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This paper takes a parallel processing approach to the implementation of rule-based
systems using a graph-reduction architecture, and investigates the consequences of
this architecture in relation to the validation and verification of knowledge-based
systems. The paper improves on the traditional sequential approaches to the
development of knowledge-based systems and the limited validation and verification
techniques that are applicable. This is contrasted with a graph reduction implemen-
tation of knowledge-based systems development based on an ALICE-like machine.
The advantages of this style of programming in relation to systems development and
program correctness are discussed. The paper shows that significant benefits could
potentially be achieved through the use of graph-reduction techniques in the
development of these systems. © 1996 Academic Press Limited

1. Introduction

This paper presents a parallel graph-reduction approach to the implementation of
knowledge-based systems. This approach relies upon a specification of the system in
terms of decision tables, and enables the automatic generation of programs that
implement the knowledge encoded in those tables. These automatically generated
programs are written in Malice (Murrell, 1989), a generic graph reduction program-
ming language. Automatic generation of programs from decision tables eliminates
the possibility of programming errors being included, and thus reduces the
validation, verification, and testing overhead.

The system takes decision tables as specifications of correct behavior, and
therefore relies upon a correct formulation of those tables. However, it is inevitable
that in real-world applications, human errors will occur, and result in inconsistent,
incomplete, or incorrect decision tables. It is accepted that the decision table could
be incorrect; the paper addresses the impact of decision table errors on the system as
a whole. This system has a degree of robustness uncommon in conventional
implementations, and will continue to function even with a conflicting data set.

Traditionally validation has been defined as determining whether an appropriate
product is being created; verification is the process of checking that product has been
created correctly (Boehm, 1981). The technique we use is primarily one of
verification, together with in-system run-time consistency checks. Due to the
concurrent nature of the parallel implementation, there is generally no run-time
overhead caused by the consistency checks.
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After a review of existing works on validation and verification, and parallel
implementations, for rule-based systems, we briefly introduce (in Section 3) the
ideas of graph reduction implementations of decision tables, then, in Section 4,
examine the consequences of decision table errors, and show how their impact can
be minimized.

2. Background to validation and verification for parallel knowledge
based systems.

Research into validation and verification of knowledge-based systems has been
progressing since the mid 1980s, when the need for techniques that considered the
completeness and correctness of rule-based systems became a concern to commer-
cial developers.

The foundations of the research into validation, verification and testing can be
traced back to work on testing in relation to conventional systems and its
extrapolation to the testing of early rule-based systems such as MYCIN (Suwa, Scott
& Shortliffe 1982). The creation of tools to assist in the process was soon to follow,
one of the first being applied to the R1/XCON System (Soloway, Bachant & Jensen
1987). From these beginnings we can break the research into five broad areas, each
of which has its own extensive literature, examples of which are cited below.

e Expert System Validation (Green & Keyes, 1987; Naser, 1988; O’Leary, 1988;
Rushby, 1988; Geissman & Schultz, 1988; Rushby & Whitehurst, 1989; O’Keefe
& O’Leary, 1992; Coenen & Bench-Capon, 1993).

¢ Knowledge-base Verification (Suwa et al., 1982; Nguyen, Perkins & Laffery,
1985; Ginsberg, 1987; Marcot, 1987; Cragun & Steudel, 1987; Stachowitz,
Chang, Stock & Coombs, 1987; Morell, 1988; Schultz & Geissman, 1988;
Botten, Kusiak & Raz, 1989; Radwan, Goul, O’Leary & Moffitt, 1989; Lehner,
1989; Miller, 1990; Ayel & Laurant, 1991b,c; Preece, Shinghai & Bataekh, 1992;
Antoniu, 1993; Preece, 1993; Valiente, 1993; Bench-Capon, Coenen, Nwana,
Paton & Shave, 1993).

e Tools (Freeman, 1985; Ginsberg & Rose, 1987; Cragun & Studel, 1987;
Krishnamurthy, Padalkar, Sztipanovits & Purvis, 1987; Loiseau, 1989; Kang &
Bahill, 1990; Vanthienen, 1991; Zlatarova, 1991; Ayel & Laurant, 1991a;
Charles & Dubois, 1991; Cuda & Dolan, 1991; Preece & Shinghal, 1991;
Becker, Green & Bhutinager, 1991; Steib, Small, Castells & Schofield, 1991;
EPRI, 1993; SENTAR, 1995).

