
Software Cost Estimation Using Economic
Production Models

QING HU, ROBERT T. PLANT, AND DAVID B. HERTZ

QiNG HU is Assistant Professor of Information Systems in the Department of Decision
and Information Systems at the Florida Atlantic University. He received his Ph.D. in
computer infonnation systems from the University of Miami, Florida. Dr. Hu currently
teaches information systems, database management, and data communications
courses. His research Interests include software engineering, economics of informa-
tion technology, IT outsourcing, and electronic commerce. He has published articles
in such journals as Computers and Industrial Engineering, Information Sciences,
California Management Review. IEEE Transactions on Software Engineering, and
Information Systems Research, and presented numerous papers at national and inter-
national information systems conferences.

ROBERTT. PLANT is an Associate Professor in the Department of Computer Informa-
tion Systems at the University of Miami, Coral Gables, Florida. Dr. Plant received his
Ph.D. in computer science at the University of Liverpool, England. Having previously
studied at the Programming Research Group, Oxford University, and Wadham Col-
lege, Oxford, Dr. Plant was Chairman ofthe Workshop on Validation and Verification
of Knowledge-based Systems at AAAI 1994 and Co-Chair ofthe 1997 Workshop. Dr.
Plant is a Chartered Engineer (U.K.), a European Engineer, a Fellow ofthe British
Computer Society. He holds a Visiting Professorship in Computer Science at the
University of Wolverhampton in England and is a Visiting Associate at Templeton
College, Oxford. His research interests are in virtual organization, knowledge-based
systems and software engineering. He has published in journals sucb as Communica-
tions of ACM, Information and Management, and Journal of Systems and Software.

DAVID B. HERTZ is Professor Emeritus in the Department of Computer Information
Systems at the University of Miami. He received his Ph.D. in management science
from Columbia University. Dr. Hertz currently is the CEO and Chairman of Identifl-
cation Technologies Intemational, Inc. He was formerly management consultant and
partner of McKinsey and Co. in New York City. He has published numerous articles
in the areas of operations research, risk management, and artificial intelligence in
several journals, including Management Science. Harvard Business Review, and
Information Sciences, and is the author and coauthor of many books.

ABSTRACT: One ofthe major difficulties in controlling software development project
cost overruns and schedule delays has been developing practical and accurate software
cost models. Software development could be modeled as an economic production
process and we therefore propose a theoretical approach to software cost modeling.
Specifically, we present the Minimum Software Cost Model (MSCM), derived from
economic production theory and systems optimization. The MSCM model is com-
pared with other widely used software cost models, such as COCOMO and SLIM, on

Journal of Management Information Systems I Summer 1998. Vol. 15, No. l.pp. 143-163.

I ^ C 1998 ME. Sharpe, Inc.

0742-1222 / 1998 $9,50+ 0.00.

144 HU, PLANT, AND HERTZ

the basis of goodness of fit and quality of estimation using software project data sets
available in the literature. Judged by both criteria, the MSCM model is comparable
to, if not better than, the SLIM, and significantly better than the rest ofthe models. In
addition., the MSCM model provides some insights about the bebavior of software
development processes and environment, which could be used to formulate guidelines
for better software project management polices and practices.

KEY WORDS AND PHRASES: economic production theory, software cost estimation,
software cost models, software production, software project management.

IT WAS ESTIMATED THAT THE SOFTWARE COST to U.S. cofi^ftiia and government
agencies would reach $225 billion a year by 1995, compared with $70 billion in 1985
[4]. The growing software cost poses a significant challenge to the software industry
not only to adapt to the ever-evolving software technologies, but also to develop
software application systems more efficiently with sound software project manage-
ment practices, whieh has been a major impetus behind the move toward software
engineering since the late 1960s. The effort so far has produced mixed results. On one
hand, integrated CASE tools, fourth-generation languages (4GLs), and object-ori-
ented programming technology have forever changed the way in which soltware
systems are constructed at the micro level. On the other hand, managing software
development projects with engineering precision at tbe macro level is still far from
reality. Some significant problems that plagued the software projects in the 1960s and
1970s still exist and may even have intensified due to the increasing scale and
complexity of new computer applications.

Among the worst of these problems are software cost overruns and schedule
slippages. A 1984 study [13] of seventy-two software projects in twenty-tbree major
U.S. corporations revealed that the median cost overrun is about 34 percent with an
average of 67 percent, and the average schedule slippage is about 22 percent, ln a
survey of forty-five business software systems completed in ! 987, Putnam and Myers
[23] found that the average cost overrun was about $225,000 and schedule slippage
was about three calendar months, and that these problems happened in all countries
and tbat no company was immune. A study by Peat Marwick Mitchell and Co. found
that more that 35 percent ofthe company's 600 largest customers had major software
projects cost overruns and schedule slippages [24]. These statistics may just show the
tip ofthe iceberg. Our experience witb software project managers of various industries
indicates that a 200 to 300 percent cost overrun and a 100 percent schedule slippage
would not be unusual in large software systems development projects. Millions of
dollars have been wasted in projects that were abandoned because of severe cost
overruns and schedule slippages [15,24].

While many factors could have contributed to the problems of software project
management [11,21, 28], inaccurate estimation of development cost and schedule,
whicb leads to unrealistic expectation and project planning, is often considered one
ofthe top contributors. As a result, many studies on software project management

SOFTWARE COST ESTIMATION 145

have focused on the issue of developing software cost models. Despite the progress
made in developing better models, accurate estimations of softv^are project cost and
sehedule remain elusive. More than a deeadc ago, Mohanty [19] evaluated thirteen
software cost models and concluded that none of those models could estimate software
eost with a satisfactory degree of certainty. Later, Kemerer [16] compared several
major software models (COCOMO. SLIM. ESTIMACS, and Function Points) and
revealed that the average magnitude of relative errors (MRE) of the estimates using
these models ranged from 85 to 772 percent, with many in the 500-600 pereent range.
A recent study by Jorgensen [14] compared multiple regression, neural networks, and
pattern recognition approaches for estimating software maintenance effort and again
found no comfort: With MREs ranging from 60 to 280 percent across all models, the
best and the worst result were all produced by the multiple regression models.

