
Pergamon
Expert Systems With Applications, Vol. 7, No. 2, pp. 259-271, 1994

Copyright © 1994 Elsevier Science Ltd
Printed in the USA. All rights reserved

0957-4174/94 $6.00 + .00

An Integrated Methodology for Knowledge-Based
System Development

ROBERT T. PLANT AND PANAGIOTIS TSOUMPAS

Department of Computer Information Systems, University of Miami, Coral Gables, Florida

Abstract--This article details a rigorous development methodology for knowledge-based systems.
This rigorous methodology is itself embedded within a multilevel process model for software devel-
opment. The rigorous methodology is designed to utilize a set of formal or rigorous specifications in
a composite style. These specifications detail areas like the knowledge base, the human-computer
interface, and the representation, linked together through a process of representation refinement. The
rigorous methodology aims at combining the aspects of knowledge engineering, cognitive engineering,
and software engineering as they relate to knowledge-based systems. The knowledge-based systems
development methodology is embedded within a two-level life, cycle model. The two levels are termed
the macro- and microlevels. The macrolevel is used to understand the impact that those factors
external to the actual system development have upon the system's creation and life cycle. These
external factors include such influences as changes in technology and corporate planning. The microlevel
is a process model that utilizes techniques.from total quality management, measurement theory, and
cost estimation, among others, to assist the software developer in producing software through a process
of never-ending quality improvement. All of these techniques are utilized and complimentary to each
other. The aim of having two levels is to allow the developer to focus upon each item separately but
to understand the factors upon which the factor's development rests and its impact upon the other
subprocesses.

1. INTRODUCTION

THE AIM OF THIS ARTICLE is to illustrate the integration
of a two-level process model of software development
with a rigorous methodology for the development of
knowledge-based systems. The two-level process model
is a methodology that separates the creation process
into two distinct levels: the microlevel and the mac-
rolevel. The macrolevel focuses upon those factors ex-
ternal to the software creation process itself, such as
customer requirements, technology development, and
the corporate business plan of the customer. The mi-
crolevel focuses upon the process of software devel-
opment itself: feasibility studies, detailed requirements,
system design, and so forth. In separating these two
levels, we can focus upon the external factors in iso-
lation, yet the developer can obtain a better under-
standing of their interaction, the influence of each, and
the relative effect each has upon the others. The third
element in this article is to take this two-level devel-
opment life-cycle model and adapt it such that the spe-
cial needs of expert systems development can be in-

Requests for reprints should be sent to Robert T. Plant, Department
of Computer Information Systems, University of Miami, Coral Ga-
bles, FL 33124.

corporated in the model. This is done by integrating a
rigorous knowledge-based system development meth-
odology into the two-level process model.

2. OVERVIEW OF EXISTING SOFTWARE
LIFE CYCLES

We can consider the development of knowledge-based
systems from three perspectives:
• methodologies that apply only to knowledge-based

system development
• methodologies that apply only to procedural systems

development
• methodologies applicable to the development of

knowledge-based systems, traditional systems, and
embedded systems
The first category, methodologies that are specifically

(or by default) designed to assist developers in creating
traditional, procedural systems, has been acknowledged
to be of little value to the developer of knowledge-based
systems (Miller, 1990; Plant, 1993). Methodologies
such as those proposed by Royce (1970), Boehm (1988),
or the DOD-2167A (1988) do not generally facilitate
the knowledge engineer in handling the problems of
incompleteness and inconsistency of data and fuzzy
values and do not have the ability to assist system con-
struction from weak specifications.

259

260 R. T. Plant and P. Tsoumpas

The weakness of the traditional waterfall-based life-
cycle models is not assisted by the utilization of formal
techniques of specification, as these too require the
creation of complete specifications in advance of system
development such that the system can be constructed
from the specification, by following rigorous refinement
steps. Thus, this made it necessary for the knowledge-
engineering community to build models of their own
processes that lead to the creation of pattern-directed
inference systems (expert systems). The early meth-
odologies of Buchanan, Davis, Lenat, Grover and
Wielinga (Buchanan et ai., 1983; Davis & Lenat, 1982;
Grover, 1983; Wielinga & Breuker, 1983) were based
primarily upon adaptations of Royce's waterfall model
(Royce, 1970) and were stage-based in nature. How-
ever, they were inherently weak, and even though they
did attempt to incorporate knowledge-engineering
phases into their life cycles, they still suffered from the
same problems encountered when applying traditional
life-cycle models to knowledge-based problems. These
early knowledge-based life-cycle models gave way to
more sophisticated models of knowledge-based system
development that attempt to consider the problems
associated with representation selection, domain
knowledge completeness, determination of domain
knowledge correctness, validation and verification is-
sues, prototyping, iteration, integrity, and maintenance
issues(Miller, 1990; Plant, 1993; Weitzel & Kerschberg,
1989). These we can classify as belonging to the third
category, life-cycle models that address knowledge-
based system issues that are associated with mature
systems of industrial strength (Miller, 1990) as opposed
to the immature (or trivial systems) with which pre-
vious methodologies dealt.

