Int. J. Human—Computer Studies (1996) 44, 127-144 @

On the validation and verification of production
systems: a graph reduction approach

STEPHEN MURRELL

Department of Computer Science and Mathematics, University of Miami, Coral
Gables, FL 33124, USA

AND

ROBERT PLANT

Department of Computer Information Systems, University of Miami, Coral Gables,
FL 33124, USA. email: rplant@umiami.miami.edu

This paper takes a parallel processing approach to the implementation of rule-based
systems using a graph-reduction architecture, and investigates the consequences of
this architecture in relation to the validation and verification of knowledge-based
systems. The paper improves on the traditional sequential approaches to the
development of knowledge-based systems and the limited validation and verification
techniques that are applicable. This is contrasted with a graph reduction implemen-
tation of knowledge-based systems development based on an ALICE-like machine.
The advantages of this style of programming in relation to systems development and
program correctness are discussed. The paper shows that significant benefits could
potentially be achieved through the use of graph-reduction techniques in the
development of these systems. © 1996 Academic Press Limited

1. Introduction

This paper presents a parallel graph-reduction approach to the implementation of
knowledge-based systems. This approach relies upon a specification of the system in
terms of decision tables, and enables the automatic generation of programs that
implement the knowledge encoded in those tables. These automatically generated
programs are written in Malice (Murrell, 1989), a generic graph reduction program-
ming language. Automatic generation of programs from decision tables eliminates
the possibility of programming errors being included, and thus reduces the
validation, verification, and testing overhead.

The system takes decision tables as specifications of correct behavior, and
therefore relies upon a correct formulation of those tables. However, it is inevitable
that in real-world applications, human errors will occur, and result in inconsistent,
incomplete, or incorrect decision tables. It is accepted that the decision table could
be incorrect; the paper addresses the impact of decision table errors on the system as
a whole. This system has a degree of robustness uncommon in conventional
implementations, and will continue to function even with a conflicting data set.

Traditionally validation has been defined as determining whether an appropriate
product is being created; verification is the process of checking that product has been
created correctly (Boehm, 1981). The technique we use is primarily one of
verification, together with in-system run-time consistency checks. Due to the
concurrent nature of the parallel implementation, there is generally no run-time
overhead caused by the consistency checks.

127
1071-5819/96/020127 + 18$12.00/0 © 1996 Academic Press Limited

128 S. MURRELL AND R. PLANT

After a review of existing works on validation and verification, and parallel
implementations, for rule-based systems, we briefly introduce (in Section 3) the
ideas of graph reduction implementations of decision tables, then, in Section 4,
examine the consequences of decision table errors, and show how their impact can
be minimized.

2. Background to validation and verification for parallel knowledge
based systems.

Research into validation and verification of knowledge-based systems has been
progressing since the mid 1980s, when the need for techniques that considered the
completeness and correctness of rule-based systems became a concern to commer-
cial developers.

The foundations of the research into validation, verification and testing can be
traced back to work on testing in relation to conventional systems and its
extrapolation to the testing of early rule-based systems such as MYCIN (Suwa, Scott
& Shortliffe 1982). The creation of tools to assist in the process was soon to follow,
one of the first being applied to the R1/XCON System (Soloway, Bachant & Jensen
1987). From these beginnings we can break the research into five broad areas, each
of which has its own extensive literature, examples of which are cited below.

e Expert System Validation (Green & Keyes, 1987; Naser, 1988; O’Leary, 1988;
Rushby, 1988; Geissman & Schultz, 1988; Rushby & Whitehurst, 1989; O’Keefe
& O’Leary, 1992; Coenen & Bench-Capon, 1993).

¢ Knowledge-base Verification (Suwa et al., 1982; Nguyen, Perkins & Laffery,
1985; Ginsberg, 1987; Marcot, 1987; Cragun & Steudel, 1987; Stachowitz,
Chang, Stock & Coombs, 1987; Morell, 1988; Schultz & Geissman, 1988;
Botten, Kusiak & Raz, 1989; Radwan, Goul, O’Leary & Moffitt, 1989; Lehner,
1989; Miller, 1990; Ayel & Laurant, 1991b,c; Preece, Shinghai & Bataekh, 1992;
Antoniu, 1993; Preece, 1993; Valiente, 1993; Bench-Capon, Coenen, Nwana,
Paton & Shave, 1993).

e Tools (Freeman, 1985; Ginsberg & Rose, 1987; Cragun & Studel, 1987;
Krishnamurthy, Padalkar, Sztipanovits & Purvis, 1987; Loiseau, 1989; Kang &
Bahill, 1990; Vanthienen, 1991; Zlatarova, 1991; Ayel & Laurant, 1991a;
Charles & Dubois, 1991; Cuda & Dolan, 1991; Preece & Shinghal, 1991;
Becker, Green & Bhutinager, 1991; Steib, Small, Castells & Schofield, 1991;
EPRI, 1993; SENTAR, 1995).

