Towards the Formal Specification of an
OPS5 Production System Architecture

David 1. Gold
P. A. Consulting Group, Buckingham Palace Road, London SW1W 9SR,

England

R. T. Plant
Dept. of Computer Information Systems, University of Miami,
Coral Gables, Florida 33124

The article presents a formal specification for many important aspects of the OPS5
production systems framework. The article illustrates how an abstract formal specifica-
tion of a production system can be created and the benefits this provides to those
involved in the development of knowledge-based systems. The formal specification is
preceded by an informal specification of a production system upon which the formal
model is based and the development is illustrated through the use of concrete examples.
The notation used is that of **Z’" (J. M. Spivey, The Z Notation, Prentice-Hall, Engle-
wood Cliffs. NJ, 1990), a language based upon typed set theory. This language has been
used to success in the specification of critical conventional software systems (1. Hayes,
Technical Monograph PRG-46, Oxford University Computing Laboratory, Oxford, En-
gland, 1985y and which is formal enough to allow for the creation of rigorous specifica-
tions, yet is of a form that makes these specifications ‘‘readable.”” The aim of the article
is to show that formal techniques can be applied to areas of knowledge-based system
development, thus promoting correctness, reliability, and understanding. © 1994 John
Wiley & Sons, Inc.

I. FORMALITY IN SOFTWARE DEVELOPMENT

The need for correct computer systems has long been recognized and
researchers have become focused upon the need for formality in all stages of
system development. In no stage is this more important than in that of specifi-
cation, where the basis for all subsequent development takes shape. It is vital
that the specification be clear, concise, and above all unambiguous in its
presentation of the system requirements. The specification acts as an interme-
diary for both systems analyst and the person for whom the system is being
constructed. Therefore, the need for a specification that is capable of being read
by both parties is needed, a goal that is not always an easy one to satisfy, given
that the specification needs to be formal enough to avoid the ambiguities ren-

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 9, 739-768 (1994)
© 1994 John Wiley & Sons, Inc. CCC 0884-8173/94/080739-30

740 GOLD AND PLANT

dered by the use of a natural language specification, and given the constraint
that most people instigating the creation of a system do not have a training in
formal techniques. The second role that a specification fulfills is as a baseline
document that the programmer will develop his system from, again this re-
quires that the programmer be literate to formal techniques. After taking these
personnel constraints into account, the advantages that can be gained through
the use of rigorous and formal methods can be enormous in all stages of dewvel-
opment. Firstly, the act of creating a specification forces all parties to agree
upon a document that unambiguously defines the software that to be produced,
and that the software match the specification. This avoids the most costly of all
errors, programming errors due to the misinterpretation of a specification, as
with a formal specification there is no room for misinterpretation. Secondly,
formal techniques accommodate the development of a concrete specification
from the abstract one through the use of data refinement rules,' leaving the
programming of the system as a trivial exercise. Thirdly, the specification can
act as a mechanism to assist in the maintenance of the system.

It can therefore be seen that the creation of a formal specification can
assist a system to reach a degree of correctness unobtainable for systems
created without employing such mechanisms.

II. FORMALISM FOR KBS

The use of formal techniques in computer science has its detractors who
state that the overheads imposed in the creation of formal specifications are mot
acceptable, for systems that are not trivial. This argument can be countered in
several ways, by showing examples of large system specifications,” giving a
cost benefit analysis of the costs saved by not having to rewrite a large system
due to problems found in a nonformal specification or by considering the need
for correctness in critical systems such as those used to control nuclear reac-
tors or avionic systems. In systems where correctness is an issue, the use: of
formal techniques had, due to these factors, become more prevalent in recent
years. It follows therefore that the area of knowledge-based systems, in which
sensitive and critical software is often constructed, is an area that will benefit
from the deployment of such techniques.

Knowledge-based systems can be created in many different ways, for ex-
ample the representation may be based upon the use of frames, semantic met-
works or rules. The control architecture may be forward chaining, backward
chaining or bi-directional and the knowledge itself may necessitate the use of a
heuristic method such as certainty factor algebra, fuzzy logic or probabibity
measures. Each of these areas and their interaction with each other can benefit
from formalization, as there has been little work to provide even a rudimentary
denotational semantics for the major representations. It is therefore the aim of
this article to show how an abstract specification of a production system can be
created and how this will benefit knowledge engineers and expert system buifd-
ers. We will first present an informal specification of a production system, this
will be followed by a brief introduction to the approach we take towards forma-
lization before presentation of the specification itself.

OPS5 PRODUCTION SYSTEM ARCHITECTURE 741

II. AN INFORMAL SPECIFICATION OF A PRODUCTION SYSTEM

We now present an informal description of a production system, prior to
the development of an abstract specification which describes this class of
systems.

A production system has three components: (i) A working memory which
represents the current state of the problem. (ii) A collection of productions
which are stored in a production memory. A production consists of a condition
part and an action part. The condition is some pattern which is either satisfied
or not satisfied by the current contents of the working memory; the action part
specifies some change to be made to the working memory when the condition
part is satisfied. (iii) An interpreter which executes the production system using
a recognize-act cycle which may be described by the following algorithm:

While (There is at least one production
whose condition part is satisfied by the
contents of the working memory) and
(the goal* has not been reached)
do
select a satisfied production and carry
: out its action part
od
The set of productions whose condition part is satisfied on any one particu-
lar cycle is known as the conflict set. Note that this algorithm is nondeterminis-
tic, since we have not specified how we should choose a production from the
conflict set when more than one is available. This process of selecting which
production to execute, if more than one is eligible, is known as conflict
resolution.

IV. A SIMPLE EXAMPLE OF A PRODUCTION SYSTEM

We can illustrate these ideas by means of a simple example, the Water Jug
Problem.? Suppose we are given two jugs, one of which holds four gallons of
water and one which holds three gallons. The problem is to fill the four-gallon
Jug with exactly two gallons of water, given that we are only allowed the
following operations: fill a jug, empty a jug or transfer (some/all of) the contents
of one jug to the other.

We can solve this problem by means of a production system. As we stated
earlier, the working memory should represent the current state of the prob-
lem—in this case, the number of gallons in each jug. We can represent this by
the ordered pair (x, y) in which x is the number of gallons in the four-gallon jug,
and y is the number in the three-gallon jug; the goal may then be represented by
the pair (2, y). Some typical productions might be:

*Typically, there will be a goal—a solution to a particular problem for which the
production system has been written. This will be represented by a certain configuration
of the working memory.