* Development (Chen, 1976; Guttag & Horning, 1978; Davis & Lenat, 1982;
Grover, 1983; Buchanan et al.,, 1983; Carpenter & Murine, 1984; Wielinga &
Breuker, 1984; Alexander, Freiling, Shulman, Staley, Rehfuss & Messick, 1986;
Ince & Hekmatpour, 1987; Breauker et al., 1987; Boehm, 1988; Humphrey,
1989; Weitzel & Kershberg, 1989; Plant, 1991; ANSI, 1992; TRILLIUM, 1992;
Breuker & Van de Velde, 1994; Gold & Plant, 1994; Plant & Tsoumpas, 1994;
Akkermans, Schreiber & Weilinga, 1994; de Hoog, Martil, Weilinga, Taylor,
Bright & Van de Velde, 1994).

e Formal Methods (Bezem, 1987; Dahl, 1990; Bolonga, Ness & Siverstsen, 1990;
Breu, 1991; Fox, 1993; Herre, 1993; Meseguer, 1993; Hors & Rousset, 1993;
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Rousset, 1993; Roman, Gamble & Ball, 1993; Krause, Fox, O’Neill &
Glowinski, 1993; Rousset, 1994; Gold & Plant, 1994; Ourston & Mooney, 1994;
Vermasan & Wergeland, 1994a,b; Bouali, Loiseau & Rousset, 1994; Krause,
Byers & Hajnal, 1994; Murrell & Plant, 1995a).

The application of Parallel Processing to Artificial Intelligence has been primarily in
the areas of vision processing, image analysis and robotic systems, areas with high
computational demands. The utilization of parallelism in the development of
knowledge-based systems has as a general rule been limited to prototype systems in
the areas of medical diagnosis (Plant, Murrell & Moreno, 1994; Murrell & Plant,
1995b; Todd, Stamper & Macpherson, 1995). The extension of parallel processing
into the area of knowledge-based systems development with a focus on the
validation and verification issues currently has only a small literature (Murrell &
Plant, 1995b).

The authors of this paper wish to extend the research into the application of
parallel processing for knowledge-based systems as it is our belief that there is a
fundamental problem with validating rule-based systems that have been imple-
mented in traditional programming styles such as LISP, CLIPS or OPS5. It is our
premise that these environments inhibit testing due to the complexity of the
implementations’ syntactic structures, and that the validation of the system should
be performed automatically where possible, and at run-time by the system, thus,
relieving the programmer of this overhead. Further, the system should be specifi-
able. In order to achieve these two goals the authors advocate the specification of
the systems’ rules in a simple decision table form that can be automatically
translated into an ALICET graph-reduction-machine program that is executable in a
multi-processing environment.

3. Parallel processing and graph reduction

With the movement of rule-based systems from the research laboratory into an
industrial setting there has been a significant increase in the size of the rule-bases
and a demand for faster processing. Any increase in processing speed has to be
derived in one of two ways: either by adapting the representation [e.g. ordering the
rules through techniques such as clustering (Mehotra, 1993)], or by new implemen-
tation platforms, such as parallel processing. There are many approaches to parallel
processing that could be taken [e.g. the Hypercube architecture (Seitz, 1985), Parlog
(Clocksin & Mellish, 1984; Clark & Gregory, 1986), the Connection Machine (Hillis,
1985), Occam and the Transputer (Hoare, 1985; Jones, 1986), Neural Nets (Minsky
& Papert, 1969; McLelland & Rumelhart, 1986)) however few have been applied
(Plant et al., 1994; Todd et al., 1995) to the implementation of knowledge-based
systems. In this work, we combine both directions, making a parallel implementation
based on an improved representation. The graph reduction architecture is based
upon the representation of programs and data in an efficiently interconnected form,
which allows the elimination of any searching, and gives a very natural representa-
tion of the decision structure.