* Development (Chen, 1976; Guttag & Horning, 1978; Davis & Lenat, 1982;
Grover, 1983; Buchanan et al.,, 1983; Carpenter & Murine, 1984; Wielinga &
Breuker, 1984; Alexander, Freiling, Shulman, Staley, Rehfuss & Messick, 1986;
Ince & Hekmatpour, 1987; Breauker et al., 1987; Boehm, 1988; Humphrey,
1989; Weitzel & Kershberg, 1989; Plant, 1991; ANSI, 1992; TRILLIUM, 1992;
Breuker & Van de Velde, 1994; Gold & Plant, 1994; Plant & Tsoumpas, 1994;
Akkermans, Schreiber & Weilinga, 1994; de Hoog, Martil, Weilinga, Taylor,
Bright & Van de Velde, 1994).

e Formal Methods (Bezem, 1987; Dahl, 1990; Bolonga, Ness & Siverstsen, 1990;
Breu, 1991; Fox, 1993; Herre, 1993; Meseguer, 1993; Hors & Rousset, 1993;

GRAPH REDUCTION AND VALIDATION 129

Rousset, 1993; Roman, Gamble & Ball, 1993; Krause, Fox, O’Neill &
Glowinski, 1993; Rousset, 1994; Gold & Plant, 1994; Ourston & Mooney, 1994;
Vermasan & Wergeland, 1994a,b; Bouali, Loiseau & Rousset, 1994; Krause,
Byers & Hajnal, 1994; Murrell & Plant, 1995a).

The application of Parallel Processing to Artificial Intelligence has been primarily in
the areas of vision processing, image analysis and robotic systems, areas with high
computational demands. The utilization of parallelism in the development of
knowledge-based systems has as a general rule been limited to prototype systems in
the areas of medical diagnosis (Plant, Murrell & Moreno, 1994; Murrell & Plant,
1995b; Todd, Stamper & Macpherson, 1995). The extension of parallel processing
into the area of knowledge-based systems development with a focus on the
validation and verification issues currently has only a small literature (Murrell &
Plant, 1995b).

The authors of this paper wish to extend the research into the application of
parallel processing for knowledge-based systems as it is our belief that there is a
fundamental problem with validating rule-based systems that have been imple-
mented in traditional programming styles such as LISP, CLIPS or OPS5. It is our
premise that these environments inhibit testing due to the complexity of the
implementations’ syntactic structures, and that the validation of the system should
be performed automatically where possible, and at run-time by the system, thus,
relieving the programmer of this overhead. Further, the system should be specifi-
able. In order to achieve these two goals the authors advocate the specification of
the systems’ rules in a simple decision table form that can be automatically
translated into an ALICET graph-reduction-machine program that is executable in a
multi-processing environment.

3. Parallel processing and graph reduction

With the movement of rule-based systems from the research laboratory into an
industrial setting there has been a significant increase in the size of the rule-bases
and a demand for faster processing. Any increase in processing speed has to be
derived in one of two ways: either by adapting the representation [e.g. ordering the
rules through techniques such as clustering (Mehotra, 1993)], or by new implemen-
tation platforms, such as parallel processing. There are many approaches to parallel
processing that could be taken [e.g. the Hypercube architecture (Seitz, 1985), Parlog
(Clocksin & Mellish, 1984; Clark & Gregory, 1986), the Connection Machine (Hillis,
1985), Occam and the Transputer (Hoare, 1985; Jones, 1986), Neural Nets (Minsky
& Papert, 1969; McLelland & Rumelhart, 1986)) however few have been applied
(Plant et al., 1994; Todd et al., 1995) to the implementation of knowledge-based
systems. In this work, we combine both directions, making a parallel implementation
based on an improved representation. The graph reduction architecture is based
upon the representation of programs and data in an efficiently interconnected form,
which allows the elimination of any searching, and gives a very natural representa-
tion of the decision structure.

+ We do not use ALICE itself, but a local implementation (MALICE) which follows the original very
closely.

130 S. MURRELL AND R. PLANT

3.1. GRAPH REDUCTION

Graph Reduction systems (Darlington & Reeve, 1981; Townsend, 1987; Reeve &
Zenith, 1989) provide a form of automatic concurrency in the execution of
programs. Programs and data are encoded as graphs in which the nodes represent
items of data and computational operations, and the arcs represent the structural
relationships between items of data, the interdependencies of computational
operations, and the application of operations to data. Eligible computational nodes
are selected, by nondeterministic means, for execution; if multiple processors are
available, multiple nodes will be executed concurrently. Any algorithm translated
into a graph reduction implementation can be expected to run with a degree of
concurrency, but for optimal concurrency, some deliberate design effort is, of
course, required. Graph reduction provides a high level conceptual base for program
design; the low level concerns of more conventional parallel platforms (such as the
interprocess communications overhead, and protection of shared data) are abstr-
acted away. As the concurrency is virtually automatic and transparent, it has no
impact of its own on the validation and verification process.

The general principle upon which this technique is built, is that a rule-based
system, originally provided in the form of a decision table, may be directly and
automatically translated into a graph. The graph itself may be understood as a
program to be executed by a graph-reduction computer. A very simple example is
shown below in Figures 1 and 2, which are from Plant er al. (1994) where a detailed
explanation may be found; the technique is covered fully in Murrell (1989) and
Murrell & Plant (1995b).

Each node in the graph represents an executable “packet”. A graph-reduction
machine in the style of ALICE (Darlington & Reeve, 1981) performs its computa-
tion by repeatedly selecting at random such a packet, and replacing it be an
equivalent (possibly empty) sub-graph of packets according to a set of programmed
rules.

Initially, only the “program” packet is eligible for selection; as it is dependent
upon two “‘conclude” packets, those two will become eligible. Eligibility of packets
for selection is propagated through out the graph, according to the programmed
rules, until some non-dependent packets become selectable.

When non-dependent packets (e.g. “condition” packets) are executed they are
replaced, according to the programmed rules, by what may be considered results;

1 2 3
ql: Y Y N
g2: N Y N
q3: Y - N
cl: X X

FIGURE 1. A trivial decision table.