742 GOLD AND PLANT

pl(x,y]y <3)— (x,3) Fill the 3-gallon jug

P2 (x,y | x> 0)— (0, y) Empty the 4-gallon jug

pP3(x,ylx+y>=4 Pour water from the 3-gallon jug

andy > 0)—> 4,y — (4 - x) into the 4-gallon jug until the
4-gallon jug is full

pdlx,ylx+y<=4 Pour all the water from the 3-

andy >0 — (x+y, 0) gallon jug into the 4-gallon jug

Here, the conditions (to the left of the arrows) are terms related to the current
values of x and y. The actions (to the right of the arrows) specify a new working
memory which has been transformed in some way corresponding to one of our
primitive operations. Obviously, we want to apply some sequence of produc-
tions which result in x having the value 2 (we are not concerned with the final
value of y). In fact, the productions which we have listed above are sufficient to
find a solution—the sequence p1;p4;;pl;p3;p2;p4 will leave exactly 2 gallons in
the 4-gallon jug (assuming that both jugs are initially empty).

Note that in any given state, there may be many applicable productions
that it is quite possible for the system to enter trivial infinite loops, e.g., repeat-
edly filling and emptying one of the jugs. The conflict resolution strategy should
handle such potential problems and enable the interpreter to choose sensibly
from the conflict set so that the system makes progress towards the goal.

V. THE FORMAL SPECIFICATION OF A PRODUCTION SYSTEM

In this section, we shall develop an abstract formal specification of produc-
tion systems which is based on the ideas which we have described. The “*Z2"
notation*’ in which this specification is presented, is based upon typed set
theory and has been used to construct specifications for real world critical
systems based upon conventional programming technigues.$

In this specification we shall not be concerned with the internal structure
of working memories or productions; we therefore choose to introduce two
given sets, WM-—the set of all possible working memories, and PRODUC-
TION—the set of all possible production rules.

We can model a production rule by a relation (it might seem, the light of
our simple example system, that we could model a production as a function,
but later in the article we show that in some systems, the productions require a
relational model) which maps working memories onto (appropriately trans-
formed) working memories, the domain of each such relation being exactly
those working memories which satisfy the condition part of the production. By
appropriately transformed, we mean that each new working memory must be
obtainable from the old one, as a result of carrying out the action part. We can
define a function which produces the relation that a particular production rule
“‘represents’’:

rel : PRODUCTION — (WM & wN)

SRS

OPS5 PRODUCTION SYSTEM ARCHITECTURE 743

e.g., with reference to our simple example system:
(4,0)+(4,3) € rel (p1) & (3,3)—(4,2) € rel (p3)
A production memory is some set of productions:
pmemory : {P PRODUCTION)
The system state is composed of a working memory, and a production memory:
STATE

—
wmemory : WM
pmemory : (P PRODUCTION)

We define a ASTATE to be a state—state transformation in which the produc-
tion memory remains unchanged:

— ASTATE -
STATE
STATE'

pmemory’ = pmemory

In the subsequent specifications, we shall always assume that a ASTATE
is of this form. The recognize-act cycle can be modeled by a ASTATE in which
the old working memory does not satisfy the goal and the new working memory
is obtained by applying some production, whose condition is satisfied in the old
state, to the old working memory:

— RACYCLE —
ASTATE

» G (wmemory)
3 p : pmemory . (wmemory,wmemory') € rel (p)
WHERE G is some predicate which specifies the goal

Note that we do not specify which productions would be executed if more
than one is eligible, i.e., we do not specify a conflict resolution strategy, and
therefore, our specification is nondeterministic.

V1.. THE FORMAL SPECIFICATION OF A PRODUCTION
SYSTEM FRAMEWORK

In this section we shall develop a specification of a production system
framework, in which production systems for various applications may be built.
The system will be based on some of the ideas used in the OPS5 production
system.”8 This has particular relevance to the area of expert systems, since R1,
one of the best known and most successful systems is written in OPS5.% The
specification will illustrate how the ideas introduced in the previous section
might be implemented in a particular system.

GOLD AND PLANT

A. The Working Memory

The elements appearing in the working memory are record-like structures
called attribute-value elements, which consist of a class-name, followed by
some attributes and their respective values, suppose we decide to try and solve
the water jug problem using this system. An empty 4-gallon jug must be repre-
sented: :

CLASSNAME ATTRIBUTE ' ATTRIBUTE
NAMES VALUES
Jug capacities 4 ’
contents 0

Here the class-name is jug, the attribute-names are capacity and contents, their
respective values being 4 and 0.

In a world of colored building blocks, we might want to represent a green
block whose sides are all of length 10:

block color green
~ length 10
breadth 10
height 10
or a red block with sides of various lengths:
block color red

length 4
breadth 5

height 6

We need to be able to differentiate between class-names, attribute-names,
and values in our specification, and therefore introduce three given sets:
CLASS—the set of all class-names, ATTR—the set of all attribute-names, and
VALUE-—the set of all values.

All attribute-value elements must be declared before they can be used—a
declaration consists of a class-name, and the set of attributes which are associ-
ated with this class-name, e.g., :

block - color
length
breadth
height

We can model the set of declared attribute-value elements by a function which
maps a class-name onto their associated collection of attributes:

P

OPS5 PRODUCTION SYSTEM ARCHITECTURE 745

declared : CLASS -+ (P ATTR)

so, that, e.g., declared (block) = {color, length, breadth, height}
We can now describe an attribute-value element more formally:

— AV-ELT
class : CLASS
avpaire : ATTR -+ VALUE

class € dom declared
dom avpairs = declared (class)

In this system, a working memory is some collection of these attribute-value
elements, so that WM—the set of all possible working memories, is the set of
all possible sets of attribute-value elements, ie., P AV-ELT

WM i -
f‘ P AV-ELT

The following is an obvious lemma:

vV m: WM
Vx,y:m.
x.class = y.class — dom.x.avpairs = dom y.avpairs

B. Conditions

In this section, we shall describe the form of the condition part of a produc-
tion in our system, and show how such conditions may be satisfied by a work-
ing memory. In order to maintain consistency between this article and the
OPSS5 Users Manual, we shall refer to the condition part of a production as a
left-hand side (LHS).

Informally, a ILHS consists of a collection of condition elements, each of
which may matich an attribute-value element in the working memory. An exam-
ple of a condition element is:

block color blue <« a value
length X < a variable
breadth X

In this example, we introduce a variable, X (in all examples, single capital
letters will denote variables) which matches any value. This condition element
will match any block whose color attribute has the value blue, and whose length
and breadth attributes have the same value; if the length and breadth attributes
were matched to different variables, the condition element would match any
block with the color blue. Note also, that a condition element need not specify

746 GOLD AND PLANT |

values for all declared attributes of a class—in this case the attribute height is
missing.

A LHS is satisfied by a working memory if, and only if, each of its condi-
tion elements matches an attribute-value element in the working memory (note
that several condition elements in a LHS may match one particular attribute-
value element in the working memory).