+ We do not use ALICE itself, but a local implementation (MALICE) which follows the original very
closely.
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3.1. GRAPH REDUCTION

Graph Reduction systems (Darlington & Reeve, 1981; Townsend, 1987; Reeve &
Zenith, 1989) provide a form of automatic concurrency in the execution of
programs. Programs and data are encoded as graphs in which the nodes represent
items of data and computational operations, and the arcs represent the structural
relationships between items of data, the interdependencies of computational
operations, and the application of operations to data. Eligible computational nodes
are selected, by nondeterministic means, for execution; if multiple processors are
available, multiple nodes will be executed concurrently. Any algorithm translated
into a graph reduction implementation can be expected to run with a degree of
concurrency, but for optimal concurrency, some deliberate design effort is, of
course, required. Graph reduction provides a high level conceptual base for program
design; the low level concerns of more conventional parallel platforms (such as the
interprocess communications overhead, and protection of shared data) are abstr-
acted away. As the concurrency is virtually automatic and transparent, it has no
impact of its own on the validation and verification process.

The general principle upon which this technique is built, is that a rule-based
system, originally provided in the form of a decision table, may be directly and
automatically translated into a graph. The graph itself may be understood as a
program to be executed by a graph-reduction computer. A very simple example is
shown below in Figures 1 and 2, which are from Plant er al. (1994) where a detailed
explanation may be found; the technique is covered fully in Murrell (1989) and
Murrell & Plant (1995b).

Each node in the graph represents an executable “packet”. A graph-reduction
machine in the style of ALICE (Darlington & Reeve, 1981) performs its computa-
tion by repeatedly selecting at random such a packet, and replacing it be an
equivalent (possibly empty) sub-graph of packets according to a set of programmed
rules.

Initially, only the “program” packet is eligible for selection; as it is dependent
upon two “‘conclude” packets, those two will become eligible. Eligibility of packets
for selection is propagated through out the graph, according to the programmed
rules, until some non-dependent packets become selectable.

When non-dependent packets (e.g. “condition” packets) are executed they are
replaced, according to the programmed rules, by what may be considered results;

1 2 3
ql: Y Y N
g2: N Y N
q3: Y - N
cl: X X

FIGURE 1. A trivial decision table.



GRAPH REDUCTION AND VALIDATION 131

[ condition ql1 I | condition q2 I | condition g3 |

I negative | | negative |

= T ] [= ]

Conclude C1 Conclude C2

FIGURE 2. The graph created from Figure 1.

packets dependent upon these results thus become executable, until eventually the
“conclude” packets are able to provide their answers. An example of a large scale
application in the domain of psychiatry is described by Plant ef al. (1994) and a
detailed case study in graph-reduction development is provided by Murrell & Plant
(1955b).

4. Verification and graph-reduction

In this section we consider the aspects of verification that are of key concern to the
area of rule-based systems. We take the union of the areas identified by Culbert
(1990), Preece (1993) and O’Leary (1994) which enumerate types of possible defects
in the correctness of rule bases: redundancy, conflict, circularity, and errors
introduced by incorrect knowledge acquisition. These aspects of the validation of
rule-based systems have been considered by other researchers in relation to
conventional implementations (Nguyen et al., 1985; Rushby, 1988; O’Leary, 1994),
and are given a full treatment (with respect to the validation and verification of
decision tables) in Murrell & Plant (1995¢).

In the following sections we follow the organization of Murrell & Plant (1995¢)
showing how the four major decision table error types: Redundant rules (including:
identity, subsumption, indirect, unfireable, reducible), Conflicting rules, Circular
rules, and Errors of omission (unused inputs, missing rules, impossible combinations,
dead end rules) affect and are affected by a graph reduction implementation.
Accepting the assumption that decision tables used as specifications for graph-
reduction implementations may not be totally correct, it is necessary to be aware of
both the semantic and syntactic errors that can occur, and work towards methods for
their detection and solution. In general, semanic errors can not be detected and we
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show what effects their presence can have on the behavior of the system. Syntactic
errors are easier to detect, and for these we also discuss the appropriate detection
methods.