GRAPH REDUCTION AND VALIDATION 131

[condition ql1 I | condition q2 I | condition g3 |

I negative | | negative |

= T] [=]

Conclude C1 Conclude C2

FIGURE 2. The graph created from Figure 1.

packets dependent upon these results thus become executable, until eventually the
“conclude” packets are able to provide their answers. An example of a large scale
application in the domain of psychiatry is described by Plant ef al. (1994) and a
detailed case study in graph-reduction development is provided by Murrell & Plant
(1955b).

4. Verification and graph-reduction

In this section we consider the aspects of verification that are of key concern to the
area of rule-based systems. We take the union of the areas identified by Culbert
(1990), Preece (1993) and O’Leary (1994) which enumerate types of possible defects
in the correctness of rule bases: redundancy, conflict, circularity, and errors
introduced by incorrect knowledge acquisition. These aspects of the validation of
rule-based systems have been considered by other researchers in relation to
conventional implementations (Nguyen et al., 1985; Rushby, 1988; O’Leary, 1994),
and are given a full treatment (with respect to the validation and verification of
decision tables) in Murrell & Plant (1995¢).

In the following sections we follow the organization of Murrell & Plant (1995¢)
showing how the four major decision table error types: Redundant rules (including:
identity, subsumption, indirect, unfireable, reducible), Conflicting rules, Circular
rules, and Errors of omission (unused inputs, missing rules, impossible combinations,
dead end rules) affect and are affected by a graph reduction implementation.
Accepting the assumption that decision tables used as specifications for graph-
reduction implementations may not be totally correct, it is necessary to be aware of
both the semantic and syntactic errors that can occur, and work towards methods for
their detection and solution. In general, semanic errors can not be detected and we

132 S. MURRELL AND R. PLANT

show what effects their presence can have on the behavior of the system. Syntactic
errors are easier to detect, and for these we also discuss the appropriate detection
methods.

4.1. REDUNDANT RULES

A redundant rule is simply one which makes no contribution to the system.
Redundancy may be decomposed into five sub-categories: identity, subsumption,
indirect redundancy, unfireability, and reducibility. None of these cause any practical
problems for the graph-reduction implementation.

4.1.1. Identity
The first type of redundancy to be considered is that of identical rules, which can be
broken down into two sub-categories: syntactic and semantic redundancy.

The case of syntactic redundancy is illustrated thus:

RULE 26: IF X AND Y THEN Z
RULE 93: IF Y AND X THEN Z

where both rules will be applicable if X and Y have been substantiated. This can
cause several problems in traditional implementations in that the rule may be fired
twice, as the conflict resolution strategy is often ineffective in removing or coping
with redundancy. However, in the graph reduction implementation these problems
can not arise, as once a rule fires it ceases to be computable and therefore can never
be fired again. In many cases second and subsequent rules leading to the same
conclusion would never even be tested once the conclusion has fired. This also
illustrates the automatic conflict resolution strategy of this implementation.

The implementation of redundant rules, therefore, is not problematic for a
graph-reduction implementation. However, the developer may wish to detect these
redundancies prior to implementation. This can be done when the decision tables
are constructed. Syntactically redundant rules can be identified as identical columns
in a decision table. For example, the rules given above would appear in the form of
Figure 3. This would produce the graph shown in Figure 4.

Syntactic redundancy presents no practical difficulties, it may be taken as a sign of
an error in the rule-base and is efficiently detectable as shown in Murrell & Plant
(1995¢).

... 26 ... 93
cl: X .. Y ... Y
c2. Y oY .Y
al: Z D G ¢

FIGURE 3. Redundant rules.

GRAPH REDUCTION AND VALIDATION

133

1

UnR|Query|“"cl:X"

k1

11
Un}lli!ii _J

r1

1

T
Or2|

c2

UnR |Query|"c2:¥"|

i

k2

UnR | And2

|

t UnR

|

[

FIGURE 4. Graph reduction of syntactically redundant.

A less tractable, but strongly related problem is semantic redundancy. This covers
cases when two (or more) rules have the same meaning, but are formulated in

different ways.

RULE 45: IF X AND Y THEN “weight > 22401lbs”
RULE 83: IF Y AND X THEN “weight>1 ton”
(i.e. the conclusions are semantically equivalent).

45 83
cl: X Y Y
c2. Y Y Y
al: Z1 X
al: 722 X

FIGURE 5. Semantic equivalence.

These would be represented by the decision table shown in Figure 5 and the graph
reduction implementation is shown in Figure 6. The problem becomes more acute
when the conditions are semantically but not syntactically equivalent. For example:

RULE 63: IF hot AND humid THEN thunderstorms
RULE 99: IF sultry THEN electricalstorms.

cli

Query

k1
[pmaa]

]
|Canc1 | z1

c2

=T

k2

Prop

[zl] |

|Conc1|| |22 |

FIGURE 6. Graph reduction of semantic redundant rules.

134 S. MURRELL AND R. PLANT

7 8
cl: W Y Y
c2: X Y Y
c3. Y Y -
al: Z X X

FIGURE 7. Subsumption.

There is no possibility for a solution to this problem being brought about by graph
reduction or any other implementation method; the problem can not be identified
without some knowledge that is outside the system. (i.e. hot and humid means
sultry). Problems of this type (occasionally referred to as deep inconsistencies) are in
general not open to solution without the application of intelligence, and arise in
many different forms.

4.1.2. Subsumed rules

One rule is said to be subsumed by another, when it specifies that the same (or
fewer) actions are to be applied under the same (or stricter) conditions. Subsump-
tion is a generalization of the problem of identity, and has both syntactic and
semantic variants, of which only the former is practically detectable. As an example,
in the following, rule 7 is subsumed by rule 8.