The remainder of this article considers a new meth-
odology for knowledge-based system development--
one that combines careful consideration of external
factors pertinent to commercial and pragmatic system
development (Plant & Hu, 1992; Plant & Salinas, 1992)
with the factors that affect the process of system de-
velopment, in this case, knowledge-based system de-
velopment.

3. TENETS OF A M E T H O D O L O G I C A L
DESIGN

As we noted earlier, knowledge-based system design
can be considered from three basic perspectives. How-
ever, a set of common weaknesses can be identified in
each of these approaches:
• the absence of process control
• an emphasis upon inspection as a mechanism for

system acceptance
• low priority placed upon organizational behavior of

development personnel
The methodology we present aims at addressing

these issues. It is our proposition that the incorporation

of rigorous techniques in development as well as
changes in management practices inspired from quality
management theories will be of significant benefit.

The model proposed in this article has been created
to avoid these problems through the utilization of a
two-level model that includes the external factors that
influence development. The two levels, macro- and
micro-, integrate with four tenets for development that
the software engineer must follow:
• Utilize a philosophy of continuous quality improve-

ment in all aspects of development.
• Integrate in the development process the techniques

of formal methods, metrics, and quality variance.
• Utilize metrics to control, monitor, and understand

the process.
• Utilize tools and resources to promote communi-

cation and improve the communication.
These tenets are discussed throughout this article

and are brought together to form the MM-Level process
model. Within the MM-Level model is a rigorous pro-
cess model for the creation of knowledge-based systems.
This model has the following tenets:
• Every step in the development from initial specifi-

cation to implementation should be capable of jus-
tification.

• The process should have an implementation-inde-
pendent representation of the domain knowledge.

• The correct representation should be chosen, and
the decision should be justified.
The overall aim of this methodology is to allow the

creation of knowledge-based systems that also can be
embedded into a larger development environment
upon completion, the system into which it is embedded
having also been created through a version of the MM-
Level process model.'

4. OVERVIEW: T H E INTEGRATED
MM-LEV EL PROCESS M O D E L

The aim of this article is to describe a two-level software
development life-cycle methodology. These levels,
macro- and micro-, combine to compose our MM-
Level model. The macro perspective places the software
development process in its environment with respect
to the external factors. Research in software develop-
ment has focused primarily on the importance of cus-
tomer, neglecting other environmental factors that af-
fect the quality of the final product. The second level
describes the software development process from a mi-
cro perspective, where the methods and practices of
improving the quality of products and processes are of
primary concern. Integrated into these two levels is a

t In a conventional system the knowledge-based component would
be replaced by a more standardized systems analysis and design com-
ponent.

Knowledge-Based System Development 261

knowledge-based system development methodology
that focuses upon the special issues that affect knowl-
edge-based system development, for example, repre-
sentation selection, elicitation techniques, and so forth.

5. MACRO PERSPECTIVE

The proposed macro perspective views the software
development process as a part of a greater system that
includes factors external to the development process
itself (see Fig. 1).
These external factors include:
* latest developments in the hardware and software

areas
• traditional input from the customer about require-

ments of the system under study
• input from various customers, through customer

support, about problems discovered during the op-
eration stage, and from potential customers, through
marketing research, about current needs

• input from top management, through the C.I.O.,
about corporate business plans

In addition, factors like the impacting economic con-
ditions, the strategic plan of the organization, and the
competitive environment of the organization need to
be considered. The exact set of external factors will be
unique to a large extent for each organization.

The influence of these external factors on the soft-
ware development process takes place through various

forms: directly in the form of user requirements, or
indirectly by changes and developments in technology.
Even though the indirect factors have great impact on
the development process, their importance historically
has been neglected or downplayed. The model we pro-
pose utilizes these external factors to increase the
awareness of management about such factors. We now
consider these external factors in more detail and their
effect upon the development process.