Before we begin to formalize condition elements and LHSs we introduce
another given set, VAR—the set of all variable names. Any element of the set
VAR may be bound in the usual way to a unique element in the set VALUE; a
binding is a function from variables to values:

BINDING 7
[. VAR -9 VALUE :

We now introduce the idea of a value specifier, which may be either a
value or a variable, and define the set VSPEC, as the disjoint union of set VAR
and VALUE:

-

The usual injective constructor functions are defined:

VSPEC

var'<<VAR>> 1 val <<VALUE>>

var: 1 VAR >+ VSPEC
val: : VALUE »» VSPEC

ran var U.ran val VSPEC
ran.var N ran val = @

A condition element consists of a class-name, and some attribute, value-speci-
fier pairs. The class-name and associated attributes must be declared:

. CE

clags : CLASS
avepecs : ATTR —» VSPEC

class € don declared
dom avapece ¢ declared (class)

Note that our example condition element from above should now be written
slightly differently:

block - color val (blue)
fength var (X)
breadth = var(X)

- A LHS is, then, some set of condition elements (in fact, in OPSS; the LHS
~1s specified as a sequence of condition elements for various implementational
reasons, but we can ignore this restriction here. Note though, that by making

OPS5 PRODUCTION SYSTEM ARCHITECTURE 747
this simplification we lose the capability of including duplicated condition ele-
ments in a LHS):

LHS X
(_ condelts : (P CE)

A function which will prove useful in varsin, which extracts all the variables
which appear in a condition element:

varsin : CE — (P VAR)

vargin = X ce : CE .

ran (ce.avspecsjvar™) (1)

(1) ce.avspecs;var~! is a composition of functions of type ATTR —|—
VSPEC and VSPEC — |- VAR, which yields a function of the type ATTR —|->
VAR. The domain of this function is the set of attributes in the condition
element which map onto variables (as opposed to values). The range of this
function gives us the required set of variables.

An instantiation of a condition element involves a successful matching of
the condition element to an attribute-value element, and the resulting binding of
the variables in the condition element to the corresponding values in the
matched element, e.g.,

CE AV-ELT
block color val (red) matches block color red
length var (X) length 2
height var (X) height 4

producing
{XH— 2, Y 4)

More formally:

~ CE-INST

CE
AV-ELT’
binding : BINDING

clase = class’ (1)
dom binding = varsin (8CE) (2)
avepecsjval™ ¢ avpairs® (3
avepecsjvar 'jbinding ¢ avpairs' (4)

(1) In order for an attribute-value element to match a condition element,
they must have the same class-name.

(2) The resulting binding must be a binding of all the variables in the
condition element, and only those variables.

N

748 GOLD AND PLANT

(3) avspecs;val ! is a composition of functions of type ATTR ~|— VSPEC
and VSPEC —|— VAL, which produces a function type ATTR —|— VAL, soin

the above example: X
avepecs val™

(colour — val (red), {val (red) Y red,)

length — var (X), H val (4) + 4,...)}) = {colour +* red} ,

height + var (Y)}

By specifying that this set must be a subset of avpairs, we ensure that each s
attribute of the condition element which maps onto a value must map onto
exactly the same value in a matched attribute-value element.
(4) avspecs;var~!; binding is a composition of functions of type ATTR —|—
VSPEC, VSPEC —|— VAR and VAR -}-» VALUE, and so is of type
ATTR —|— VALUE, e.g. above:

avepecs var™* binding
{colour — val (red), {var (X) — X, (X — 2, >
length +— var (X), H var (Y) »— Y,..} 3 Y — 3} =

height — var (Y)}
{length — 2, height +— 3}

By specifying that this set must be a subset of avpairs, we ensure that for
each attribute ““A’’ of the condition element which maps onto a variable V',
the following must hold: the value to which *“V’’ is bound in binding must be
the value onto which ‘*A’’ maps in the attribute-value element (e.g., above,
length maps onto X in the condition element, and X maps onto the value Z in
the binding, which is indeed the value of length in the matched attribute-value
element). Note that the functionality of the binding requires that any attributes
of the condition element which map onto the same variable must match the
same value.

An instantiation of a LHS consists of an instantiation of each of its condi-
tion elements with the restriction that any variables which appear in more than
one condition element must be consjstently bound:

—— LHS-INST
LHS

matched : WM

ceinste : (P CE-INST)
lhsbinding : BINDING

ACE-INST.6CE (ceinsts} = condelts (1)
ACE-INST.BAV-ELT' (ceinets) = matched (2)
lhsbinding = U inst.binding (3)

Inst 1 oceinste

(1) the projection function is used here to extract each of the instantiated
condition elements. These are, of course, exactly those which appear in the
LHS.

~

OPS5 PRODUCTION SYSTEM ARCHITECTURE 749

(2) As in (1), the projection function is used, this time to extract each of the
matched attribute-value elements. It will prove useful to have explicitly named
this collection of matched attribute-value elements. Note that we allow several
condition elements to match the same attribute-value element, e.g., suppose a
I.HS is composed of the following condition elements:

block color val (red) block length var (X)
height var (X)

These might both match the following attribute-value element in working
memory:

block color red
length 5
breadth 1
height 5

In this case the set matched would contain a single element, the attribute-value
element above.

(3) The functionality of the Ihsbinding ensures that any variables which
appear in more than one condition element must match the same value.

C. Actions

We now describe the action part of a production in our system. Again, to
maintain consistency with the OPS5 document, we shall rename an action part
as a right-hand side (RHS).

A RHS is a collection of operations which specify changes to be made to
the working memory. The operations which we shall allow to make, and re-
move. The make operation builds a new attribute-value element to be added to
the working memory; the element built by a make operation is specified by a
pattern which takes the same form as a condition element. We can illustrate
how this works informally; given a condition element and binding of the vari-
ables which appear in the condition element, e.g.,

block colour val (red) X 2,y - 3}

length var (X)
height var (Y)

We can construct a unique corresponding attribute-value element:

block color red
length 2
breadth NIL
height 3

Note that any attributes which are not specified in the condition element are
given the default value NIL—this is a special member of the set of VALUESs

750 GOLD AND PLANT

which is used in these circumstances. We can define a function which con-
structs an attribute-value element in this way:

make : (CE x BINDING) -+ AV-ELT

make =
M ce,bind) : CE x BINDING | varein (ce) € dom bind .
cAV-ELT | class = ce.clase A avpairs =
{att — NIL | att € declared (clase)) ® (1)
ce.avapecss({var *jbind) U val™®) (2)

(1) The attribute-value pairs can then be constructed by giving all the
declared attributes the default value NIL, and then (2) overwriting with the
values specified in the CE together with the binding. The functions are com-
posed (see previously CE-INST) to produce a set of attribute |— value pairs
with which we overwrite the attribute |- NIL pairs.