RULE 7: IF W AND X AND Y THEN Z
RULE 8: IF W AND X THEN Z,

which may be represented as a decision table, such as Figure 7. These would then
produce the graph shown in Figure 8.

Subsumed rules do not create any significant problem for the graph-reduction
approach to the implementation of production systems because once a conclusion
has been fired it ceases to be computable and therefore can not be fired again (as in

1
k1
UnR|Query|"cl:W" UnR | And3 |

J

ﬁ"

T rlp I T
l |UnRiOr2| ! ['Concl

©
=
o

c2

k2
UnR neziXr| UnR | And2
1

[

7

FIGURE 8. Graph reduction of subsumed rules.

GRAPH REDUCTION AND VALIDATION 135

the case of syntactic redundancy). The only slight problem is that the number of
packets created may be increased unnecessarily.

4.1.3. Indirect redundancy
Indirect redundancy of the form:

RULE 11: IF p THEN q
RULE 22: IF q THEN r
RULE 33: IF p THEN r

can only be reliably detected by a brute force search over all possible sets of inputs.
Clearly such a search which would require exponential time is not a practical
proposition for any real system (although some systems do attempt this). Indirect
redundancy is again a generalization of Identity, and also has an intractable semantic
variant.

In our graph reduction approach the search would not be necessary as the
reduction process would fire based upon the quickest reduction. Thus, a significant
advantage is achieved through this approach for the usual reason that conclusions
can not be fired twice.

4.1.4. Unfireable rules
A rule may be unfireable for one of three reasons:

¢ its condition is a logical impossibility (e.g. rule 23 below),

e its condition is logically possible but no combination of other rules firing can
satisfy it (e.g. rule 97 below, under the assumption that both m and n can be true,
but not at the same time),

* the condition is semantically impossible (e.g. rule 16 below).

RULE 23: IF p AND NOT p THEN r
RULE 97: IF m AND n THEN x
RULE 16: IF vital AND unimportant THEN action

The first form cannot occur in standard forms of decision table, and is therefore not
a problem. The second form can be detected in the decision table after a search over
all possible input values. The third form, as with all semantic errors, can not be
detected by practical means.

The presence of an unfireable rule may simply result from incomplete knowledge
on the part of the original human expert, and is not per se wrong; nor does it cause
any run-time problems. Future additions to the knowledge base may reverse the
situation and render the rule fireable.

4.1.5. Reducible rules

When two rules have conditions that are identical but for one variable, and that one
variable appears in a positive form in one rule, and negated in the other, and the
actions associated with the two rules are identical, then those two rules may be
reduced to one, by simply ignoring the differentiating variable. For example:

RULE 9: IF X AND Y AND Z THEN A
RULE 12: IF X AND NOT Y AND Z THEN A

136

9 12
cl: W Y Y
c2: Y Y N
c3: Y Y
al: A X X

FIGURE 9. Rule reduction.

may be reduced to:

S. MURRELL AND R. PLANT

RULE 912: IF X AND Z THEN A

The unreduced form appears in a decision table as shown in Figure 9. This would be
transformed into a graph with the form shown in Figure 10 which executes correctly.
Reducible rules may be detected and reduced after a search of the decision table,
but do not need to be removed. The only potential disadvantages to leaving them
unreduced are that more packets are created than are strictly necessary, and some
irrelevant questions may be asked of the user. The correct operation of the system is

not compromised.

4.2. CONFLICTING RULES

Rules are in conflict when one allows a particular conclusion to be deduced, another
allows the inverse of that conclusion to be deduced, and both are able to fire. For

example:

RULE 1: IF P THEN Q
RULE 42: IF P THEN NOT Q

or

RULE 3: IF very_cold THEN nice_day
RULE 40: IF frigid THEN NOT nice_day

r

cl
UnR[Query|"cl:X"

|

c2

r
1
\
\

1]
|

T T 1 T
IUnRIQuery vcz:yv| ,UnR]Negative
1

I 1
BER

iprop

FIGURE 10. Graph reduction of unnecessary rules.

GRAPH REDUCTION AND VALIDATION 137

v J I |
1 =10 [100
C ' (e [T]
S — 1L
, =il
=

FIGURE 11. Run-time conflict detection.

Syntactic conflict may be detected by a search of the decision table; semantic
conflict is not practically detectable. In any case of conflict, when the conclusions are
syntactic inverses (as in the last example above), the graph-reduction implementa-
tion will always accept whichever conclusion is deduced first and not change if a
conflict arises later (once a conclusion has fired, it can not fire again, so can not
change its logical state), so a user may never become aware of the error. If there is a
risk of such conflicts, it is possible to add run-time consistency checking in the form
of an extra packet that monitors the results of conditions that could lead to conflicts,
ensuring that improper combinations never occur.

RULE 17: IF X THEN A
RULE 18: IF W AND Z THEN NOT A
RULE 19: IF Y AND W THEN A

This would produce the graph of Figure 11 (conclusions have been omitted for
clarity).

The “conflict” packet, combining the trees for [X OR (Y AND W)] and [W AND
7] is activated only if both reduce to true or both reduce to false, and produces an
error warning.

This solution may easily be generalized to cover systems which have sets of
complementary solutions such as negative/zero/positive (i.e. sets of conditions
which are mutually exclusive), by extending the actions of the “conflict” packet to
signal an error if more than one of its argument packets reduces to true, see Figure
12.