5.1. The DeltaT (AT) Effect

The rapidity with which technology changes in the area
of information technology means that management
and software engineers cannot afford to isolate them-
selves from these changes. However, unless manage-
ment and developers control their software processes
through an understanding of the impact that hardware,
software, practical, and theoretical developments have
upon it, these technology changes may have a serious
and detrimental effect upon the developers' software
creation process. We call this the AT effect (change in
Technology) and suggest that it is management's role
to encourage positively the dissemination of new
knowledge and techniques.

5.2. Customer Requirements

One of the most influential of the external factors is
the determination of the customer requirements. The

I

FIGURE 1. Macrolevel model.

262 R. T. Plant and P. Tsoumpas

external factors that weigh upon the determination of
customer requirements in the macrolevel model are
focused primarily upon the ability to use the appro-
priate level of rigor for the task and the customer en-
vironment that will produce a clear and unambiguous
specifications document. This is open to factors like
the customers' constraints in standards, laws pertaining
to the area, and criticality of the domain.

5.3. Customer Support

Customer support is a function of a software devel-
opment organization whose input either is not fully
utilized or is neglected altogether. Customer support
serves a dual purpose, (a) it supports customers during
the implementation with training, and (b) it is the front
line of the corporation for obtaining input from cus-
tomers about discovered defects. Even though the first
service provided by customer support is important for
the image of the company, a discussion about it is out
of the scope of this article. The second service provided
by customer support though, is very important, and
its significant input has been underutilized. Customer
support provides input to software developers for newly
discovered problems (defects), the only utilization of
which is often for finding the defect and correcting it.
We suggest that this input could prove to be very valu-
able if software developers were to trace the causes that
create that defect (Tsoumpas, 1993). Such utilization,
though, requires rigor and formality throughout the
development process to be able to trace back such de-
tails. We discuss methods and practices that bring rigor
and formality to the development process later in the
microperspective part of our proposed model.

5.4. Corporate Plans

The corporate business plan is an external factor that
has a special relationship with the end-product's qual-
ity. If there is a corporate plan for releasing a new prod-
uct by a certain date and there are delays in the progress
of the project, management's attitude will be decisive.
Whether management's attitude is "meet the deadline
regardless of defects," or, alternatively, "continue the
high quality work and let's figure a way to work more
efficiently so that we will not have any more delays,"
is instrumental in determining the final product's
quality. Research by Weinberg and others (Weinberg
& Schulman, 1974) has found that, given specific ob-
jectives, programmers can make the required choices
to meet these objectives, provided the objectives do
not conflict with each other. It has been suggested by
all the quality advocates (Deming, 1986; Imai, 1986;
Ishikawa & Lu, 1985; Juran, 1964) that management's
commitment is of paramount importance for the suc-
cess of a quality improvement program. Thus, we feel
it is appropriate to include corporate plans as an in-

fluential factor in the software development process.
Management commitment to the process of quality is
therefore imperative; we can see that they have the
ability to determine the pressure placed upon the soft-
ware engineers to balance deadline dates against quality
levels. Even though some research (King, 1978) has
discussed the influence of corporate top management
in information systems planning, there is little formal
research on how the top management plans influence
the quality of the end product. We believe that such
influence exists and significantly affects the end
product.

5.5. Summary of Macro Perspective

It has been the aim of this section to show the impor-
tance of the external factors in relation to the process
of software development. Two major reasons for this
are as follows. First, the identification of influential
factors provides the manager with a better understand-
ing of these factors and their role in the software de-
velopment process. Second, by knowing about these
factors, managers can incorporate them into their plans
and control their infuence over the software devel-
opment process.

6. MICRO PERSPECTIVE

The micro perspective view of the software develop-
ment process describes the way a number of quality
management techniques and software development
practices support the development of high-quality soft-
ware. Because they support the software development
life cycle, we call them life support tools; they are por-
trayed in the central component of Figure 2.

