of test cases. Therefore, it is our
supposition that the use of exhaustive testing is at
present implausible.

An alternative testing strategy is the “case”
approach, in which the test data are based on some
criteria. For example, the following criteria may be
used:

l functional

l structural

l data

* random

l extracted

l extreme

In compiling test data for each criterion, the
knowledge engineer must consider different aspects
of the system, the data types of the system, and its
specification, depending on the aspect to be exam-
ined.

The data used in “functional” cases is obtained by
examining the functionali~ of the specification; for
“structural” cases the logical structure of the code is
examined; the test set for “data” cases originates in
examining the data elements of the program; while
the data used in “extracted” cases are obtained by
examining other implementations~ for example the
prototype. The default strategy that we originally
used can be classified as a “random” case strategy
that uses random test data.

Expert System Development and Testing J. SYSTEMS SOFIWARE 143
1992: 19:141-146

An especially important test case strategy is test-
ing “extreme” cases, as it is at the boundary condi-
tions that knowledge-based systems are at their most
valuable, yet also their most vulnerable, if there is
not enough support knowledge to make correct de-
ductions. Testing extreme cases is difficult, for the
location of the boundaries is not always known be-
cause to a large extent this depends on the interac-
tion of the knowledge in the knowledge base.

Thus, each of these testing strategies examines a
different aspect of the system, and collectively they
are valuable in raising the level of system correct-
ness. However, note that even when all the strate-
gies are used together, this does not guarantee total
correctness.

THE FORMAL APPROACH

An alternative approach to software development is
to specify the software system in such a way that it is
correct at the design level. This approach, some-
times called “mathematical validation” 161, uses a
formal specification style based on a formal lan-
guage to produce a specification that can be rea-
soned about. Through a series of refinement steps,
this specification can then be transformed into an
implementation-fulfilling the program’s “cor-
rectness argument” [7]. A number of proven meth-
ods are currently being applied to real world appli-
cations; these include VDM[7] and Z [S].

The language Z has been applied to the problem
of specification within artificial intelligence. The lan-
guage was inherently suitable to game playing, as
these domains are finite and have well-defined struc-
tures. Teruel [9] has shown how Z could be applied
to this problem domain by specifying games such as
Ludo, Orthello, and Best of Three.

The use of a formal specification language such as
Z can also be demonstrated by specifying the repre-
sentations and the inference mechanisms that ma-
nipulate them. Gold [lo] has given formal specifica-
tion of a production system. The Z language can
also be applied to the specification of knowledge
bases and, as we experienced difficulties in maintain-
ing the consistency of our prototype knowledge base,
it was decided to develop a formal specification for
the large-scale implementation of our system. This
will allow us to ensure that there will be as little
ambiguity, incompleteness, or inconsistency in the
knowledge base as possible. This will also allow us to
update the knowledge base easily, as the implemen-
tation-independent specification will ensure that any
knowledge added, deleted, or modified is consistent
with the previous knowledge base.

The use of formal specification is therefore lim-
ited to the static aspects of the system, i.e., mechan-
ics such as conflict resolution, the structure of the
rules, and the rules themselves. However, it is not
possible to specify fully the system’s dynamic as-
pects, i.e., the interaction of the rules, the self-mod-
ification of the rule base, or the heuristic nature of
the rules. This is due to the nature of the systems
themselves-the developer cannot know what the
system is going to do for all situations and interac-
tions of knowledge. This is analogous to the testing
paths problem. Furthermore, even if it were possible
to specify a large real world system, there are signif-
icant problems in refining this to an implementation.

A second formal approach to specifying a program
is functional programming, in which the developer
produces an “executable specification” about which
mathematical proofs can be performed [ll]. Many of
the expert systems produced today by hand coding
(as opposed to shell-based development) are still
produced in LISP [2], which in its pure form, e.g.,
LISPKIT [12], can be classified as a functional lan-
guage, yet there has been little or no documented
effort in the production of proofs for these systems.
This may be in part because most working LISPS,
such as the FRANZLISP we used for implementing
our equity selection system, are not pure but heavily
dependent on side effects. However, it is possible to
convert systems into pure LISP and so benefit from
the formality imposed on them. This is a direction
we are currently investigating; however, note that
there is a significant overhead associated with the
conversion process.