4.3. CIRCULAR RULES

Circularity is present when there is a sequence of rules, each of which “calls” the
next, and the last of which “calls” the first. This would appear in one of two forms
shown in Figures 13 and 14:

In many existent systems, either of these would be likely to cause an infinite loop.
In a graph reduction implementation, this can not happen. With the first representa-
tion this is due to the independent nature of packets (Figure 15). With the second
representation, a circular structure would be created (Figure 16). Once either of X

138 S. MURRELL AND R. PLANT

=

g

| [Tee [T [Temme]

g

l] | i POSITIVEI | l
— |

FIGURE 12. Conflicting rules flags.

9 10
cl: W Y
c2: Z Y
al: Z X
a2:. X X

FIGURE 13. Circular Table 1.

9 10
X Y CY
z cYy Y

FIGURE 14. Circular Table 2.

cl

r T] 1
UnR Qusry Unready ! Conclusion | |X |
c2
UnR|Query|"c2:X" | Unready

FIGURE 15. Circularity in the rules.

Propagate
|

Conclusion i EZ |

I

GRAPH REDUCTION AND VALIDATION 139

1
OR3 l l I | Conclusion |

OR3 i i I] Conclusion || | 4 |

FIGURE 16. Circular rules.

or Z become true the other will also become true, but because packets may only be
reduced once no infinite loop occurs. It should be noted that while circularity is
often an undesired condition in a rule set, it does not necessarily signify an error.

5. Comments and conclusions

In this paper we have presented an alternative implementation of rule-based
systems, in an ALICE-like graph-reduction architecture. The graph-reduction style
of implementation when applied to a simple decision table specification of the
knowledge base has shown several advantages over the traditional styles of
implementation. The first benefit of this implementation style originates in the
automatic generation of ALICE programs from the decision table by a transforma-
tion program. This relieves the programmer of the code generation overhead,
placing the development emphasis upon the specification of the knowledge. Further
to this, the decision tables can easily be subjected to several validation tests to
identify errors or highlight possible conflicts (Murrell & Plant, 1995¢).

Thus, there are two paths to reliability: if the decision tables are accepted as an
unarguable specification or reality, and the transformation into a graph reduction
program is error free, the resultant implementation of a rule-based system is
guaranteed correct. Alternatively, if the decision tables may be imperfect, those
errors that can be detected, will be detected during the transformation process, and
those that can not be detected are usually the result of incomplete knowledge on the
part of the expert, and could not be avoided by any means.

The paper followed the research of earlier workers (Nguyen et al., 1985; Rushby,
1988; Murrell, 1989; Culbert, 1990; Preece, 1993; O’Leary, 1994; Plant et al., 1994;
Murrell & Plant, 1995b,c) in categorizing the kinds of error that may occur;
redundancy, conflict, circularity, and acquisition defects, and examined the conse-
quences of each of these validation error types in relation to the graph-reduction
implementation. This examination revealed that graph reduction is of course subject
to the same validation problems as other techniques in terms of semantic errors, but
was able to offer several advantages over traditional implementations for other error
types. In terms of syntactic identity, subsumption, direct redundancy, conflicting
rules, and circularity, it was shown that the problems associated with traditional
implementations, such as multiple firings of the same rule or infinite loops, would
not occur in a graph-reduction implementation due in part to the system’s inability

140 S. MURRELL AND R. PLANT

to reduce packets which compute a rule more than once. Other categories of error
such as syntactic redundancy with either identical conditions or identical conclu-
sions, unused inputs or outputs, and missing rules were shown to be capable of
identification within the transformation process from the decision tables.

Thus, we have shown a new approach to the construction of knowledge-based
systems that has moved the onus of validation and verification away from testing to
the specification stage, whilst accommodating a parallel processing capability in a
graph reduction form that automatically raises the wvalidity of the rule base
processing through the packet-based nature of the computations, and produces a
significant speed-up in processing.

References

AKKERMANS, J. M., SCHREIBER, A. T. & WieLINGA, B. J. (1994). Steps in constructing
problem solving methods. Shareable and Reusable Problem Solving Methods. Proceedings
of the 8th Banff Knowledge Acquisition for KBS Workshop, pp.29-1-29-21. Alberta,
Canada.

ALEXANDER, J. H., FREILING, M. J., SHULMAN, S. J., STALEY, J. L., REHFUSS, S. & MESSICK,
S. L. (1986). Knowledge level engineering: ontological analysis. AAAILS, pp.963-968.
Philadelphia, PN.

ANSI (1992). Life Cycle Development of Knowledge Based Systems Using DoD-Std 2167A.
ANSI/ATAA G-031-1992.

AnToNIU, G. (1993). Modular design & verification of logical knowledge-bases. AAAI
Workshop on Validation & Verification of Knowledge-based Systems. Washington, DC.

AveL, M. & LauranT, J. P. (1991a). SACCO-SYCOJET: two different ways of verifying
KBS. In M. AverL & J. P. Laurant, Eds. Validation, Verification and Test of
Knowledge-Based Systems, pp. 63—76. Chichester: Wiley & Sons.

AvEer, M., LaurrenTt, J. P. (19915). Two different ways of verifying knowledge-based
systems. In M. AvEeL, J. P. LAURRENT, Eds. Validation & Verification of Knowledge-
based Systems. Chichester: Wiley & Sons.

AYEL, M. & LAURRENT, J. P. (1991¢). Validation & Verification of Knowledge-based Systems.
Chichester: Wiley & Sons.

BECKER, L. A. GrREEN, P. G. & BHUTINAGER, J. (1989). Evidence flow graphs for V&V of
expert systems. NASA Contractor Report 181810, Langley Research Center, Hampton,
VA, USA.