What went wrong with these models? There could be many answers to this question.
We conjecture that the empirical foundations for these models may have contributed
to and resulted in unpredictable performance when used for software cost estimation.
Thus, we postulate that a software cost model with a sound theoretieal basis would
provide a more stable platform from whieh to derive a clearer understanding of cost
modeling in the future. Furthermore., a theoretically sound model could yield some
insights into the fundamental behavior of software development processes that were
not apparent from empirical models. In this study, we present a software cost
estimation model, called the MSCM method (for Minimum Software Cost Model),
based on the classic economic production theories.

Review of Software Cost Models

OVER THK YEARS DOZENS OF SOFTWARE COST MODELS have been developed for
various purposes. Some are proprietary, others are in the public domain. More
comprehensive review of these models ean be found in [3,16,19]. This seetion focuses
on the two widely cited algorithmic models, COCOMO by Boehm [3] and SLIM by
Putnam [22,23], since they are used in many studies as the benchmark models.

As one of the earlier algorithmic software cost models, COCOMO is the most widely
accepted software cost and schedule estimation method. Over the years it has served
as a benchmark for evaluating the performances of various cost estimation models and
methods [16, 17,20,26].

The COCOMO model consists of three submodels; Basic, Intermediate, and De-
tailed COCOMO. Boehm's evaluation of the three models has concluded that the
Intermediate COCOMO is significantly better than the Basic COCOMO, while the
Detailed COCOMO is not noticeably better than the Intermediate COCOMO. Thus,
only the Intermediate COCOMO is discussed here. It can be written as:

E =
(=1

where K and a are parameters dependent on the mode of the software system to be

146 HU, PLANT, AND HERTZ

developed, 5 is the software size measured in KDSI (thousand delivered source
instructions), and the C|'s are the fifteen so-called cost drivers, which are scalars
ranging from 0.70 to 1.66 with a nominal value of one, reflecting the characteristics
of software systems as well as the production environment, such as the required
software reliability and programmer skills.

The result ofthe Intermediate COCOMO can be significantly influenced by the
values of Cj's, which require detailed information about the software system and the
development environment. Since the cost drivers and the values were originally based
on the software project data ofthe 1960s and 1970s, the validity and accuracy ofthe
Intermediate COCOMO are at best uncertain in today's complex software environ-
ment.

The SLIM model was first proposed by Putnam [22] and then revised significantly
later in his 1992 book [23]. The basic estimation equation in SLIM method is:

where 5 is the software size in SLOC (source lines of code), PP is a productivity
parameter, E is the effort measured in person-years, 5 is a skill factor that is a function
ofthe software size, and /̂ is the total development time measured in years.

Using the equations provided by Putnam and Myers [23, p. 234], the SLIM cost
estimation equation can be written as;

29

where E is the person-month effort, 5 is the software size in SLOC, B is the skill factor,
and PP is the productivity parameter.

The main advantage ofthe new SLIM model is that it can be easily calibrated to a
software system and its production environment. The B value is directly based on the
size of the software to be developed, and the PP reflects the productivity of the
particular environment. This makes the SLIM model adaptable to changing environ-
ment and systems.

Like many other software cost models, the COCOMO and SLIM models are
empirical in nature, although SLIM has its origin in the Rayleigh manpower distribu-
tion curve [22]. As a result, the models and their performances tend to vary signifi-
cantly from one environment to another. Many studies (e.g., [8,16]) have shown that
these models performed poorly if their parameters were not calibrated to the particular
environment in which they were to be used. It is also difficult to interpret the meaning,
if any, ofthe parameters and the models.

The impetus for rigorous theoretical studies of software production and systems
development are strengthening as the discipline and practice of software engineering
become widely accepted. In recent years, some attempts have been made to develop
theoretical models of software systems development from an economic production
perspective. One notable study is by Banker, Datar, and Kemerer [2] in which a
quadratic production function was proposed tbat relates the professional labor hours

SOFTWARE COST ESTIMATION 147

incurred on a software maintenance project to the size and complexity of the project,
measured in terms of function points and SLOC. Since the objective was to investigate
the impact of the production environment factors (e.g., the ability of project managers,
the level of previous experience with the applieation) on the productivity of software
maintenanee projects, no software cost function was developed; nor were software
cost estimation models based on the production function proposed.

We believe that a software cost estimation method based on a sound theoretical
foundation could have several significant advantages over empirical ones. First, we
would know the correct meaning of each variable or parameter in the estimation
equations so that their values could be meaningfully interpreted. Second, we would
have more confidence with the equations and thus with the relationship they represent
because we would know how they are derived and on what assumptions they are based.
Finally, we would know what kind of eost the method attempts to estimate. For
instance, the software eost when estimated by the method of economic production
theory is the minimum cost obtainable for a software production under optima!
conditions. In order for this estimated eost to have any real meaning, it must be
assumed that one of the objectives of software project management is to maititain
software production at the optimal production levels so that a minimum cost can be
achieved. The next section presents a software cost model based on such economic
production theory in the hope that we may have not only a better sofhvare cost model
but also some insight into the fundamental behavior of sofiware produetion processes.

The MSCM Model

THE MSCM MODEL IS BASED ON THE PROPOSITION THAT SOFTWARE SYSTEMS

development processes are economic produetions. While software systems develop-
ment usually involves multiple stages, it is premature to develop a mathematical
software production model that addresses all stages of the development process
concurrently without first having a model that addresses the individual stages. The
model we propose here focuses on one individual stage of a multistage production
process. If software production is considered as a single stage process, then this model
applies to the entire process.