We feel that the use of formal specifications is
currently limited to adapting the formal specification
languages to enable partial system specifications to
be made, e.g., the knowledge base, while the speci-
fication of the whole system is, in all but trivial
domains, limited, if not impractical. However, the
creation of such specifications considerably raises
the level of system correctness. For example, speci-
fication of the knowledge base enables any inconsis-
tencies in the domain knowledge or incompleteness
in the representation to be identified and corrected.

STATISTICAL APPROACH

In the previous sections we have attempted to indi-
cate why the techniques available to the knowledge
engineer-testing formal specification and func-
tional programming-are in reality severely limited
in their ability to detect errors in large knowledge-
based systems. An alternative approach to testing or
specification is to use a statistical approach. This

144 J. SYSTEMS SOFI’WARE
1992; 19:141-146

R. T. Plant

entails attaching values to each item of knowledge,
the values indicating the degree of certainty associ-
ated with that knowledge, then as the knowledge is
manipulated, a certainty factor algebra can be used
to combine certainties and produce a value indicat-
ing the degree of certainty associated with the result.
This approach is not unique to knowledge engineer-
ing is extensively represented in the statistical deci-
sion theory literature.

Knowledge engineers initially used Bayes theorem
on problems with attached conditional probabilities
and the P-Function to manipulate these probabilistic
measures. However, as Shortliffe [13] stated with
regard to the MYCIN project, these approaches had
to be abandoned “because there are large areas of
knowledge that, although amenable in theory to the
frequency analysis of statistical probability, defy rig-
orous analysis because of insufficient data and, in a
practical sense, because experts resist expressing
their reasoning processes in coherent probabilistic
terms.” Following this, several other approaches to
the statistical evaluation of system knowledge have
been considered, including the theory of fuzzy sets
proposed by Zadah [14]. However, experts also find
this an unnatural mechanism in which to relate their
knowledge, and thus it has found limited pragmatic
use. Artificial intelligence works have also attempted
to use confirmation theory [15] and the theory of
choices [16], but these have also not met with total
success. This led to the adoption of the Dempster-
Shafer theory of evidence, a model that has many of
the advantages of the certainty factors approach but
a stronger mathematical basis [171.

In the creation of our equity selection system, we
encountered difficulty in the area certainty factor
algebra. At first we decided that a simple certainty
factor algebra would be best, as the domain expert
indicated that this was the way he worked in making
decisions. However, as the system grew in sophistica-
tion, it was necessary to adopt more complex alge-
bras for different aspects of the system’s reasoning,
e.g., the Bonczek-Eagin method was used in one
area and the probability sum method in another [181.
The use of these different certainty factor algebras
meant that much effort was expended in tuning the
system, and even though the expert found it natural
to associate certainties with data, he found it diffi-
cult to define the certainty factor algebra necessary
to reason with combined knowledge items. Conse-
quently, modelling the expert’s subjective reasoning
became very difficult. The problem was compounded
when we used a second expert to correlate some of
the findings because the second expert often did not
use exactly the same certainties or algebras and thus

was not always sure that our system’s deductive
strategies were correct, even when the results indi-
cated that it was performing accurately.

The use of statistical methods can be seen as
positive in that they can assist the domain expert to
express subjective or heuristic judgements and allow
the user to know the degree of certainty a system
has for a result. Alternatively, the use of approaches
such as certainties can cause problems because they
do not have a complete theoretical foundation and
are open to interpretation. In reflection, we feel that
we should have spent more resources in consolidat-
ing a certainty factor algebra from our experts be-
fore system creation and so attempted to minimize
the subjective heuristic judgements made by the
expert and promote a solution strategy based on a
theoretical framework.

ALTERNATIVE STRATEGIES

The conventional approaches to validation and veri-
fication discussed above have shown us that al-
though each of the techniques have certain strengths,
each is severely limited in its ability to move toward
a statement of total system correctness. Two alterna-
tive strategies that can be considered in relation to
knowledge-based systems and that are currently ar-
eas of focused research are critical testing, in which
research focuses on adaptive techniques for optimiz-
ing the data sets used in the case approach to
testing, and reliability theory, in which developers
can use and create models that predict the failure of
their systems.

The following two sections will outline the theory
behind these areas and discuss them in relation to
the testing of our equity selection system.