BencH-CAPON, T., COENEN, F., Nwana, H., PaTon, R. & SHavE, M. (1993). Two aspects of
the validation and verification of knowledge based systems. IEEE Expert, 8, 76-81.
BezEMm, M. (1987). Consistency of rule-based expert systems. Lecture Notes in Computer

Science, 310. Berlin: Springer-Verlag.

Boenm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall.

Boenm, B. W. (1988). A spiral model of software development and enhancement. /[EEE
Computer, 21, 61-72.

BortEeNn, N., Kusiak, A. & Raz, T. (1989). Knowledge-bases: integration, verification and
partitioning. European Journal of Operational Research, 42, 658—662.

BoualLy, F., Loiseau, S. & Rousser, M. C. (1994). KBS correction: a proposal based on
diagnostic theory. Proceedings of ECAI-94 Workshop on Validation & Verification of
Knowledge-based Systems. Amsterdam, The Netherlands.

Breu, R. (1991). Algebraic Specification Techniques in Object Orientated Programming
Environments Berlin: Springer-Verlag.

BREUKER, J. & VAN DE VELDE, W. (1994) (Eds). Expertise model document part II: the
commonKADS library. ESPRIT Project P5248 KADS-11/T/VUB/TR/054/3.0/June.
BREAUKER, J. A., WIELINGA, B. J., VAN SoMEREN, M., DE HooG, R., SCHREIBER. A. T., DE
Greer, P., BReDWEG., B., WIELMAKER, J., BiLraurr, J. P., Davoopo, M. &
Havywarp, S. A. (1987). Model driven knowledge acquisition: interpretation models.

GRAPH REDUCTION AND VALIDATION 141

ESPRIT Project P1098 Deliverable D1 (task Al), University of Amsterdam and STL
Ltd, Amsterdam, The Netherlands.

BucHaNaN, B. G., BArstow, D., BEcHTAL, R., BENNETT. J., CLANCY, C., KuLikOowskI. C.,
MrrcHELL, T. & WATERMAN. (1983). Constructing an Expert System. In F. HAvEs-
RotH, D. A. WaTERMAN, & D. G. LeEnart, Eds. Building Expert Systems. Reading,
MA: Addison-Wesley.

CARPENTER, C. L. & MurINE, G. E. (1983). Measuring software product quality. Applying
software quality metrics. ASQC Quality Congress Transactions, pp. 373-377.

CHANG, C. L., Coowmss, J. B. & StacHowitz, R. A. (1990). A report on the expert systems
validation associate (EVA). Expert Systems with Applications, 1, 217-231.

CHARLEs, E. & Dusois, O. (1991). MELODIA: logical methods for checking K-bases. In N.
AveL & J. P. Laurant, Eds. Validation, Verification and Test of Knowledge-Based
Systems, pp. 95-105. Chichester: Wiley & Sons.

CHEN, P. (1976). The entity relationship model—towards a unified view of data. ACM
Transactions of Database Systems, 1, 9-36.

Crark, K. L. & GrEGORY, S. (1986). PARLOG: parallel programming in logic. ACM
TOPLAS, 8, 1-49.

CrocksiN, W. F. & MeLLisH, C. S. (1984). Programming in Prolog. Berlin: Springer Verlag.

CoeNEN, F. & BencH-CaPoN, T. (1993). Maintenance of Knowledge-Based Systems London:
Academic Press.

CraGgun, B. J. & Steuper, H. J. (1987). A decision-table processor for checking
completeness and consistency in rule-based expert systems. International Journal of
Man—Machine Studies, 26, 633—648.

Cupa, T. & Doran, C. P. (1991). Tool aided non formal knowledge verification. AAAT
Workshop on V&V, Anaheim.

CuLserrt, C. (1990) (Ed). Verification and validation of knowledge-based systems. Expert
Systems with Applications, 1, 197-328.

Dawnt, O. J. (1990) Object-orientation and formal techniques. Department of Informatics,
Research Report No. 138. University of Oslo, Norway.

DarLINGTON, J. & REEVE, M. (1981). ALICE, a multiprocessor reduction machine.
ACM/MIT Conference on Functional Programming Languages and Computer
Architecture, New Hampshire.

Davis, R. & Lenat, D, (1982). Knowledge-based Systems in Al New York, NY:
McGraw-Hill.

peE Hoog, R., MarTiL, R., WiELINGA, TAYLOR, R., Brigur, C. & Van pE VELDE, W.
(1994). The common KADS model set. ESPRIT Project P5248 KADS-
1I/DM1.1b/UvA/018/6.0/FINAL.

ESPRI ‘93 (1993). Survey and assessment of conventional software verification & validation
techniques. SPRI TR-102106, Project 3093-01, Final Report, February.

Fox, J. (1993). On the soundness and safety of expert systems. Al in Medicine, 5, 159-179.

Geissman, J. R. & Scaurtz, R. D. (1988). Verification and validation of expert systems. A
Expert, February, 26-33.

GINSBERG, A. (1987). A new approach to checking knowledge bases for inconsistency and
redundancy. 3rd Annual Conference on Expert Systems in Government, pp.102-111.
Washington, DC, USA.

GINSBERG, A. & Rosg, L. (1987). KB-reducer: a system that checks for inconsistency and
redundancy in knowledge-bases. Technical Report, AT&T Laboratories, Holmdel, NJ,
USA.

GoLp, D. I. & PranT, R. T. (1994). Towards the formal specification of an expert system.
International Journal of Intelligent Systems, 9, 739-768.

Green, C. J. R. & Keves, M. M. (1987). Verification and validation of expert systems.
Western conference on expert systems. In U. Gurera, Ed. Validating and Verifying
Knowledge-Based Systems, pp. 20-29. Los Alamitos, CA: IEEE Press.