The remove operation specifies the deletion of.an element from working
memory. The element to be deleted by the remove operation is one of those
which has matched a condition element on the LHS. As we mentioned earlier,
in OPSS, the LHS is a sequence of condition elements; in this case, the element
to be removed is indicated by an integer /, which means that the attribute-value
element matching the ith condition element in the LHS sequence should be
removed from the working memory. This is best illustrated informally:

CE, CE, CE, ,—\

: : : N REMOVE 0.,2,...
AV~ELT AV-ELT AV-ELT

In order to achieve an analogous effect in our specification, we need some
way of indicating a particular condition element on the LHS. The simplest way
to do this is by explicitly including the condition element in question:

AN

\\ REMOVE CE,,CE,, ...
AV-ELT

AV-ELT

We can define a function which formalizes this:

remove : (LHS-INST x (P CE)) - (P AV-ELT)

remove =
M(lheinst,setce) : LHS-INST x (P CE) |
getce ¢ lheinst.condelts . (1)
ACE-INST.BAV-ELT ' {{ceinst:inst.ceinsts |
ceinst,B8CE € satcel) (2)

i e

OPS5 PRODUCTION SYSTEM ARCHITECTURE 751

(1) When specifying what must be removed, we should only ‘“‘refer’” to
condition elements on the LHS.

(2) We restrict the set of condition element instantiations to those whose
condition elements is in the set to be removed, and then extract the matched
attribute value elements from this resulting set using the projection function.

A RHS is some collection of these make and remove operations, all of
which may be specified, as described above, by conditional elements:

RHS -
(— makes,removes : (P CE)

A production consists of a LHS and a RHS:

. PRODUCTION 1
LHS
RHS
removes & condelts (1)
U varsin (makes} ¢ U varsin (condelts}) (2)

(1) All the removes should refer to a condition element on the LHS.

(2) The variables in the condition elements of the makes on the RHS must
appear somewhere on the LHS (so that they will be bound when the production
has been instantiated).

A production instantiation consists of a production and an instantiation of
the LHS of the production:

INST 4
PRODUCTION
[_ LHS-INST
Clearly, a particular production may be instantiated in several different
ways (i.e., the LHS may match several different sets of attribute-value ele-
ments) given a particular working memory. We can define a function which

produces the set of all possible instantiations of a production in a working
memory:

allingt : (PRODUCTION x WM) — (P INST)

allinst = A(p,wmemory) : PRODUCTION x WM .
{INST { ©PRODUCTION = p A matched & wmemory)

The RHS of a production can be carried out only once the production has
been instantiated. We can define a function apply which illustrates the effect of
carrying out the operations specified in a production’s RHS, given a particular
instantiation of the production from the working memory. Informally, a new
working memory is obtained by removing the attribute-value elements specified
in the removes part of the RHS, and then adding the newly constructed ele-
ments, as specified in the makes part:

752 GOLD AND PLANT

apply : (INST x WM) —+ WH

apply = X(inst,wmemory) : INST x WM |
inst € allinst (inst.BFRODUCTION.wmemory) .
cwmemory' : WM |
wmemory' = (wmemory ~ DELETES) U ADDS
WHERE
DELETES = remove (inet.BLHS-INST, inst.removes)) (1)
ADDS = U { make (ce,inst.lhebinding)) (2)

c® | insl.makes

(1) This function call produces the set of attribute-value elements to be
removed.

(2) This constructs the set of attribute-value elements to be added to the
working memory.

As we would expect, the make operations may exactly cancel out
the effect of the remove operations in which cases, apply(inst,wmemory) =
wmemory. This happens when DELETES = ADDS, and of course
includes the trivial case where inst.makes = inst.removes = {}

At this point, we can begin to see how this specification relates to the more
abstract specification presented earlier. Recall that we defined a function rel,
which given a production, produces the relation (between working memories)
which the production ‘‘represents’”. We can now define rel for this specifi-
cation:

rel : PRODUCTION — (WM & WMD)

rel = Ap : PRODUCTION .
((wmemory, wmemory’) : WM x WM |
3 INST : allinst (p, wnemory) |
wnemory’ = apply (BINST,wmemory))

We can now see why rel returns a relation, and not a function. As we have
seen, a production may be instantiated in several different ways in a working
memory; when applied, each of these instantiations may produce a different
resulting working memory, so that for a particular production, a given working
memory may map to several different working memories.

As we would expect, the state of the system is defined by a production
memory, together with a working memory:

STATE
—
[_ pmemory : (P PRODUCTION)

wmemory : WM

The recognize-act cycle now corresponds closely to that of our previous specifi-
cation: .

OPSS5 PRODUCTION SYSTEM ARCHITECTURE 753

— RACYCLE

ASTATE

3 p € pmenmory | (wmemory,wmemory') € rel (p)

A AState, as in the previous specification, includes a predicate stating that the
pmemory does not change. Note that, as previously, this specification is nonde-
terministic, since we do not specify which instantiation of the selected produc-
tion should be used, when there are several available. The conflict resolution
strategy might, in fact, be very simple, e.g., choose any instantiation of any
satisfied production, but usually a more complex strategy is proposed.

VII. EXTENDING THE SPECIFICATION

Having created the basic constructional framework of our specification,
we shall now add some new facilities, which make it resemble the OPS5 system
more closely. More specifically, we shall extend the capabilities of the LHS to
allow more powerful pattern matching and negated condition elements. This is
necessary for as the specification stands, we would find it difficult to solve even
such simple problems as that of the water jugs described earlier. This is because
the capabilities of the conditions are too limited; we can not express conditions
such as *‘the 4-gallon jug is not full’’ in the concise way in which the predicate
X < 4 does.

A. More Powerful Pattern Matching

In the previous specification, a condition element consisted of a class-
name, plus some attribute, value-specifier pairs, in which a particular attri-
bute’s value was specified in an “‘all or nothing’’ fashion, by either a value or a
variable. In OPS5 however, more powerful pattern matching facilities are pro-
vided, by which the user may specify a range of values within which the
matched value must lie. Without listing all of the available facilities, we can
illustrate the kind of things that can be done, through a few simple examples:

{>1<5}
This pattern will match any value which lies between 2 and 4 inclusive.
{abcde}

This pattern denotes the disjunction of values, and will match any of the values,
a, b,c,d, ore.

{>1<>X}

In this example, we introduce the idea of testing a previously bound vari-
able—this pattern will match any value which is greater than ! and not equal to
the current binding of the variable X.

From these few examples, it should be clear that certain pattern operators

754 GOLD AND PLANT

(e.g., <, >) should be applied only to a certain subset of the possible values
(the numeric ones), and that if we wanted to specify patterns in detail, we
would need to introduce more structure into the set VALUE. We purposely
decide to ignore the internal structure of the patterns and the problems of type,
and introduce a new set, PATTERN—the set of all possible patterns.

We can see that a pattern may be evaluated to yield a set of ‘‘allowed”’
values which it represents; of course, any variables which appear in the pattern
must each be bound to a unique value, in order to allow such an evaluation.