With these assumptions, sofiware production ean be modeled as a process in which
a set of input resources at certain levels (x,, .Xj, • • • \) are used to produce a product
of certain quantity (S) over a period of time (7). If JC, number of people, Xj amount of
computer resources,... and x̂ amount of office supplies are used, then over a period
of time r. a sofiware system of size S may be produced. In doing so, a certain cost C
will be incurred because not all of the resources are fVee.

The economic theory posits that the objective of an economic produetion is to
maximize the profit, which is equivalent to the objective of minimizing cost while
producing the desired output at a fixed level. Consider a sofiware production process
and let y denote the maximum quantity of output (SLOC or FP) per unit time. Assume
the process uses n homogeneous production resources—for example, the human
resources, capital, and the like, of quantities (x,, X2,. • • x^) per unit time in order to

148 HU. PLANT, AND HERTZ

produce the output at the rate of>'. Then the production function of this process is
defined as:

(4) y = y(Xi,X2,...x^).

The cost of producing this output at the rate y by using these x^^ production resources
at the unit prices {p\,P2,--P^ is defined by the cost function:

(5) c = e(p,,/)2,.../7^,jv).

Note that many different combinations of (j , , A-J, ...>:„) "^^y y'̂ '̂ ^ ̂ ^^ same>- defined
in equation (4) but result in different costs. This is because, in general, not all Pi's are
equal and the resources are substitutable. The minimum cost of producing output at
rate>' may be found by

minimize:

subject to;

(7) y-y(x^,x^,...x^) = Q\

(8) x^>Q, (=1 ,2 , . . . n .

If this optimization system can be solved, we get:

K^) c = c (X i , ; f 2 , . . . x ^ , / 7 , , / ? 2 , . . . ; ? J ,

where c* is the minimum cost of production at rate;' by using the optimal combination
of resources at rates (J*,,JC*2, . . . x*^), given the unit prices (Pi,P2, • • -pj-

It is important to emphasize that the;- defined in equation (4) is the output quantity
per unit lime and the c defined in equation (5) is the cost per unit time. In software
production, we are interested in the total output quantity and the total cost over the
time period of developing and delivering a complete software system. To find these
totals, we assume the production function (4) and the cost function (5) are differen-
tiable to second order. Let Kdenote the total output, and Cthe total cost of producing
Y, over a time period of [0, T^]. From the second-order differentiability assumption,
the total output is given by the Total Production Function:

(10)

Similarly, the total cost in the same period [0, T^] is given by the Total Cost Funcdon:

(tt)

SOFTWARE COST ESTIMATION 149

In the software production environment, K represents the software size. Let 5j be
the size of the software system to be developed. We are interested in finding the
appropriate (;C|. X2, . .. x^) that satisfies equation (10) and minimizes equation (11).
This minimum total cost C for producing the total output 5j in T^ time may be found
by solving the nonlinear optimization system:

(12)

minimize:

subject to:

(13)
-S^ = 0 ;

(1 4) X, > 0 , 1 = 1 , 2 , . . . « ,

where S^ is the size of the software to be developed, measured in terms of SLOC or
FP, or any other appropriate metrics, and 7"̂ is the time allowed to develop this
software.

This optimization system is the Minimum Software Cost Model (MSCM). Theoret-
ically, the solution of MSCM, C* = (x*,, x*2,. .. x*^), determines the optimal software
production conditions under which the required software can be produced within the
specified time and at minimum cost.

In order to develop a working mathematical model, it is further assumed that only
human resources are to be considered. This is justified by the fact that more than 80
percent of the cost of software systems development comes from human-resource cost.
The difficulties of measuring the other resources in economic terms, such as computer
hardware and software, prevent us from considering all the variables that could be
identified as input resources of software production. In addition, it is assumed that the
software production function, with only human resources as the input, can be defined
as a single factor Cobb-Douglas production function:

(15) y = kx\

where k is the production technological level of the firm, x is the input level of human
resources, measured by the number of people in the production team, and a is the
elasticity of human resources, representing the effectiveness of team members.

Theoretically, a can take any positive value, with a < 1 indicating reduced team
productivity, and a > 1 indicating increased team productivity. For instance, if a
software project, which could be completed by one person in ten months, is completed
in four months by three people working together, then this team has an a < 1; if it is
completed by the team in three months, then the team has an a > 1. Both scenarios
are possible in the real-world software development environment. Unfortunately,

150 HU, PLANT, AND HERTZ

there is no analytical method for calculating the value of a for a given team of systems
developers. The values of A and a have to be estimated for each production environ-
ment.

With equation (15), the cost function of the software production is direct:

(16) c=px.

Substituting equations (15) and (16) into the MSCM model (12, 13, and 14), it
becomes the optimization problem of finding an x that

minimizes

(17) . prfj .

subject to

(18) y'T.-S, = 0;

(19) jc>0.

This problem can be solved using the Lagratigean method. The Lagrangean f\inction
for this problem can be written as:

(20) L =

Assume an x* exists that minimizes the objective equation (17) and satisfies the
constraints of (18) and (19). According to the Lagrangean theorem, the necessary
conditions for the optimization problem to have a minimum at JC* are:

(21) , dL ^ , , a-\^
'^ dx ^ '' ''

I

L^ = ^ = kx^T^-S^ = 0.

I
Solving these two equations yields:

(23)

where K = (I/A)''". Obviously JC* > 0 since 5^, K, and T^ are positive and non-zero;
therefore, constraint (19) is also satisfied. Since x* is the only solution to the
Lagrangean equations, and by definition there must be a minimum in the MSCM
model, thisx* is indeed the solution to the MSCM model.