4.1. REDUNDANT RULES

A redundant rule is simply one which makes no contribution to the system.
Redundancy may be decomposed into five sub-categories: identity, subsumption,
indirect redundancy, unfireability, and reducibility. None of these cause any practical
problems for the graph-reduction implementation.

4.1.1. Identity
The first type of redundancy to be considered is that of identical rules, which can be
broken down into two sub-categories: syntactic and semantic redundancy.

The case of syntactic redundancy is illustrated thus:

RULE 26: IF X AND Y THEN Z
RULE 93: IF Y AND X THEN Z

where both rules will be applicable if X and Y have been substantiated. This can
cause several problems in traditional implementations in that the rule may be fired
twice, as the conflict resolution strategy is often ineffective in removing or coping
with redundancy. However, in the graph reduction implementation these problems
can not arise, as once a rule fires it ceases to be computable and therefore can never
be fired again. In many cases second and subsequent rules leading to the same
conclusion would never even be tested once the conclusion has fired. This also
illustrates the automatic conflict resolution strategy of this implementation.

The implementation of redundant rules, therefore, is not problematic for a
graph-reduction implementation. However, the developer may wish to detect these
redundancies prior to implementation. This can be done when the decision tables
are constructed. Syntactically redundant rules can be identified as identical columns
in a decision table. For example, the rules given above would appear in the form of
Figure 3. This would produce the graph shown in Figure 4.

Syntactic redundancy presents no practical difficulties, it may be taken as a sign of
an error in the rule-base and is efficiently detectable as shown in Murrell & Plant
(1995¢).

... 26 ... 93
cl: X .. Y ... Y
c2. Y oY .Y
al: Z D G ¢

FIGURE 3. Redundant rules.
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FIGURE 4. Graph reduction of syntactically redundant.

A less tractable, but strongly related problem is semantic redundancy. This covers
cases when two (or more) rules have the same meaning, but are formulated in

different ways.

RULE 45: IF X AND Y THEN “weight > 22401lbs”
RULE 83: IF Y AND X THEN “weight>1 ton”
(i.e. the conclusions are semantically equivalent).

45 83
cl: X Y Y
c2. Y Y Y
al: Z1 X
al: 722 X

FIGURE 5. Semantic equivalence.

These would be represented by the decision table shown in Figure 5 and the graph
reduction implementation is shown in Figure 6. The problem becomes more acute
when the conditions are semantically but not syntactically equivalent. For example:

RULE 63: IF hot AND humid THEN thunderstorms
RULE 99: IF sultry THEN electricalstorms.

cli

Query

k1
[pmaa]

]
|Canc1 | z1

c2

=T

k2

Prop

[zl ] |

|Conc1|| |22 |

FIGURE 6. Graph reduction of semantic redundant rules.
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7 8
cl: W Y Y
c2: X Y Y
c3. Y Y -
al: Z X X

FIGURE 7. Subsumption.

There is no possibility for a solution to this problem being brought about by graph
reduction or any other implementation method; the problem can not be identified
without some knowledge that is outside the system. (i.e. hot and humid means
sultry). Problems of this type (occasionally referred to as deep inconsistencies) are in
general not open to solution without the application of intelligence, and arise in
many different forms.

4.1.2. Subsumed rules

One rule is said to be subsumed by another, when it specifies that the same (or
fewer) actions are to be applied under the same (or stricter) conditions. Subsump-
tion is a generalization of the problem of identity, and has both syntactic and
semantic variants, of which only the former is practically detectable. As an example,
in the following, rule 7 is subsumed by rule 8.

RULE 7: IF W AND X AND Y THEN Z
RULE 8: IF W AND X THEN Z,

which may be represented as a decision table, such as Figure 7. These would then
produce the graph shown in Figure 8.