Boehm (1988) recognizes, indirectly, that the major
problem of the software development process is the
lack of adequate planning; therefore, he suggests that
risk analysis is helpful in identifying problems that
might occur. We strongly agree with this argument;
however, we believe that risk analysis is only one of
several techniques that management should utilize in
its effort to monitor the software development process.
In the MM-Level process model proposed here, we ad-
vocate that risk analysis be supplemented with some
techniques and practices that, we believe, would en-
hance management's planning ability. These life sup-
port tools are:
• historical database
• software metrics program
• configuration management
• cost estimation model
• quality management practices

In the following sections we consider several of the
tools in this life support system and identify their
strengths and how they contribute to the improvement
of the quality of the end product.

Knowledge-Based System Development 263

" * , , . % , .

FIGURE 2. Microlevel model.

6.1. Measurement and Metrics

To assess the impact of differing methodologies upon
development, software engineers need to increase their
utilization of measurement theory and software metrics
such that developers can more easily determine the
impact and effect one parameter of a design has upon
another. Research is active in this area, and workers
consider such design issues as module length, optimal
number of modules, and criteria of module separation
(Conte, Dunsmore, & Shen, 1986; Sheppard, 1990).

The aim of software metrics is to assist the developer
in understanding the relationship between the param-
eters of software design and its creation. These param-
eters are, however, not always easy to determine or
measure, in addition to the difficulty of determining
the consequences of the results. For example, a software
engineer may use the whole-function criterion or an
optimum-length criterion (Conte et al., 1986) to decide
when to split a program in modules, or to determine
the optimum length of a module, but other human~
based parameters, such as measurement of a program-
mers experience or suitability of the programming lan-
guage used, are not so easily measured.

This state of flux in software measurement neces-
sitates that companies utilize a software metrics mea-
surement program that will help each specific company
to understand their own development parameters and
their interrelations. Grady (Grady & Caswell, 1987)
has pointed out that a program like this is difficult to

implement, and serious commitment of all interested
parties should be obtained before the implementation.

A comprehensive review of metrics and predictive
models is presented by Conte et al. (1986) and Zuse
(1992).

6.2. Cost Estimation Model Adoption

The first step in the development of a system within
an organization is a managerial one, in that while the
requirements for a system are being formulated, the
system should be endorsed and backed by the top
management of that organization. This necessitates that
the system perform a useful function, be revenue-pro-
ducing, and be developed in a cost-effective manner.
Thus, it is necessary for the development team to adopt
a software cost-estimation model such as COCOMO
(Boehm, 1980), SOFTCOST (Tausworthe, 1981), or
COSTMODL (NASA, 1991) prior to system devel-
opment. The adoption of an appropriate cost model
will enable the development and life-cycle cost centers
to be identified early, thus the management will be
confident in the systems return on investment prior to
development. This will assist in obtaining a favorable
management commitment to the project from the
conception of the system.

6.3. Standards

As Hall (1990) suggested, formal methods could be
used to guide the software developers in the design and

264 R. T. Plant and P. Tsoumpas

programming phases and additionally serve as a clar-
ifier of the requirement specifications document for
the customer. A practice that enhances the robustness
of the requirement specifications document is the use
of standards that assist for uniform understanding of
terms, techniques, and approaches. These standards
are aimed at providing unambiguous definitions and
act as a baseline document. Participation in this is a
practice that can be adopted by all software develop-
ment companies and establish industry-wide standards.
This removes the ambiguity of such terms as: "user
friendly," "easily maintainable," or "reliable." Terms
such as these often have a different meaning for de-
velopers and customers, and both parties rely on their
own personal judgment for translating them, resulting
in a conflict over the final product.

By introducing these standardization practices, in
conjunction with formal methods, management will
be able to improve the communication between cus-
tomers and developers. The employment of a quality
management program guarantees that such effort will
not be static, but that it will be improved by any newly
acquired information.

6.4. Quality Management Practices

The quality management principle "each process is the
customer of the previous process and the supplier of
the subsequent one" (Gitlow & Gitlow, 1987) can be
considered as a second tenet for the software company's
process management. This can be seen when the spec-
ification of the system is passed from the requirements-
formalization team to the software design team. The
specification has to possess the ability to improve the
communication between all members of the develop-
ment process. Thus the key to achieving this process
pipeline is communication.

It can be foreseen that one approach to achieving
this level of communication and interaction is through
Quality Circles, where professionals from both sides
come together and discuss methods of improving the
current practice by introducing new documents,
changes in currently used documents, and additions
in the utilized tools.

In the next two subsections we consider two im-
portant instruments through which quality process
management can improve the product: quality circles
and training.