Substituting JC* into equation (16) and then into equation (12), we get the minimum
cost of the software production under the special circumstances discussed above:

(24)

SOFTWARE COST ESTIMATION 151

where C* is the minimum cost,/? is the unit price of human resources, S^ is the size
of the software system to be developed, a is the effectiveness of cooperation among
the team members, and Tj is the allowed development time.

Software cost traditionally has been measured in terms of person-month type of
metrics. Although the person-month metric may not be appropriate for measuring
software development "effort" [6, 10], it is an appropriate metric for software cost.
Almost all the historical data of software cost are recorded in person-month or its
variations. For this reason, we divide both sides of equation (24) hyp so that the cost
is measured in person-months rather than monetary terms:

(25) E = Ks'^~T^"i-

Thus, to estimate the cost of software development with the MSCM method, the
values of T^, S^, K, and a must be known. The method assumes that 7"̂ is given. The
estimation of software size S^ is by itself a complicated and difficult issue. Boehm [3]
and Putnam and Myers [23] provide detailed discussions on this subject. Recently,
Function Points technique has become widely accepted. Detailed discussions of the
use of function points for measuring software size can be found in [9].

The parameters a, the team cooperative effectiveness, and K, the production
technological level, depend on the characteristics of individual software produc-
tion environment. Currently, the only way to determine the values of K and a is
through estimation using historical project data. Future studies may yield some
practical measurement instruments with sound theoretical basis for these two
critical parameters.

Empirical Validation

THE THREE ALGORITHMIC SOFTWARE COST MODELS, MSCM, SLIM, and COCOMO,
are developed from different backgrounds and different approaches. COCOMO is an
empirical model derived from statistical regression. SLIM has its roots in the Rayleigh
manpower distribution. The MSCM is based on the economic production theory.
When used for software cost estimation, the three models have comparable complexity
in terms of the amount of computations involved. Here, however, we examine whether
they have comparable quality in software cost estimation.

Data

The software project data set of Kemerer [16] is chosen to test the performance of the
MSCM model against the COCOMO and SLIM models. Several considerations are
involved in this choice. First, the software projects in the Kemerer data set are all
business applications and are written mostly in COBOL (except two cases) and
developed in the same environment. This gives the data the necessary consistency and
integrity for testing models. Second, because of the nature of the company from which
the project data were collected, it seems that the data set has better accuracy and

152 HU, PLAI^ , AND HERTZ

reliability than most other public-domain data sets. Third, the data set contains mainly
medium to large software projects, which are believed to exhibit relatively consistent
characteristics [25]. With an average size of 22IK SLOC, the Kemerer data set is
superior to most of the data sets for testing the economic characteristics of software
development, such as cost and time. Finally, since many previous studies have used
this data set for testing various software cost models [16,20,26], it would be beneficial
to use this data set so that the results can be compared.

Previous studies [5, 18] have noted that project nos. 3, 4, and 9 in the original
Kemerer [16] data set are possible outliers. To avoid biased results resulting from the
inclusion of outliers, the Mahalanobis D ̂ distance between individual data point and
the rest of the data set is calculated. Table 1 presents the result. Based on the
recommendation of Hair et al. [12, p. 59] that only the observations that have large D^
with the significance exceeding 0.001 be considered as outliers, project no. 3, which
has an exceptionally large D^ with p < 0.000, is determined as an outlier and excluded
from the test data set. As a result, the fourteen-project data set is used to evaluate
different software cost models in this study.

Method

We chose the goodness of fit and the quality of estimation as two criteria to measure
the performance of the MSCM model against other software cost estimation models.
For comparative purpose, in addition to COCOMO and SLIM, two classic production
models, the generalized Cobb-Douglas production function (GCD) and the general-
ized Cobb-Douglas production function with time factor (GCDT), are also included.
The following is a list of the models to be compared:

(26) MSCM:£ =

(27) GCDT:£ =

(28) GCD:£ =
a

(29) ' ^
COCOMO: E

<30) . ^ xl.29

SLIM:£: = 56.6fi - ^

To be consistent with the expression of the other models, the notation of the MSCM
is modified. The parameter I/a in equation (25) is replaced by a in equation (26) for
mathematical parsimony. Note that the MSCM model also takes the general form of
the Cobh-Douglas production function, except that it requires a + p = 1. The GCDT
and GCD models are included for comparison to make sure the tests will show whether
or not the MSCM is a production model that better incorporates the unique character-

SOFTWARE COST ESTIMATION 153

Table 1. The Malahanobis D ^ for Detecting Outliers

Project no.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.355
2.244

211 732
1,392

11.580
2,724
2,660
0,618
3.145
2.936
0.459

12.295
0.868
3.788
1.042

0.094
0,591

55,738
0.336
3.048
0.717
0.700
0.163
0,828
0773
0.121
3.237
0.229
0.997
0.274

0,962
0,634
0.000
0.779
0.074
0.562
0,571
0,919
0,506
0.533
0.946
0,064
0,875
0.430
0.843

istics of software production than other general production models.
The goodness of fit of models is usually measured in terms of the F statistic or the

adjusted coefficient of determination, adjusted R . However, since the parameters of
the Intermediate COCOMO and SLiM models are not statistically estimated, neither
FnoT adjusted R^ can be computed. Here we introduce the average square root error
(ASRE) for comparing the goodness of fit of different models. It is defined as:

(- 1

where n is the size of the entire data set, Ê ^ is the actual cost of the /th project, and £j,
is the fitted cost of the /th project using an estimation model. It can be seen that ASRE
measures the average deviation of estimates from the actual values for the entire data

set.
The difference between the ASRE and the commonly used MSE (mean square error)

in statistics is that MSE uses the degree of freedom for averaging the square error
terms instead of the sample size n in the ASER. We did not choose MSE simply
because the Intermediate COCOMO uses fifteen cost drivers, which would severely
skew the result whether or not they were considered as parameters.