Subsumed rules do not create any significant problem for the graph-reduction
approach to the implementation of production systems because once a conclusion
has been fired it ceases to be computable and therefore can not be fired again (as in

1
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J
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T rlp I T
l |UnRiOr2| ! [ 'Concl

©
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o
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UnR neziXr| UnR | And2
1

[

7

FIGURE 8. Graph reduction of subsumed rules.
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the case of syntactic redundancy). The only slight problem is that the number of
packets created may be increased unnecessarily.

4.1.3. Indirect redundancy
Indirect redundancy of the form:

RULE 11: IF p THEN q
RULE 22: IF q THEN r
RULE 33: IF p THEN r

can only be reliably detected by a brute force search over all possible sets of inputs.
Clearly such a search which would require exponential time is not a practical
proposition for any real system (although some systems do attempt this). Indirect
redundancy is again a generalization of Identity, and also has an intractable semantic
variant.

In our graph reduction approach the search would not be necessary as the
reduction process would fire based upon the quickest reduction. Thus, a significant
advantage is achieved through this approach for the usual reason that conclusions
can not be fired twice.

4.1.4. Unfireable rules
A rule may be unfireable for one of three reasons:

¢ its condition is a logical impossibility (e.g. rule 23 below),

e its condition is logically possible but no combination of other rules firing can
satisfy it (e.g. rule 97 below, under the assumption that both m and n can be true,
but not at the same time),

* the condition is semantically impossible (e.g. rule 16 below).

RULE 23: IF p AND NOT p THEN r
RULE 97: IF m AND n THEN x
RULE 16: IF vital AND unimportant THEN action

The first form cannot occur in standard forms of decision table, and is therefore not
a problem. The second form can be detected in the decision table after a search over
all possible input values. The third form, as with all semantic errors, can not be
detected by practical means.

The presence of an unfireable rule may simply result from incomplete knowledge
on the part of the original human expert, and is not per se wrong; nor does it cause
any run-time problems. Future additions to the knowledge base may reverse the
situation and render the rule fireable.

4.1.5. Reducible rules

When two rules have conditions that are identical but for one variable, and that one
variable appears in a positive form in one rule, and negated in the other, and the
actions associated with the two rules are identical, then those two rules may be
reduced to one, by simply ignoring the differentiating variable. For example:

RULE 9: IF X AND Y AND Z THEN A
RULE 12: IF X AND NOT Y AND Z THEN A
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9 12
cl: W Y Y
c2: Y Y N
c3: Y Y
al: A X X

FIGURE 9. Rule reduction.

may be reduced to:

S. MURRELL AND R. PLANT

RULE 912: IF X AND Z THEN A

The unreduced form appears in a decision table as shown in Figure 9. This would be
transformed into a graph with the form shown in Figure 10 which executes correctly.
Reducible rules may be detected and reduced after a search of the decision table,
but do not need to be removed. The only potential disadvantages to leaving them
unreduced are that more packets are created than are strictly necessary, and some
irrelevant questions may be asked of the user. The correct operation of the system is

not compromised.

4.2. CONFLICTING RULES

Rules are in conflict when one allows a particular conclusion to be deduced, another
allows the inverse of that conclusion to be deduced, and both are able to fire. For

example:

RULE 1: IF P THEN Q
RULE 42: IF P THEN NOT Q

or

RULE 3: IF very_cold THEN nice_day
RULE 40: IF frigid THEN NOT nice_day

r
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FIGURE 10. Graph reduction of unnecessary rules.
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FIGURE 11. Run-time conflict detection.

Syntactic conflict may be detected by a search of the decision table; semantic
conflict is not practically detectable. In any case of conflict, when the conclusions are
syntactic inverses (as in the last example above), the graph-reduction implementa-
tion will always accept whichever conclusion is deduced first and not change if a
conflict arises later (once a conclusion has fired, it can not fire again, so can not
change its logical state), so a user may never become aware of the error. If there is a
risk of such conflicts, it is possible to add run-time consistency checking in the form
of an extra packet that monitors the results of conditions that could lead to conflicts,
ensuring that improper combinations never occur.