It will be useful if we can extract the set of variables tested in a pattern:

1
varsinpatt : PATTERN — (P VAR)

For example, varsinpatt ({ > 1 < Y}) = {Y}

The evaluation function, given a pattern and a binding of all the variables in the
pattern, will produce the set of ‘‘allowed’’ values which the pattern represents:

1
eval : (PATTERN x BINDING) - (P VALUE)

donm eval = {(p,b) : PATTERN x BINDING |
varsinpatt (p) ¢ dom b}

The application of this function to the above example patterns can be illustrated
informally as follows:

eval ({ >1 <5), (})) = (2,3,4)
eval ({abcde), {(}))= {a,b,c,gd,e)
eval ({ >1 < X}, (X 5) = {2,3,4,6,7,...)

We want to modify our definition of a condition element, so that the values
to be matched are now specified by patterns, e.g.,

block color {red blue}
length {> 5 < 10}

However, if we are to allow variables to be resred within the patterns,
these variables must be bound, elsewhere, prior to testing; with this in mind,
we ‘‘tag onto’’ each condition element pattern a variable, to which the matched
value (if one is found) will be assigned:

block color {red blue} X
length {>5<10} Y
height { <Y} Z

It is important to note the different uses of variables illustrated in this
example; the variables X, ¥, and Z appearing on the far right are free variables

Ais

OPS5 PRODUCTION SYSTEM ARCHITECTURE 755

to which a matching value will be assigned. The variable Y appearing in the
height pattern { < Y } is used for an entirely different purpose—it is assumed to
have been bound to a particular value, which is tested. Here, we can begin to
see how variables may be tested usefully within patterns—any matching attri-
bute-value element must have a height value less than its length value.

An implementational restriction of OPSS worth noting is that there is a
known order in which the attributes of a condition element are matched (and
therefore, in which the variables are bound). This necessitates that variables
may only be tested in patterns which occur ““after™ (in the order of matching)
the position in which the variable is bound. So, supposing that, in the above
example, the attributes were matched in the order color, length, height, we
could test the value of Z in either of the preceding patterns. We shall, for the
sake of simplicity, choose to ignore this restriction, and allow variables to be
tested irrespective of where in the condition element they are bound.

Recall that in the previous specification, a value-specifier was either a
value or a variable. We redefine a value-specifier as an object which consists of
a pattern, and a free variable:

. VSPECH 1
patt : PATTERN

assignto : VAR

assignto £ varsinpatt (patt)

In OPSS, either the pattern or the free variable may be absent from a value
specifier, but we keep the specification simpler by requiring that both be
present. This seems a reasonable thing to do, since, we may regard an absent
pattern as one which matches any value; implicitly defined variables might
easily be introduced into the specification at a later date, to deal with the
possibility of absent variables.

Note that we have added on a **1”’ suffix to denote a modified component;
we shall continue to use this convention. Comparing with the capabilities of the
previous version of a value-specifier, we can see that the pattern component
may be used to specify a single value by using a pattern such as {=red}. To
specify an ‘‘unrestricted’’ variable, an empty pattern may be used.

We can now formally define one of these new condition elements which we
have described informally above. An important point to note is that each attri-
bute has a different free variable to which a matched value will be assigned:

~ CE1)
class : CLASS
avepece : ATTR - VSPECH

claes € dom declared

dom avspecs & declared (class)

V al,aZ : dom avepecs . al # a2 ¢
AVSPEC1.assignto {avepecs (al)) g
AVSPEC!.assignto (avespecs (a2)) (1)

756 GOLD AND PLANT

(1) This predicate ensures that each attribute has a different free variable,
Note also that our new specification of a condition element permits variables to
be tested which are not assigned to anywhere in the condition element. (We
shall see the reason for this later).

In order for an attribute-value element to match one of these new condition
elements, their class names must be the same, and each matched attribute’s
value must fall within the range of values specified by the corresponding pat-
tern in the condition element, e.g.,

CEl
block color {<>blue} X matches block color red
length {>3} Y length 5
height { <> Y} Z breadth 6

height 7

because

block = block
red € eval ({ <> blue },binding)

5 € eval ({ > 3 },binding)
7 € eval ({ <> Y },binding)

WHERE binding = (X—red, Y—5, Z+—7)

Before formalizing these ideas, we introduce two more functions, as-
signed, which extracts all the variables which are assigned to in a condition
element, and tested, which extracts all of the variables rested in the patterns of
a condition element:

aspigned : CE1 — (P VAR)

tested : CE1 — (P VAR)
aseigned =

Ace : CE1l . AVSPECi.assignto (ran ce.avspecs)
tested =

Ace : CE1l . varsinpatt (AVSPEC1.patt {ran ce.avspecs})

So, applied to the condition element in the above example, assigned will
produce the set {X, Y, Z} and tested will produce the set {Y}.

As before, an instantiation of a condition element consists of the condition
element, a matching attribute-value element and the resulting binding of vari-
ables (remember that some of the tested variables may not be assigned to in the
condition element—these variables are assumed to have been bound elsewhere
in the LHS instantiation of which the condition element instantiation is part):

CE-INST1
CE1
AV-ELT’
binding : BINDING

r

s v

OPS5 PRODUCTION SYSTEM ARCHITECTURE 757

class’ = class (1)
dom binding = assigned (BCEl) U tested (BCE1) (2)
a € dom avspecs =

avpairs' (a) €

eval (AVSPEC1.patt (avspecs(a)),binding) A (3
avpairs' (a) =
binding (AVSPEC1.assignto (avspecs(a))) (4)

{1) In order for an attribute-value element to match a CE1, they must have
the same class-name.

(2) The binding must be a binding of all the variables in the condition
element and only those variables.

(3) Each matched attribute’s value must fall within the set of values al-
lowed by the corresponding condition element pattern.

(4) The binding must bind each free variable in the condition element to the
“correct’’ value, i.e., the value of the attribute with which it is associated in the
condition element. For example, in the above example, X must be bound to red
(and not 5, 6, or 7).

B. Negated Condition Elements

Until now, we have regarded a condition element as an object which
specifies something which must be present in the working memory; a LHS was
a collection of condition elements, each of which had to match something in the
working memory in order for the LHS to be satisfied. In OPSS, however,
condition elements may be negated; a negated condition element is simply a
condition element with an indicator attached which implies that the condition
element should not match anything in the working memory.

A LHS is now satisfied by a working memory if each of its positive (i.e.,
nonegated) condition elements can be successfully instantiated with an element
in the working memory, and none of its negated condition elements can be
instantiated given the binding produced from the instantiations of the positive
condition elements.

We can begin to formalize these ideas by introducing a new set of condition
elements which is composed of the disjoint union of the sets of negated and
positive condition elements:

CE2 \
f_ neg <<CE1>> | pos <<CEl>>

The usual constructor functions are assumed to be defined. A LHS con-
sists, as before, of a collection of condition elements, but now, any of these
may be negated (in fact, in OPSS the sequence of condition elements must begin
with at least one positive condition element, but we shall choose to ignore this
restriction):

758 GOLD AND PLANT

—— LHS1 =
condelts : (P CE2)

tested (celas) ¢ assigned {pos '(condelts)} (1)
Y ce,ce’ : coles . ce # ce' =
assigned (ce) N assigned (ce') = @& (2)

WHERE cels = (pos“lcéndeltsl U neg '(condelts))

(1) Any variables which are tested in a LHS must be ‘‘assigned to’’ in some
positive condition element of the LHS (since the free variables appearing in
negated condition elements will not be assigned to in a *‘successful’’ matching).