In computing ASRE, the entire data set was used in estimating the parameters of the
cost models. In reality, however, software engineers and managers have to use the existing
data set to estimate the unknown, that is, to make a predication. To test the quality of
the predictions that each mode! makes, we used a subset of thirteen projects of the
fourteen-project set to estimate the parameters of the models and then used the model
to estimate the cost of the one remaining project, resulting in fourteen estimations.

154 HU. PLANT, AND HERTZ

Like others, we used the magnitude of error (MRE) to measure the quality of
estimation of each model, as defined in [16]:

(32)
MRE =

To estimate the parameters in the MSCM model, we used the least-square nonlinear
regression procedure provided in the SAS statistical package. The parameters in the
GCDT and GCD models were estimated using the general linear regression procedure
in the SAS package by taking a logarithmic transformation. The parameter estimation
for the SLIM model takes three steps: First the B value for each project is determined
based on the project size using Putnam and Myers's Table 2.1 [23, p. 29]. Then the
PP is calculated using the known values of each project using equation (2). Finally,
the average of P/^'s is compared with the PP cluster values in Putnam and Myers's
Table 2.3 of [23, p. 33]; the closest PP cluster value in the table was chosen as the PP
for the SLIM model. All estimates of the Intermediate COCOMO were taken directly
from [16], except the ASRE values, which were calculated using equation (31).

Results and Discussions

WE NOW PRESENT THE RESULTS OF VARIOUS TESTS CONDUCTED using the models and
data sets discussed above. First, the model parameters, if not given, were estimated. Then
the ASREs were calculated for comparing the goodness of fit of the models. Finally the
MREs were computed for determining the quality of estimation of the models.

Estimation of Model Parameters

Table 2 presents the regression estimated model parameters usingthe fourteen-project
data set; Table 3 presents the similarly estimated model parameters but with thirteen
projects at a time. The data set number in the table indicates the project number that
was excluded from the set used for parameter estimation. The main purpose was to
use the estimated parameters of the models to predict the cost of the excluded project.

In general, the models exhibit satisfactory stability in terms of the estimated values
of the parameters. The means of the estimated a, p, and K with the thirteen-project
data sets matched the corresponding values estimated with the full fourteen-project
data set, with the exception of one K estimate in the GCD model. Careful examination
of the standard deviation of the estimated parameters revealed that the MSCM exhibits
the most stable characteristics across all test data sets with the estimated a and K
having a standard deviation of less than 11 and 16 percent oftheir means, respectively.
On the other hand, the estimates of a and K of the GCDT model had a standard
deviation of larger than 12and64percent, respectively, and those of the GCD model
were about 8 percent and 126 percent. This is one indication that the MSCM model
may be a closer representation of the software systems development environment than
the other models tested.

SOFTWARE COST ESTIMATION 155

Table 2. Model Parameters Estimated with the 14-Projeet Data Set

Model
MSCM

GCDT

GCD

Table 3.

Data set

1
2
4
5
6
7
8
9

10
11

12

13

14
15

u

o

a
0.5812
0.4784
0.6643

Parameters

P
N/A

0,395S
N/A

1

A
2.7344
4,6154
5.0534

Model Parameters Estimated with 13-Project Data Set

MSCM

a

0.5726
0.5898
0.5599
0.4006
0,5847
0.5779
0,5907
0.6453
0.5856
0.5508
0.6714
0.5631
0.6356
0.5678

0.5783
0.0619

K

2.6886
2.6633
3,0853
4.0065
2.6987
2.7659
2,7028
2,4657
2.6949
2,8655
2.0912
2,9067
2.3067
2.8445

2,7705
0.4353

a

0,4467
0.5303
0,5082
0,3494
0,4891
0,4238
0,4962
0,5662
0.5122
0.4244
0.5422
0.4743
0,5054
0,4178

0,4776
0.0588

GCDT

P
0,3960
0.3985
0,4417
0,5072
0.4844
0,2364
0.3759
0,3347
0,4583
0.4398
0,2594
0,4104
0.3183
0,4625

0.3945
0.0818

K

5,2233
3,4594
3.7938
6,2670
3,3853
1.6308
1,6231
1.2667
1,4563
1.3975
1.5814
1,5525
1.2962
1.5074

2.5315
1,6290

GCD

a

0.6326
0.7164
0,7116
0.6382
0.6899
0.5216
0,6795
0.7324
0,7019
0,6414
0.6639
0,6624
0.6485
0.6557

0.6640
0.0517

K

5.7188
3,8116
4.2590
5,6576
4,3837

10,9894
4.7968
3,8358
4.1255
2,0176
1.8992
1.9423
1,9394
1.9127

1,9264
2.4265

Goodness of Fit

Table 4 shows the result of testing the goodness of fit using ASRE. The F statistics
and the adjusted R ^ values are also presented where they were available. Judged by
the ASRE values, the MSCM model had the best overall fit to the data set, and the
Intermediate COCOMO had the worst fit, with GCDT, GCD, and SLIM in the middle.
The adjusted R ' values were consistent with the ASREs for MSCM, GCDT, and GCD
models. One may argue that the four better models all use the parameters estimated
using the data set, while the Intermediate COCOMO uses constant parameters pro-
vided by Boehm [8]. But the Intermediate COCOMO estimates have been adjusted
by fifteen cost drivers reflecting far more detailed characteristics of the projects and
the development environment. Thus, we believe the results in Table 4 show a fair
comparison of these five models.

156 HU, PLANT, AND HERTZ

Table 4.

ASRE
F
fl^adj.