RULE 17: IF X THEN A
RULE 18: IF W AND Z THEN NOT A
RULE 19: IF Y AND W THEN A

This would produce the graph of Figure 11 (conclusions have been omitted for
clarity).

The “conflict” packet, combining the trees for [X OR (Y AND W)] and [W AND
7] is activated only if both reduce to true or both reduce to false, and produces an
error warning.

This solution may easily be generalized to cover systems which have sets of
complementary solutions such as negative/zero/positive (i.e. sets of conditions
which are mutually exclusive), by extending the actions of the “conflict” packet to
signal an error if more than one of its argument packets reduces to true, see Figure
12.

4.3. CIRCULAR RULES

Circularity is present when there is a sequence of rules, each of which “calls” the
next, and the last of which “calls” the first. This would appear in one of two forms
shown in Figures 13 and 14:

In many existent systems, either of these would be likely to cause an infinite loop.
In a graph reduction implementation, this can not happen. With the first representa-
tion this is due to the independent nature of packets (Figure 15). With the second
representation, a circular structure would be created (Figure 16). Once either of X
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FIGURE 12. Conflicting rules flags.

9 10
cl: W Y
c2: Z Y
al: Z X
a2:. X X

FIGURE 13. Circular Table 1.

9 10
X Y CY
z cYy Y

FIGURE 14. Circular Table 2.
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FIGURE 16. Circular rules.

or Z become true the other will also become true, but because packets may only be
reduced once no infinite loop occurs. It should be noted that while circularity is
often an undesired condition in a rule set, it does not necessarily signify an error.

5. Comments and conclusions

In this paper we have presented an alternative implementation of rule-based
systems, in an ALICE-like graph-reduction architecture. The graph-reduction style
of implementation when applied to a simple decision table specification of the
knowledge base has shown several advantages over the traditional styles of
implementation. The first benefit of this implementation style originates in the
automatic generation of ALICE programs from the decision table by a transforma-
tion program. This relieves the programmer of the code generation overhead,
placing the development emphasis upon the specification of the knowledge. Further
to this, the decision tables can easily be subjected to several validation tests to
identify errors or highlight possible conflicts (Murrell & Plant, 1995¢).

Thus, there are two paths to reliability: if the decision tables are accepted as an
unarguable specification or reality, and the transformation into a graph reduction
program is error free, the resultant implementation of a rule-based system is
guaranteed correct. Alternatively, if the decision tables may be imperfect, those
errors that can be detected, will be detected during the transformation process, and
those that can not be detected are usually the result of incomplete knowledge on the
part of the expert, and could not be avoided by any means.

The paper followed the research of earlier workers (Nguyen et al., 1985; Rushby,
1988; Murrell, 1989; Culbert, 1990; Preece, 1993; O’Leary, 1994; Plant et al., 1994;
Murrell & Plant, 1995b,c) in categorizing the kinds of error that may occur;
redundancy, conflict, circularity, and acquisition defects, and examined the conse-
quences of each of these validation error types in relation to the graph-reduction
implementation. This examination revealed that graph reduction is of course subject
to the same validation problems as other techniques in terms of semantic errors, but
was able to offer several advantages over traditional implementations for other error
types. In terms of syntactic identity, subsumption, direct redundancy, conflicting
rules, and circularity, it was shown that the problems associated with traditional
implementations, such as multiple firings of the same rule or infinite loops, would
not occur in a graph-reduction implementation due in part to the system’s inability
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to reduce packets which compute a rule more than once. Other categories of error
such as syntactic redundancy with either identical conditions or identical conclu-
sions, unused inputs or outputs, and missing rules were shown to be capable of
identification within the transformation process from the decision tables.

Thus, we have shown a new approach to the construction of knowledge-based
systems that has moved the onus of validation and verification away from testing to
the specification stage, whilst accommodating a parallel processing capability in a
graph reduction form that automatically raises the wvalidity of the rule base
processing through the packet-based nature of the computations, and produces a
significant speed-up in processing.
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