(2) Each variable is assigned to only once, in a LLHS.

As we discussed earlier, the order in which the matching is carried out is
important since a pattern can not be evaluated until all of its tested variables
have been bound. In OPSS, the sequence of condition elements is matched in
““left to right”’ order, so that variables may only be tested once they have been
bound ‘‘somewhere to their left’’ in the sequence. In choosing to represent the
LHS as an unordered collection of condition elements, we have purposely
ignored such implementation restrictions, thereby keeping the specification
simpler.

Two functions which will be useful are positives, which extracts all the
positive condition elements from a LHSI, and negatives, which extracts all the
negated condition elements:

positives : LHS1 — (P CE1)
negatives : LHS1 - (P CE1)

positives =

Alhs : LHS1 . pos™*(1lhs.condelts)
negatives =

Alhs : LHS1 . neg '(lhs. condelts)

An instantiation of a LHS now consists of an instantiation on each of its
positive condition elements—we do not include here the idea that the negated
condition elements must not match anything in the working memory (we for-
malized this later, in the definition of the allinst function):

LHS~INST1 —
LHS1
matched : WM
ceinsts : (P CE-INST1)
lhebinding : BINDING

—

ACE-INST1.6CE1 {ceinsts} = positives (BLHS1) (1)
ACE-INST1.BAV-ELT"' {ceinsts} = matched (2)
lhsbinding = U inst.binding (3)

Inst ; celnsts

A ol -

OPS5 PRODUCTION SYSTEM ARCHITECTURE 759

(1) The condition elements instantiated are the positive condition elements
in the LHS.

(2) The matched attribute-value elements are those which appear in the
condition element instantiations.

(3) The functionality of the binding ensures that all variables must be

consistently bound.

C. Resulting Changes in the Specification

We shall not extend the capabilities of an action part in our system—in
OPSS, a modify command is provided, by which matched attribute-value ele-
ments may be modified, but, since an equivalent effect can be achieved using
the make and remove commands, this is somewhat superfluous. In addition,
there are actions which fall outside those permitted in a pure production sys-
tem, e.g., I/0O operations, actions which add productions to the production
memory, and so on. Here, however, we shall simply note the changes which
our extensions to the LSH necessitate.

As we have said, we shall not extend the capabilities of an action part. The
specification of a RHS must be modified so that the removes have the correct

type:
RHS1 1

makes : (P CE)
removes : (P CE1l)

A production is now:

— PRODUCTION} -
LHS1
RHS1
removes & positives (BLHS1) (1)
U varein (makes) ¢ U assigned {(positives (6LHS1)) (2)

(1) The removes should only refer to positive condition elements, since the
negative condition elements will not match anything in a successful instantia-
tion.

(2) The variables appearing on the RHS in the elements to be built must be
assigned to in some positive condition element in the LHS (since only these
variables will be bounded). A production instantiation looks much as it did

previously:
INST1 -
PRODUCTIONt
LHS-INST1
We can now describe the intended effect of the negated condition elements

more formally. The allinst function which produces the set of all instantiations
of a production in a particular working memory must be modified to take into

760 GOLD AND PLANT

account the fact that an instantiation of each of the positive condition elements
in the LHS represent a valid instantiation of a production only if each of the
negated condition elements cannot be instantiated given the resulting binding:

1
allinstl : (PRODUCTIONi x WM) — (P INST1)

allinstl = A(p,wmemory) : PRODUCTION{ x WM .
{INST1 | BPRODUCTION! = p A
matched € wmemory A (1)
V ce : negatives (BLHS1)
» 3 CE-INST1 |
6CE1l = ce A
BAV-ELT' € wmemory A
binding & lhsbinding) (2)

(1) All of the matched elements must be from the working memory.

(2) This predicate ensures that, as we stated above, it is not possible to
instantiate any of the negated condition elements with an element from the
working memory, given the binding produced as a result of instantiating the
positive condition elements.

The effect of carrying out the operations of a RHS is, informally, exactly
the same as in the previous specification—the new working memory is ob-
tained by removing and adding attribute-value elements, as specified. We shall
not detail here the remaining changes required, since they are straightforward,
and can, in fact involve simply suffixing with ones where appropriate. As one
example, we see that the new rel function is:

rell : PRODUCTIONL — (WM & WM)

rell = Ap : PRODUCTIONi ,
{wmemory, wnemory': WH x WM |
3 INST1 : allinstl (p,wmemory) |}
woemory’ = applyil (BINST1,wmemory))

This definition is, in fact, of exactly the same form that of rel, the only
difference being that certain components now have ‘1’ suffixes.

An exception to this claim that new components can be derived by simply
adding suffixes, is the remove function, which must be modified to take into

—

removel : (LHS-INST1 x (P CE1)) -» (P AV-ELT)

removel =
Minst,setce) : LHS-INST1 x (P CE1) {
setce ¢ positives (inst.BLHS!)
ACE-INST1.8AV-ELT' (c:inst.ceinste |
c.BCE1 € getcoa))

OPS5 PRODUCTION SYSTEM ARCHITECTURE 761

account the possibility of negated condition elements in a LHS instantiation
(clearly, we should only ‘““point t0”’ positive condition elements in the LHS
when specifying what is to be removed).

VIII. GOALS REVISITED

We now return to the question of goals. Recall the water jug problem, in
which the goal was to leave 2 gallons of water in the 4-gallon jug. Suppose that
we had introduced an attribute-value element to represent each empty jug:

jug capacity 4 jug capacity 3
contents contents 0

We might then represent the goal by a condition element:

jug capacity =2} X
contents {=2} Y

Informally, then, we can see the predicate which tests whether the goal is
satisfied will be of the form:

3 something in the working memory which
instantiates the above condition element

More generally, a goal might be represented by a collection of condition ele-
ments, some or all of which might be negated. Thus, we may represent a goal
by a LHS. Informally, a goal is satisfied if we can produce an instantiation of
this goal given the current contents of the working memory. As we would
expect, the formal definition looks somewhat similar to that of the allinstl
function:

— GOAL-SAT —_
goal : LHS1

wnemory : WM

3 lhsinst : LHS-INST1 |

goal = lhsinst.BLHS1 A

lhsinst.matched & wmemory A

Y ce : negatives (lhsinest.BLHS1) |

» 3 ceinst : CE-INST1 |

ceinst.BCEl = ce A
ceinat.BAV-ELT' € wmemory A
ceinst.binding € lhsinst.lhsbinding

We can now specify a recognize-act cycle which includes a goal:

RACYCYL-GOAL = RACYCLE & (~ GOAL-SAT)

762 GOLD AND PLANT

IX. CONFLICT RESOLUTION

We now consider the question of conflict resolution, which has been ig-
nored in our previous specifications. Either, we stated that the set of produc-
tions satisfied by the working memory on any one recognize-act cycle is known
as the conflict set and that the task of the conflict resolution strategy is to select
one production from this set to be applied. We have seen that in our system, a
production may be instantiated in several different ways given a particular
working memory, so that the task of conflict resolution is somewhat more
complicated—we must select one instantiation of one production. For this
reason, when we refer to the conflict set, we shall mean the set of production
instantiations from which we may choose on any particular cycle.