The Goodness of Fit of Models

MSCM

15.13
55,81
0,89

GCDT

15.91
9.44
0,56

Model

GCD

16.92
16.08
0.54

COCOMO

339.49
N/A
N/A

SLIM

21.67
N/A
N/A

Quality of Estimation

The best-fitting model may not necessarily have the best quality when used for
estimating the cost of future projects. Overfitting to a data set may result in biased
models, as shown by [18], producing poor estimates. To compare the estimation
quality of the five models, actual data of thirteen of the fourteen projects were used
for parameter estimation, and the one remaining project was used for testing. In total,
fourteen data sets were constructed and fourteen estimations were made by each
model. MREs for each estimate were calculated to evaluate the estimation quality.
Table 5 presents the results.

In terms of mean MRE, the MSCM model had the best overall estimation quality,
as Indicated by the 50 percent MRE, followed closely by the SLIM model with a 53
percent MRE; the Intermediate COCOMO was the worst of all, with a 593 percent
MRE, more than ten times larger than those of MSCM and SLIM. If we examine the
standard deviation of the MREs, then the SLIM took the lead with 28 percent,
indicating that it was more stable from project to project. This may be attributed to the
fact that it used a single PP value for all projects in the same environment. The MSCM
took the third position with 42 percent; the Intermediate COCOMO once again was
the worst of all, with 895 percent, more than twenty times larger than the SLIM and
MSCM models. When judged by the criteria of percentage of estimates having an
MRE less than or equal to 25 percent (25%-MRE), 30 percent (30%-MRE), or 50
percent (50%-MRE), as shown in Table 6, then the MSCM and the SLIM models gave
comparable performance, with MSCM taking an overall lead: The SLIM led in the
25%-MRE category by 7 percent (one project) over the MSCM, while the MSCM led
in the 30%-MRE and 50%-MRE categories over the SLIM by 14 percent (two
projects) and 36 percent (five projects). In all cases, the Intermediate COCOMO was
no match for either MSCM or SLIM: It produced no estimate that fell into any of the
categories.

It should be pointed out that the MSCM estimation used the actual production time
- This may or may not be a problem for real-world applications. In many cases,

software development teams are given deadlines for delivering specific software
systems. The cost of developing such software can be estimated by using this schedule
and the estimated software size. It is possible, though unlikely, that there would be no
specific timetable for a system development project. In this situation, the MSCM can
be used to estimate the costs of development under different schedule scenarios for

157

UJ

o
oooo

LU

cc

CO

E
OT

LU

LU
CC

2
to
E
LU

CC

S
I
UJ

LU
CC

LU
CC

5

13
E
to
LU

o
CL

(M <N M CO
o ••- in ca

C\J ' - 1 - 1 -

CM in CO CM in
CO

•<t in CM CO •^ r> in
CO in O5 CD CO O> O>
Ul T- in un 00

co'

o>'~ir)co(r)CM'— CMi—

CO
CO o

CD
CM

CO
i n

•* in C31 CM O Ol
CO CO CO -^ T)- •<»•

O I ^ C N C O
COCOCDCJ

C M C O i n c O C O O C M ' - C O C M C M C M C M C O i n C M L n ' W

O O C O C O C D C D C J O r - C O O O t O C D
o r c o c j i a i ^ c o i n L n T t - o i

• ^ C M C M i n ' - r - ^ c o
i - i n c N ' - i n T r c D ' *
CM CM CM " - C M

CO CO CO r -
CD QO O) CJ>

o o o o o o o o o o o o o o
m j o o c M c o o p r r ^ o c n o)

CO C O T f i n c O L n *
' - T - CMCvii-CM

158 HU. PLANT. AND HERTZ

Table 6. Estimation Quality Measured in Percentage of Estimates in
Each Enor Category

25%-MRE
30%-MRE
50%-MRE

MSCM

21
50
79

GCDT

Q
6

43

Model

GCD

21
21
43

COCOMO

0
0
0

SLIM

28
36
43

evaluation and decision-making purposes. Comparing with the single schedule esti-
mate provided in the COCOMO and SLIM methods, we consider the MSCM approach
more realistic and more flexible, and especially valuable for conducting what-if
analyses for project planning.

Implications of the MSCM Model !

THE TEST RESULTS PRESENTED ABOVE VERIFY THE CAPABILITY of the MSCM model
as a software cost model. Since it is based on the foundation of economic production
theory, the model could provide many meaningful implications for software project
management policies and practices. First, the estimated a = 0.5812 for equation (26)
of the MSCM model translates into an 1.72 effectiveness of cooperation of the
development teams as defined in equations (15) and (25), indicating that in this
production environment the team productivity is higher than the individual. This may
have been a result of bener system design that allowed modular divisions of the tasks
among team members and effective team management practices.

Second, equation (26) of the MSCM model implies that there is a tradeoff between
the cost (E) and development schedule (T^), other factors being equal. This relationship
can be examined by the partial derivative of £ with respect to T^:

(33)

Since (1 - a) and A" are greater than zero, so dE/dT^ > 0, indicating that the cost of
a software project may be reduced by tightening its development schedule, which
requires increasing the team size as dictated by equation (23). This is consistent with
the first implication about team productivity in this particular software development
environment. Equation (33) also implies that as the development schedule gets longer,
its effect on the effort diminishes. Figure I illustrates this tradeoff between the cost
(£) and the schedule (T^).

Finally, the effect of software size (S^) on development cost (£) can be shown by
the partial derivative of £ with respect to S^:

(34) BE ., T,d . \ - a

SOFTWARE COST ESTIMATION 159

250

200

50

10 20 22

Schedule (Month)

Figure 1. Tradeoff between Cost and Schedule

Since a and K are greater than zero, so dE/dS^ > 0, indicating that the cost of a
software project always increases as the size of software increases. However, equation
(34) also suggests that when software size gets very large, the effect of size increase
on the cost diminishes, or. in other words, the marginal cost per line of code gets
smaller, implying that larger software costs less than smaller software in terms of
person-month/SLOC in this particular environment. This is clearly shown in figure 2,
which is plotted using the actual productivity data provided in [16], except that project no.
3 is excluded as an outlier. This contrasts to the M PSS (most productive scale size) concept
of Banker and Kemerer [1] who hypothesized that there were increasing retums to scale
for smaller projects and decreasing retums for very large projects.