Critical Testing

A program can be defined as correct when the
implementation matches the specification:

P(D) =f(D)

where D = input data (the domain), P = program,
and f = formal specification. To do this it is neces-
sary to perform exhaustive testing:

P(dfl)J?d,)

Where n can be very large, if not infinite; therefore,
in practice we can only test a limited number of
cases. Once tested, however, we can then state that
the program will perform correctly with respect to
this input set:

P*(D) = f(D)

Expert System Development and Testing J. SYSTEMS SOFTWARE 145
1992: 19141 146

where P* = the program tested over the test data
set.

The selection of the test data is a critical opera-
tion and, consequently, the criteria by which the
critical test data for an application are selected has
been the focus of much research. The area has been
influenced by workers such as Gerhart and Goode-
nough, who considered the theoretical aspects of
procedures to select reliable and valid test data for
conventional programs 119, 201. Their method is
based in part on the construction of a “condition
table,” which displays the logically possible combina-
tions of conditions within the program. However, the
large number of conditions found in knowledge-
based systems can prohibit use of this technique.

An alternative technique is the concept of “ade-
quate” test data, which has been defined as “a test
data set T is adequate if P behaves correctly on T
but all incorrect programs behave incorrectly” 1211.
However, it has been shown that from a theoretical
standpoint, it is not possible to construct a general
purpose test selection procedure for valid test data,
as the function is not computable [22]. Thus, re-
search is now focused on examining test data selec-
tion in relation to particular error types, as this
would allow the construction of a reliable data set
for a certain error type that could then be used on
the system. This could be useful in testing aspects
such as deductions around thresholds where cer-
tainty factors are involved.

Another research direction is that of mutation
testing 123-251, and indications are that it could be
usefully applied to knowledge-based systems in the
identification of both epistemological and structural
errors.

We will focus on these research themes when we
develop the second version of our system, in that we
shall use a focused case-based approach in conjunc-
tion with mutation testing. The result will be greater
test coverage than before with a low cost/test result
ratio. This is important as we will be working from
sets of test data that we have already established as
valid.

Reliability

A second alternative approach to the measurement
of program correctness is to employ a reliability
measure. According to Musa et al. [26], “software
reliability is defined as the probability of failure-free
operation of a computer program in a specified
environment for a specified time.” The mathemati-
cal treatment of software, hardware, and systems
reliability has been developing over the last 20 years,

and it has been estimated that there are > 40
models for software reliability alone. The problem
therefore is in the selection of an appropriate model
for evaluating the reliability of a knowledge-based
system. Abdel-Ghaly et al. [27] have given an inter-
esting evaluation of competing software reliability
models. They state “that no single model can be
trusted to perform in all contexts” and they advise
software developers “to be eclectic: try many predic-
tions systems and use the reliability metrics which
are best for the data under construction.”

One comparatively simple model that predicts
failures as well as or better than any existing soft-
ware reliabili~ model is that proposed by Musa and
coworkers [26, 281, and we are pursuing research
into the applicability of this model for our system.
The approach may be useful, for we have compiled
data on the failures that have occurred in the system
and this can be used to help derive a reliabili~
figure.

CONCLUSION

This article has illustrated the techniques that are
available to assist knowledge engineers in the valida-
tion and verification of their systems.

In creating our original system several errors
occurred: (1) the deveIopment methodolo~ we used
did not facilitate validation or verification; (2) our
prototype was too large and complex to be refined
easily; and (3) the testing approach we used with
random data was weak. We hope that by following
the guidelines given here and using a rigorous devel-
opment methodology these errors will not recur.

The methodology we encourage includes the use
of formal techniques whenever possible, e.g., specify
the requirements as far as possible, specify the
knowledge base, and produce a denotational seman-
tics and full syntax for the representation. The
knowledge engineer should also be able to justify
every step in the development and show how each
step follows the previous one. It is advantageous to
undertake this development through a well-defined
prototyping approach for as many cycles as feasibly
possible, each cycle being based on the data selected
in the critical test data study. Finally, when prototyp-
ing becomes impractical, then selective critical test-
ing should be used to limit the amount of testing
that has to be performed while maximizing the re-
turn on that testing. While this development process
is occurring, the knowledge engineer can compile
data to produce reliability figures. This approach can
be combined with some pragmatic techniques, such
as ensuring that in critical situations the system is

146 .I. SYSTEMS SOFTWARE
1992; 19:141-146

fail safe or that multiple systems, developed inde-
pendently, check each others’ results. This approach
should enable creation of a higher quality knowl-
edge-based system.

REFERENCES

1.

8.

9.

10.

11

12.