We shall extend the specification of RACYCLE] from the previous section
to include a conflict resolution strategy which is based on the LEX strategy
available in OPSS5 (goals are not relevant to this discussion of conflict resolu-
tion, and are therefore omitted). Before beginning, we define a new term; we
have seen that a particular production instantiation may be applied (i.e., we
may carry out the actions on the RHS) to produce a new working memory.
When an instantiation is applied, we shall say that this instantiation has been
Sfired. '

A. Time Tagging

Our conflict resolution strategy shall make use of the time at which at attri-
bute-value element is added to the working memory. More specifically, we
shall give preference to instantiations matching elements which have been most
recently added to the working memory (we shall discuss the reason for this
later). Clearly, we must have some method of discerning the relative times at
which elements have been added to the working memory. This is achieved in
OPSS5 by tagging each element with a numeric time tag as it is added to the
working memory, the larger the time tag, the more recent the element.

To formalize this, we introduce a new object, a working memory element,
(WME), consisting of an attribute-value element and a time tag:

VME -
AV-ELT®
tag : N

The set of all working memories is now:

wH1

r P WME !

Note that this permits duplicated attribute-value elements to be present in
the working memory (with different time tags).

Condition elements are now instantiated with WMEs; in order for a condi-
tion element to match a WME, it must match (as described previously) the
attribute-value element component on the WME:

OPS5 PRODUCTION SYSTEM ARCHITECTURE 763

CE-INST2 —

CE-INST1
WHME

Note that AV-ELT’ is a component of both CE-INSTI, and WME, and
will therefore be identified, so that we have neatly specified the new condition
element instantiation.

We shall not describe the resulting changes to the specification here, since
they are fairly straightforward; the important point to note is that when a new
WME is added to the working memory, it is given a time tag greater than those
of the elements currently in the working memory. This is described in a modi-
fied apply function:

apply2 : (INST2 x WH1) -+ WML

apply2 =
A(inst,wmemory) : INST2 x WM1 |
inst € allinet2 (inst.OPRODUCTION!,wnemory) .
u{wmemory' : WM1 | wmemory' =
(wmemory - DELETES2) U NEW-WNES)
WHERE
DELETES2 = remove2 (inst.BLHS-INST2, inst.removes)
NEW-WHMES = U newtag (av-elt,wmemory) (1)
av-alt : ADDS2

ADDS2 = U (make (ce,inst.lhsbinding)} (2)

ca v inat.makes

(1) The new WME:s are constructed by (2) first constructing attribute-value
elements in the usual way, and then adding a ‘‘more recent,” i.e., larger time
tag than currently exists in the working memory, to each. Note that the order-
ing of tags among these new elements is not defined.

The function which assigns new time tags is defined as follows:

newtag : (AV-ELT x WHi) — WME

newtag = A\ (av-elt,wmemory) : AV-ELT x WMl .
u{WHME | BAV-ELT’ = av-elt A
OWME. tag > max (wmermory}.tag)

We shall assume that our specification has been modified and that all the
required new components have been defined with suffixes suitably increased.
The resulting recognize-act cycle corresponding to RACYCLEI (i.e., with no
conflict resolution) is:

~— RACYCLE2
ASTATE2

3 p : pmemory | (wmemory,wmemory') € rel2 (p)

764 GOLD AND PLANT

The conflict resolution strategy will consist of two rules which are applied in
order. The first rule eliminates certain instantiation from the conflict set, and
the second rule uses the time tags to select one of the remaining instantiations.

X. CONFLICT RESOLUTION RULE 1

The first rule may be described as follows:

1. Discard from the conflict set any instantiations that have already fired on
a previous cycle. If all the instantiations have already fired, conflict resolution
fails and the interpreter halts.

The motivation for this rule is quite clear. Suppose we have a production
which might be represented informally as if there is a red block in the working
memory then add a blue block to the working memory. This production, once
instantiated, might be repeatedly selected and fired, forever adding more blue
blocks to the working memory. it is unlikely that this is the intended effect of
the production—in fact, we would probably only want it to fire once, as this
rule ensures.

In order to know if an instantiation has already fired, we must be able to
compare two instantiations and decide if they are the same. We shall assume
that two instantiations are the same if the are instantiations of the same produc-
tion, and they have matched the same working memory elements. Two working
memory elements are the same if they are composed of the same attribute-
value element and time tag.

There is, however, one rather obscure exception to this rule in OPSS,
which may best be illastrated by an exampie. Suppose we have a production of
the following form: if there is a red block in the working'memory an: there is ’
not a blue block in the working memory then . . ., and that this production 1s
instantiated with a particular red block, B, say, when there are no blue blocks
in the working memory. W= fire the instantiation once, and, although it remains
satisfied, we do not fire the inctantiation again (becausc of rule 1).

Suppose however, that some time later, a blue block enters the working
memory, which causes the instantiation to become unsatisified. If this blue
block is subsequently deleted, then, assuming that red block B is still in the
working memory, the original instantiation will “‘reappear’’. Although this in-
stantiation is equal (as described above) to the one which we fired earlier, we
do want to allow the instantiation to fire again, because its relevance has been,
in some way, reestablished by its reappearance.

Fortunately, these somewhat complicated sounding ideas can be formal-
ized fairly easily, and in a manner which aids understanding. We can begin by
introducing a new component to the state, which represents the set of instantia-
tions which have fired *‘so far’’:

STATE3
F— STATE2
fired : (P INST2)

Y inst : INSTZ2 .
inst € fired =+ inst.B8PRODUCTION1 € pmemory

OPS5 PRODUCTION SYSTEM ARCHITECTURE 765

We can now describe diagrammatically the recognize part of any particular
recognize-act cycle:

K fired - the set of previoualy
fired instantiations

Cmmrmmm fired inetantiations
remaining satisefied

€ conflict set for
this cycle

To follow the course of actions prescribed by rule 1, we should obviously
fire some instantiation from the set C — F. The exception noted above may now
be formalized quite easily. Any instantiations which have been fired, and which
remain satisfied, will reside in the set composed of the intersection of C and
F—these are the instantiations which we do not want to fire again. The instan-
tiations in the set F — C have become unsatisfied, and should be allowed to
refire, if they reappear. We can permit this by simply removing all such instan-
tiations from the set F. Thus, after each cycle, the set F should be modified so
that it contains only those instantiations in the set F N C.