However, caution should be exercised when considering these implications. The
conclusions of partial derivative analyses are valid only if the changes of the indepen-
dent variables are relatively small. A significantly reduced development schedule and
increased team size, for instance, may change production characteristics which can
eventually push the effectiveness of cooperation into the region of less than one. That
would result in very different interpretations. In addition, the underlying assumption
of partial derivative analysis is that other factors must be kept unchanged when the
independent variable changes, which in reality may be difficult to implement. For
instance, it may be difficult to keep the effectiveness of cooperation of team members
unchanged while the size of software is being increased or the production schedule is
being tightened. The value of such analysis, though, is to point out the correct directions
for changes if they become necessary, and to wam oft" possible adverse economic affects
if certain factors have to be adjusted because of technical or political causes.

Conclusions

THE PURSUIT OF BETTER SOFTWARE COST MODELS MAY BE A NEVER-ENDING task for
software engineering researchers and practitioners in view of the ever-changing

160 HU, PLANT, AND HERTZ

(0

2.0000

1.5000

1.0000

0.5000

0.0000

- •

•
•

- •

H 1—

1

1

t

0.0 1000 200.0 300.0 4000 500.0

Size (KSLOC)

Figure 2. Marginal Cost of Software Project

software applications and software systems development technologies. In order to
estimate the dynamic, sometimes even chaotic, behavior of software systems devel-
opment cost with any degree of certainty, we must develop software production
models based on solid theoretical foundations. This study has shown how the basic
approach of economic production theory may be applied to develop better software
cost models. Starting with the generic Cobb-Douglas production function and incor-
porating the unique requirement of software cost estimation, we developed a software
cost model called MSCM. Using the software project data set of Kemerer, we
compared the perfonnance of the MSCM model with the classic Intermediate
COCOMO and the newly revised SLIM in terms of goodness of fit to the data set and
tbe quality of estimation. In either category, the MSCM's performance was far better
than the COCOMO and comparable to, if not better than, the new SLIM model.

In addition to being a capable cost estimation model, the MSCM also offers
interesting implications about the characteristics of the sofhvare production environ-
ment and the relationships among the important variables. By examining the value of
estimated parameter a, the MSCM model suggests that the development teams had
higher productivity than individuals; thus, using a larger team may shorten the
production schedule and, to a certain extent, reduce the software cost, other factors
being equal. The MSCM also implies that, in this particular environment, the team
may build larger software systems more cheaply than smaller ones in terms of cost
per line of code.

The generalization of the conclusions of this study, however, may be limited by the
size of the software project data set on the basis of which the parameters of the MSCM
model were estimated and different models compared. Although other larger historical
data sets are available in the literature, the age of these data sets, the uncertain quality
of the data, and the lack of information on homogeneity of the projects and develop-
ment environment, would have severe effects on any conclusions drawn. It is our hope
that this study may inspire more practitioners to use the MSCM model in their software

SOFTWARE COST ESTIMATION 161

development environment in addition to whatever they have been using for software

cost estimation so that the validity and the accuracy of this theoretically derived model

may be ftirther tested and verified. We also call for researchers and practitioners in

software engineering field to publish tbeir data sets when comparing software cost

models so that different models can be fairly compared and new and better models

can be developed. In addition to more empirical testing, future studies should focus

on developing practical instruments for measuring the values of a and K for any given

software production environment. The use of the Cobb-Douglas production function

as tbe starting point for the development of the MSCM model should also be subjected

to more theoretical and empirical scrutiny.

Acknowledgmeni: We thank the three anonymous referees for their insightful and valuable
comments.

NOTES

1. The choice of the Cobb-Douglas ftinction is based mainly on two factors: First, the
Cobb-Douglas function is the most widely used and tested economic production function in the
literature for mathematical parsimony and power; second, the more powerful translog produc-
tion function, which is considered more generic than the Cobb-Douglas and provides a valid
second-order approximation to an arbitrary function form [7], collapses into the Cobb-Douglas
function when only one production factor is considered, as is the case here.

2. See the appendix for model parameters estimated using the original fifteen-project data
set, together with a discussion of the effect of the outlier on the models,

3. See the appendix for comparison of the models using the original fifteen-project data set,
together with a disctjssion of the effect of the outlier on the estimates.

REFERENCES

1. Banker, R.D.; Datar, S.M.; and Kemerer, C.F. A model to evaluate variables Impacting
theproductivlty of software maintenance projects. Managcmenr5ciertce, i7, I (1991), 1-18.

2. Banker, R,D., and Kemerer, C.F. Scale economics in new software development, IEEE
Transactions on Software Engineering, 15, 10(1989). 1199-1205.

3. Boehm, B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

4. Boehm. B.W. Improving software productivity. Computer. 20, 9 (1987), 43-57.
5. Briand, L.C; Basili, V.R.; and Thomas, W.M. A pattern recognition approach for

software engineering data analysis. iEEE Transactions on Software Engineering, /S, 11 (1992),
931-942.

6. Brooks, F.P. 77ie Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.
7. Christenson, L.R,; Jorgenson, D.W,; and Lau, L.J, Conjugate duality and the transcen-

dental logarithmic function. Economeirica. i9 ,4 (1971), 255—256.
8. Cuelenaere, A.; van Genuchten, M.; and Heemstra, F. Calibrating a software cost

estimation model: why and how. Informaiion and Software Technology, 29, 10 (1987), 558-
567.