F. Hayes-Roth, D. Waterman, and D. Lenart, B&~i~d-
ing Expert Systems, Addison-Wesley, Reading,
Massachusetts, 1983.
P. II. Winston and B. K. P. Horn, LISP, Addison-
Wesley, Reading, Massachusetts, 1989.
D. A. Waterman, A Guide to Expert Systems, Addison-
Wesley, Reading, Massachusetts, 1986.
B. W. Boehm, An Experiment in Small Scale Applica-
tion Software Engineering, IEEE Truns. Software Eng.
SE-7, 482-493 (1981).

G. J. Myers, The Art of Software Testing, John Wiley &
Sons, New York, 1976.
S. L. Pfleeger, So~are ~nginee~ng~ The Production of
Quality Software, Macmillan, New York, 1987.
C. B. Jones, Software Detielopment: A Rigorous
Approach, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1980.
J. M. Spivey, The Z Notation: A Reference Manual,
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.
A. Teruel, Case Studies in Specification: Four Games,
Technical Monograph PRG-30, Oxford University
Computing Laboratory Programming Research Group,
Oxford University, Oxford, U.K, 1982.
D. Gold and R. T. Plant, “Towards the formal speci-
fication of an expert system,” Working Paper
CIS/RTP/90/2 CIS Dept. Univ. of Miami, Coral
Gables, Florida.
D. A. Turner, Functional programs as executable spec-
ifications, in Mathematical Logic and Programming
Languages (C. A. R. Hoare and J. C. Shepardson,
eds.), Prentice-Hall, Englewood Cliffs, New Jersey,
1985, pp. 29-54.
P. Henderson, G. A. Jones, and S. B. Jones, The
LISPKIT Manual, Programming Research Group
Monograph PRG31, Oxford University, Oxford, U.K.,
1983.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

R. T. Plant

E. H. Shortliffe, Computer-Based Medical Consulta-
tions: MYCIN, Elsevier, New York, 1976.
L. A. Zadeh, Fuzzy Sets, Info. Contr. 8, pp. 338-353,
Academic Press, NY (1965).
R. G. Swinburne, Choosing Between Confirmation
Theories, Philosophy Sci. 37, 602-613 (1970).
A. Tversky, Elimination of Aspects, Psychol. Ret,. 79,
281-299 (1972).
G. Shafer, A Mathe~zat~ca~ Theory of Evidence, Prince-
ton University Press, Princeton, New Jersey, 1976.
C. W. Holstapple, and A. B. Whinston, Business Expert
Systems, Irwin Press, Homewood, Illinois, 1987.
J. B. Goodenough and S. L. Gerhart, Towards a
Theory of Test Data Selection, IEEE Trans. Software
Eng. SE-l, 156-173 (1975).
R. A. DeMillo, R. J. Lipton, and F. G. Sayward, Hints
on Test Data Selection: Help For The Practicing Pro-
grammer, Computer 11, 34-41 (1978).
R. A. DeMillo, W. M. McCracken, R. J. Martin, and
J. F. Passafiume, Sof~are Testing and Ekaluation
Benjamin Cummings, Menlo Park, California, 1987.
L. Flon and A. N. Habe~an, Towards the Construc-
tion of Verifiable Software Systems, SIC;PL,AN Not. 2,
141-148 (1978).
M. R. Woodward, M. A. Hennel, and D. Hedley,
Experiences with Path Testin’g and Analysis and Test-
ing of Programs, IEEE Trans. Sofhvare Eng. SE-6,
278-286 (1980).
W. E. Howden, Weak Mutation Testing and Com-
pleteness of Test Sets, IEEE Trans. Sofmare Eng.
SE-8, 371-379 (1982).
B. Littlewood, Sofmare Reliability: Achievement and
Assessment, Blackwell, Oxford, U.K., 1987.
J. D. Musa and K. Okumoto, A logarithmic Poisson
execution time model for software reliability measure-
ment, in Proceedings of the 7th Intemationa~ Conference
on Software Engineering, IEEE Computer Society
Press, Orlando, Florida, 1984, pp. 230-238.
A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood,
Evaluation of Competing Software Reliability Predic-
tions, IEEE Trans. Software Eng. SE-12, 9.50-967
(1986).
J. D. Musa, A. Iannino, and K. Okumoto, Software
Reliability: Measurement, Prediction, Application, MC-
Graw-Hill, New York, 1987.