GROVER, M. D. (1983). A pragmatic knowledge acquisition methodology. Proceedings of the
International Joint Conference on Artificial Intelligence, 8, pp. 436—438. Washington, DC,
USA.

142 S. MURRELL AND R. PLANT

GuTtTag, J. V. & HornNiNg, J. J. (1978). The algebraic specification of data types. Acta
Informatica, 10, 27-52.

Herrge, H. (1993). Semantical completeness of model based diagnosis. Proceedings of
EUROVAV’93. Palma de Mallorca, Spain.

Hiriis, W. D. (1985). The Connection Machine. Cambridge, MA: MIT Press.

Hoarg, C. A. R. (1985). Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice
Hall.

HorLiNAGEL, E. (1989). The Reliability of Expert Systems. Hemel Hempstead: Ellis Horwood.

Hors, P. & Rousser, M. C. (1993). Consistency of structured knowledge: a formal
framework based on description logics. Proceedings EUROVAV’93, Palma de Mallorca,
Spain.

HumpHREY, W. (1989). Managing the Software Process. Reading MA: Addison-Wesley.

Ince, D. C. & HekMATPOUR, S. (1987). Software prototyping—progress and prospects.
Information and Software Technology, 29, 8-14.

Jones, G. (1986). Programming in Occam. Englewood Cliffs, NJ: Prentice Hall.

Kang, Y. & Baniit, T. (1990). A tool for detecting expert system errors. Al Expert,
February 42-51.

KRrAuUSE, P., Fox, J., O’NEIL, M. & GLowinskl, A. (1993). Can we formally specify a medical
decision support system? [EEE Expert, 8, 56—62.

KraAusg, P., Byers, P. & HamnaL, S. (1994). Formal specification and decision support.
Decision Support Systems, 12, 189.

KRrRiSHNAMURTHY, C. PADALKAR, S. SzTipanoviTs, T. & Purvis, B. R. (1987). Methodology
for testing and validating knowledge bases. Proceedings of the 3rd Conference on Al For
Space Applications, NASA JSC, Houston, TX, USA.

LEHNER, P. E. (1989). Towards an empirical approach to evaluating the knowledge-base of an
expert system. [EEE Transactions on Systems, Man and Cybernetics, 19, 658—662.

Lorseau, S. (1989). La description et la detection des incoherences dans les bases de regles.
Proceedings of the International Conference on Expert Systems and their Applications,
Avignon, France.

Loiseau, S. & Rousser, M. C. (1993). Formal verification of knowledge bases focused on
consistency: two experiments based on ATMS techniques. International Journal of Expert
Systems: Research & Applications, 6, 273-280.

Marcor, B. (1987). Testing your knowledge-base. AI Expert, 2, 42-47.

McLELLAND, J. L. & RuMELHART, D. E. (1986). Parallel Distributed Processing. New York,
NY: MIT Press.

MEHOTRA, M. (1993). Multi-viewpoint clustering analysis. Workshop Notes, AAAI Workshop
on Validation & Verification. Washington, DC.

MESEGUER, P. (1993). Expert system verification through knowledge base refinement.
Proceedings of the IICAI-93, Chamberly, France.

MriLLEr, L. A. (1990). Dynamic testing of knowledge bases using the heuristic testing
approach. Expert Systems with Applications, 1, 271-281.

Minsky, M. L. & PaperT, S. A. (1969). Perceptrons. New York, NY: MIT Press.

MoreLL, L. J. (1988). Use of metaknowledge in the verification of knowledge-based systems.
Proceedings of the IEA-AIE, June, pp. 847-857.

MURRELL, S. (1989). Guide to malice. University of Miami, Computer Science Technical
Report No 1. Department of Math & Computer Science, University of Miami, FL.

MuRrrEeLL, S. & PranTt, R. T. (19954). Formal semantics for rule-based systems. Journal of
Systems & Software (in press).

MuURRELL, S. & Prant, R. T. (1995b). A graph reduction implementation of a production
system. Knowledge-Based Systems, 8, 155-160.

MuUrreLL, S. & Prant, R. T., (1995¢). Decision tables: formalization, validation and
verification. Journal of Software Testing, Reliability and Validation, 5, (9).

NASA ConreERENCE PuBLICATION 2491 (1987). First Annual Workshop on Space Operations
Automation and Robotics (SOAR’87). Johnson Space Centre, Houston TX, August 5-7.

Naser, J. (1988). Nuclear power plant expert system verification & validation. AAAI
Workshop Notes on Verification & Validation of Knowledge-based Systems, pp. 1-18, St.
Paul, MN: AAAI Press.

GRAPH REDUCTION AND VALIDATION 143

NGuven, T. A., Perkins, W. A. & Larrery, T. J. (1985). Checking an expert systems
knowledge base for consistency and completeness. Proceedings of the Ninth International
Joint Conference on Al, 18-23, Los Angeles, CA. pp. 375-378. August.

O’KEErE, R. M. & O’Leary, D. E. (1992). Expert system verification and validation: a
survey and tutorial. Artificial Intglligence Review, 16, 25-60.

O’LEARY, D. E., (1988). Methods of validating expert systems. Interfaces, 18, 72-79.

O’LeEary, D. E., Ed. (1994). Collected Papers of AAAI Workshops on Validation and
Verification 1988-92. Reading, MA: Wiley & Sons.

OurstoN, D. & Mooney, R. J. (1994). Theory refinement combining analytical and
empirical methods. Artificial Intelligence, 66, 273—309.

Prant, R. T. (1990). Validation and verification and testing of knowledge-based systems.
Heuristics: The Journal of Knowledge-based Systems, 3, 59-67.