9. Dreger, J.B. Function Point Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1989,
10. Ejiogu.L.O. Software Engineering with Formal Metrics. Wellesley, MA: QED Technical

Publishing Group, 1991.
11. van Genuchten, M. Towards a Software Factory. Dordrecht, the Netherlands: Kluwer

Academic Publishers, 1992.

162 HU, PLANT, AND HERTZ

12. Hair, J.R, Jr.; Anderson, R.E.; Tatham, R.L-; and Black, W.C. Multivariale Data
Analysis, 4th ed. Englewood Cliffs, NJ: Prentice-Hal I, 1995.

13. Jenkins, A.M.; Naumann, J.D.; and Wetherbe, J.C. Empirical investigation of systems
development practices and results. Informaiion and Management, 7, 2 (1984), 72-83.

14. Jorgensen, M, Experience with the accuracy of software maintenance task effort predic-
tion models. IEEE Transactions on Software Engineering, 21, 8 (1995), 674-681-

15. Keil, M.; Mixon, R.; Saarinen, T.; and Tuunaiene, V. Understanding runaway informa-
tion technology projects: results from an intemational research program based on escalation
theory. Journal of Management Information Systems, 11,2 (1995), 65-85.

16. Kemerer, C.E. An empirical validation of software cost estimation models. Communica-
tions of the ACM, 30, 5 (1987), 416^29.

17. Kitchenham, B. A., and Taylor, N.R. Software project cost estimation. Journal of Systems
andSqftware, 5, 5 (1985), 267-278.

18. Matson, J.E.; Barrett, B.E.; and Mellichamp, J.M. Software development cost estimation
using function points. IEEE Transactions on Software Engineering, 20, 4 (1994), 275-287.

19. Mohanty, S.N, Software cost estimation: present and ftiture. Software—Practice and
Experience, / / ,2(198I) , 103-121.

20. Mukhopadhyay, T.; VicJnanza, S.S.; and Prietuia, M.J. Examining the feasibility of a
case-based reasoning model for software effort estimation, MIS Quarterly, 16, 2 (1992),
155-171.

21. Nidumolu, S. The effect of coordination and uncertainty on software project perfonnance:
residual performance risk as an intervening variable. Information Systems Research, 6,3(1995),
191-219,

22. Putnam, L.H. A general empirical solution to the macro software sizing and estimating
problem. IEEE Transactions on Software Engineering, SE~4,4 (1978), 345-361.

23. Putnam, L.H., and Myers, W, Measures for Excellence: Reliable Software on Time,
within Budget. Engiewood Cliffs, NJ: Yourdon Press, 1992.

24. Rothfeder, J, It's late, costly, incompetent—but try firing a computer system. Business
ffeejt (November 7,1988), 164-165.

25. Scacchi, W. Understanding software productivity: towards a knowledge-based approach.
International Journal of Software Engineering and Knowledge Engineering, I, 3 (1991)
293-321,

26. Srinivasan, K., and Fisher, D. Machine learning approaches to estimating software
development effort. IEEE Transactions on Software Engineering, 21, 2 (1995), 126-137.

27. Vicinanza, S,S.; Mukhopadhyay, T.; and Prietuia, M.J, Software effort estimation: an
exploratory study of expert performance. Information Systems Research, 2,4 (1991), 243-262.

28. Zmud, R.W. Management of large software development efforts, MIS Quarterly, 4, 2
(1980), 45-55.

APPENDIX

THIS APPENDIX DISCUSSES THE EFFECT OF THE OUTLIER, project tio. 3 in Ketnerer's

original data set [16], on the estimated model parameters. We also present a compar-

ison of the estimation quality of the MSCM model with three other models used in the

study by Mukhopadhyay, Vicinanza, and Prietuia [20].

Table 7 shows the estimated model parameters using the full data set (fourteen

projects at a time), including the outlier. The values can be contrasted with those in

Table 3. The inclusion of the outlier generally increased the variation of the estimated

parameters in all models. The most significant effect is on the parameters of the MSCM

model, as shown by the changes of the K value (i.e., from 2.7705 to 0.7082). This can

be explained by the structures of the models. In the MSCM model, the parameter AT is

defined in equation (23) as (1/*)'''", where k is the technological level, and a is the

cooperative efficiency of team members. Thus, a small change in a results in a

SOFTWARE COST ESTIMATION 163

Table 7. Estimated Model Parameters with the Data Sets Containing the Outlier

M
a

Table 8.

MSCM

a

0.7612
0.1350

K

0.7082
0.5946

a

0.7144
0.0758

GCDT

0.2276
0,0896

K

1.7966
0.9126

GCD

a

0.8118
0.0600

K

2.2416
1,0186

Comparison of Quality of Estimation of Different Models: MRE (%)

MSCM (J C D T GCD COCOMO SLIM Expert ESTOR
Function

point

Max
Min

a

139
2

67

33

117
12
52

29

139

7
52
43

3,563
84

584
863

102
12

53
28

72.41
0.86

30.72
21.74

106.9
0.98

52.79
37.92

326.72
0.23

102.74
116,05

significant change in K, while in GCDT and GCD, K and a are independent; hence
the effect of the outlier is not magnified as in the MSCM model.

Table 8 compares the quality of estimation of the models presented in this study
with three models in the study by Mukhopadhyay, Vicinanza, and Prietuia [20]. It is
not surprising that the Experts produced the best estimation. The case-based expert
system Estor, the two production function models, the GCDT and GCD, as well as the
SLIM model have comparable performance. The MSCM model is much better than
the Function Point model and the Intermediate COCOMO, but not as good as the Estor
model. However, caution should be exercised when interpreting these results. First,
these quality indicators are derived using the full data set, which contains the identified
outlier that may skew the results of different models to a differing extent. Second, the
quality indicators of the Estor model are based on the verbal protocols of human expert
solving the first ten projects [20] that overlap with the test data set, while those of our
models have no overlap cases in the tests. Table 7 is provided only for reference
purposes.