A recognize-act cycle which includes rule 1 is:

__ RACYCLE3) .
ASTATE3
INST2

OINSTZ € conflictset - fired (1)

wmemory’ = apply2 (BINSTZ, wmemory)

fired' = (fired N conflictget) U (BINST2} (2)
WHERE conflictset = U allinst2 (p,wmemory)

P 1 paemory

(1) As we noted above, the instantiation acted upon should be one which
has mot already fired.

(2) This predicate ensures that only those instantiations which have fired,
and which remain satisfied, will not be fired again. Note that we must include
the instantiation which we fire on this cycle.

XI. CONFLICT RESOLUTION RULE 2

The second rule may be stated as follows.

2. Order the remaining (after rule I has been applied) instantiations on the
basis of the recency of the working memory elements, using the following
algorithm to compare pairs of instantiations: first compare the most recent
elements from the two instantiations (i.e., those with the largest time tags). If
one element is more recent than the other, the instantiation containing that
element dominates. If the two elements are equally recent, compare the second
most recent elements from the instantiations. Continue in this manner either

766 GOLD AND PLANT

until one element of one instantiation is found to be more recent than the
corresponding element in the other instantiation, or until no elements remain
for one instantiation. If one instantiation is exhausted before the other, the
instantiation not exhausted dominates; if the two instantiations are exhausted
at the same time, neither dominates.

This rule intended to focus the attention of the production system onto a
subtask, once this subtask has been started. To see how this works, suppose
that some new elements have just been added to the working memory, which
constitute the first steps on this subtask. Rule 2 ensures that any instantiations
matching these particular elements will be selected. Hopefully, these instantia-
tions will be relevant to the completion of the subtask.

Having already introduced time tags, this rule may be formalized quite
easily:

__ RACYCLE4
RACYCLE3

» 3 INST2': recognised - fired' |
(BINST2') morerecent (BINST2) 1)

(1) There should not be an instantiation which is more recent (as defined
informally in rule 2, and more formally below) than the one which is selected to
be fired.

The following relation and function formalize the algorithm described in
rule 2:

morerecent : INST2 & INST2

Y inst,inst’' : INST2 .
inst morerecent ingt’' s
lexico (inst'.matched) < lexico (inst.matched)
WHERE
< denotes lexicographic ordering on
sequences of numbers

lexico : (P WHE) — seq [N)

vV 81 : (P WME)
if 81 = @ then <>
else maxim" lexico (81 - {melem})
WHERE
maxim = max (sl.tag)
melem € {wme : WME | wme.tag = maxim)

It is important to note that RACYCLE4 is still nondeterministic—the conflict
resolution strategy we have introduced merely serves to narrow (although

767

OPSS PRODUCTION SYSTEM ARCHITECTURE

hopefully, quite considerably) the choice of instantiations from which we must
choose on any particular cycle.

XII. CONCLUSIONS

We feel that we have successfully formalized many important aspects of
the OPSS5 production system framework, and that the specification includes the
workings of the system far more clearly than the user documentation. An
interesting point to note is that much of the work went into producing the very
abstract specification, and that once this model has been produced, it was fairly
straightforward to develop the specification of OPSS5 corresponding to this
model. It should be noted, however, that several aspects of OPS5 were not
dealt with; we list some of these here for completeness:

1. We have specified the working memory as a collection of time-tagged
attribute-value elements; in fact, the working memory may contain other struc-
tures called vecror elements, which, in terms of our specification, are se-
quences of values. As with attribute-value elements, these are matched against
the condition elements of a LHS. The condition elements are therefore some-
what more flexible (and complicated) then we described, allowing them to
match either type of structure. As one would expect, the make operation can be
used to construct vector elements, as well as attribute-value elements, to be
added to the working memory.

2. As we mentioned briefly before, in the section on ‘‘extensions to the
specification,”” the RHS operations in OPSS include several actions not per-
mitted in a “‘pure’’ production system, e.g., I/O operations, file operations and
calls to user subroutines. Of particular note though, are the BUILD action, by
which new productions may be added to the working memory, and the HALT
action, which halts the interpreter. We noted that a goal might be represented
by a LHS in OPS5; we can see that one may write a ‘‘halting production,”
whose only purpose is to halt the production system when a goal has been
reached. The LHS of such a production consists of the goal, the RHS consists
solely of a HALT action.

3. In OPSS5, the user may specify, when starting the system, the number of
cycles the system should execute. If possible, the system executes the pre-
scribed number of cycles, and then halts. When the system is not executing, the
user may examine, and, more importantly change the contents of the working
memory.

4. Our specification describes the class of production systems which adopt
an irrevocable!® control strategy in which the action of productions can not be
undone. While this control strategy is sufficient for certain problems, in many
applications, a backtracking facility is essential.

Given the proven utility of OPSS5 (recall that R1 is implemented in OPSS5),
we feel that our specification demonstrates some of the advantages to be gained
from a more formal approach to the design and implementation of expert sys-
tems (in this case clarity of description). The use of a formalist approach will
provide a firmer basis from which all aspects of knowledge-based system devel-

768 GOLD AND PLANT

opment can proceed, allowing systems engineers to build upon the success of
previous implementations and adapt specifications to meet alternative needs
while raising the levels of system correctness and reliability.

References

1. C.C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs,
NJ, 1989.

2. B.A. Sufrin and J. He, *‘Specification, analysis and refinement of interactive pro-
cesses’’ in, Formal Methods in Human—Computer Interaction, M. Harrison and H.
Thimbleby, Eds., Cambridge University Press, Cambridge, England, pp. 153-200.

3. E. Rich, Artificial Intelligence, McGraw-Hill, New York, 1983.

4. J.M. Spivey, Understanding Z., A Specification Language and its Semantics, Cam-
bridge University Press, Cambridge, England, 1989.

5. 1.M. Spivey, The Z Notation, Englewood Cliffs, NJ, Prentice-Hall, 1990.

6. 1. Hayes, Specification Case Studies, Technical Monograph PRG-46, Oxford Uni-
versity Computing Laboratory, Programming Research Group, Oxford, England,
1985.

7. C.L. Forgy, OPS5 User’s Manual, Technical Report, CMU-CS-81-135, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, PA 1981,

8. P.D. Sherman and J.C. Martin, An OPSS Primer: An Introduction to Rule-based
Expert Systems, Prentice-Hall, Englewood Cliffs, NJ, 1990.

9. J. McDermott, ‘“‘R1: An expert in the computer systems domain,” in Proceedings
AAAI-80, Stanford, CA, 1980.

10. N.J. Nilsson, Principles of Artificial Intelligence, Springer-Verlag, Berlin, 1982.