PranT, R. T. (1991). Utilising formal specifications in the development of knowledge-based
systems. In D. PARTRIDGE, Ed. Artificial Intelligence & Software Engineering. Norwood,
NJ: Ablex Press.

Prant, R. T. & Tsoumpas, P. (1994). An integrated methodology for knowledge-based
system development. Expert Systems with Applications, 7, 259-271.

PranT, R. T., MURRELL, S. & MoreNo, H. R. (1994). Prototype decision support system for
a differential diagnosis of psychotic, mood, and organic mental disorders: Part II. Medical
Decision Making, 14, 273-289.

PrREECE, A. (1993). A new approach to detecting missing knowledge in expert system rule
bases. International Journal of Man—Machine Studies, 38, 661-688.

PrEECE, A. D., & SHINGHAL, R. (1991). COVER: a practical tool for verifying rule-based
systems. AAAI Workshop on Validation & Verification Notes. Anaheim, CA.

PrREECE, A. D., SHINGHAL, R., & BATAREKH, A. (1992). Verifying expert systems: a logical
framework and a practical tool. Expert Systems with Applications, 5, 421-436.

Rapwan, A. E., Gour, M., O’Leary, T. J. & Morritt, K. E.; (1989). A verification
approach for knowledge-based systems. Transportation Research-A, 23A, 287-300.

Reeve, M. & ZenitH, S. E., Eds (1989). Parallel Processing and Artificial Intelligence.
Chichester: Wiley.

RomanN, G., GamBLE, R. F. & Barr. W. E. (1993). Formal derivation of rule-based
programs. IEEE Transactions on Software Engineering, 19, 277-296.

Rousser, M. C. (1994). Knowledge formal specifications for formal verification: a proposal
based on the integration of different logical formalisms. Proceedings of the ECAI%4,
Amsterdam, The Netherlands.

RusHBY, J. (1988). Quality measures and assurance for Al software. NASA Contact Report
NASI-17067, Langley Research Centre, Hampton, VA, USA.

RusHBY, J & WHITEHURST, R. A. (1989). Formal verification of Al software. NASA Contract
Report 18226 (Task 5), February, Langley Research Centre, Hampton, VA, USA.

Scaurtz, R. & Geissman, J. R. (1988). Bridging the gap between static & dynamic
verification. In U. Gurpra, Ed. Validating & Verifying Knowledge-Based Systems,
pp. 86-92. Los Alamitos, CA: IEEE Computer Society Press.

Serrz, C. L. (1985). The cosmic cube. Communications of ACM, 28, 22-33.

SENTAR ‘95 (1995). Distributed hybrid systems V&YV database annex C. Technical Report,
Sentar, Inc., Huntsville, AL.

SoLoway, E., Bacuant, J. & Jensen, K. (1987). Assessing the maintainability of
XCON-in-RIME: coping with the problem of a very large rule-base. Proceedings of the
oth IJCAI, pp. 824-829, Seattle, WA, USA.

Stacuowitz, R. A., Caang, C. L., Stock. T. S. & Coowmss, J. B. (1987). Building
Validation Tools for Knowledge-Based Systems. In NASA Conference Publication 2491,
First Annual Workshop on Space Operations Automation and Robotics (SOAR’87),
pp- 209-216. Johnson Space Centre, Houston, TX. August 5-7.

SteB, M., SMaLL, R., CastELLS, C., & ScHOFIELD, J. (1991). Tailoring VASTT for expert
system verification, validation and testing. Workshop Notes: AAAI Workshop on V&V.
Anaheim, AL.

Suwa, M., Scorr, A. C.,, & SuortLIFFE, E. H. (1982). An approach to verifying
completeness & consistency in a rule-based system. Al Magazine, 3, 16-21.

144 S. MURRELL AND R. PLANT

Topp, B. S., STaAMPER, R. & MacpHERsSON, P. (1995). A probabilistic rule-based expert
system. International Journal of Bio-Medical Computing (in press).

TownsenD, P. (1987). Flagship hardware and implementation. /CL Technical Journal, 5,
575-594.

TRILLIUM (1992). TRILLIUM: telecom software product development capability assess-
ment model. Bell Canada Quality. Technical Report Draft 2.2., Bell Canada, July.

VALIENTE, G. (1993). Verification of knowledge-based redundancy and subsumption using
graph transformations. [International Journal of Expert Systems: Research and
Applications, 6, 341-355.

VanTHIENEN, J. (1991). Knowledge acquisition and validation using a decision table
engineering workbench. World Congress of Expert Systems, pp. 1861-1868, Orlando, FL,
USA.

VErRMASAN, A. I. & WERGELAND, T. H. (1994a). A formally based methodology for deriving
verifiable expert systems from specifications. Workshop Notes, AAAI Workshop on
Validation & Verification. Seattle, WA.

VERMESAN, A. I. & WERGELAND, T. (1994b). Expert system verification and validation: issues
and approaches. Working Paper: 82/1994, Centre for Research in Economics and
Business Administration, University of Oslo. Norway.

WEerTzEL, J. R. & KERSHBERG, L. (1989). Developing knowledge-based systems: reorganising
the system development life cycle. Communications of the ACM, 32, 482-490.

WIELINGA, J. B. & BREUKER, J. A. (1984). Analysis techniques for knowledge-based systems:
part 1. Report 1.1 Esprit Project 12.

Ziatarova, N. (1991). VVR: a uniform framework for expert system knowledge bases
verification, validation and refinement. Workshop Notes: AAAI Workshop on V&V,
Anaheim, AL.