6.5. Quality Control Circles

The introduction of external factors that influence the
software development process had the purpose of em-
phasizing the need for communication in an efficient
way that can be proven beneficial for the company.
The introduction of quality control circles (Imai, 1986)
as a forum of communicating ideas inside the process

serves the need for exchange of information between
project team members and members of other teams.

The aim of quality control circles is that people with
different job assignments and different educational
backgrounds come together and discuss their experi-
ences, their everyday task problems, and that they voice
their concerns about various subjects.

To maximize the return on the time invested in the
quality circles it is useful to maximize the use of tools
from quality management, such as Pareto charts and
cause-and-effect diagrams, (Gitlow, Gitlow, Oppen-
heim, & Oppenheim, 1989; Ishikawa, 1982), which
should be used by members of the quality circles. As
Deming (1986, 1991) said in both his 14 points and
his system of Profound Knowledge, general education
is a very important aspect, and as such, subjects that
are of common interest among the members of a qual-
ity control circle could be discussed, even if they are
not related directly to software engineering. An exten-
sion of quality circles could include as members rep-
resentatives from both customers and suppliers. Meet-
ings with members of these entities in the business en-
vironment help formulating plans for future systems
development.

An important aspect of quality circles is that each
member chooses to participate in this kind of activities
without management involvement. Managers of any
level of hierarchy should also participate, without car-
rying with them into the quality circle environment
their status within the company.

6.6. Training

A fundamental aspect of any quality program (Deming,
1986) is education and training, which focus upon the
continuous and never-ending cycle of training, appli-
cation, and quality improvement. This philosophy
needs to be integrated and absorbed by the software
development organizations for any true progress toward
the production of quality software to be achieved.

6.7. Knowledge-Based Design Component

The micromodel of development offers a versatile ap-
proach to the software designer in that it allows aspects
of the model to be adapted and amended to suit the
system development needs, for example, real-time par-
allel processing. In the remainder of this article we show
how the MM-Level model can be integrated with a
development methodology for the creation of knowl-
edge-based systems. The methodology is rigorous in
nature and is intended to assist the knowledge engineer
in isolating the descriptions of the knowledge-based
component from the representational component
(Plant, 1993). The design of the knowledge-based
component replaces the standard system design and
detailed design components in the MM-Level model.

Knowledge-Based System Development 265

6.7.1. The Specification of Knowledge-based Systems.
The natural point from which to develop any software
system is the creation of a specification. The specifi-
cation ideally should detail every aspect of the system
in unambiguous terms that all interested parties can
consider. The creation of such a specification for
knowledge-based systems is, however, a far from easy
task for any but the most trivial of systems. In light of
this problem, knowledge engineers often have been
forced to proceed with only a minimal specification or
no specification at all. This is a less than ideal situation
and a source from which many subsequent develop-
mental problems emanate. To overcome the problem
of weak specifications in knowledge-based system de-
velopment we advocate the use of two techniques: pro-
totyping and composite-specifications through formal
methods.

The first of these techniques, prototyping, is utilized
to achieve the creation of a baseline document: the
initial specification. Following Miller (1990), this phase
utilizes prototyping to create an initial specification,
and this phase does not end until all parties (customer,
developer, user) agree that they finally understand what
the system is intended to do, and in particular how it
is supposed to do i t - -what Miller terms "The Opera-
tional Concept" (Miller, 1990).

The prototype process is primarily intended to es-
tablish the boundaries of the solution space. It is very
important that the prototyping is used only to this end,
as it is extremely detrimental to consider the more
complex development issues at this stage, for example,
representation, interface, and so forth, as these deci-
sions would be made on incomplete knowledge of the
domain and environment.

Embedded within the initial specification develop-
ment process is an aspect of cognitive engineering
known as cognitive task analysis (Roth & Woods,
1989), where:

Cognitive Task Analysis is used to derive a description of the
cognitive demands imposed by a task and the sources of good
and poor task performance. (p. 217)

The aim of cognitive task analysis then can be seen as
an attempt by the knowledge engineer to:

Define what makes the domain problem hard, what errors
domain practitioners typically make and how an intelligent
machine can be used to reduce or mitigate those errors or
performance bottlenecks. (p. 246)

The use of cognitive engineering techniques is not,
however, limited to the creation of the initial specifi-
cation. Wielinga, Breuker, and others have created a
development methodology KADS (Breuker & Wie-
linga, 1987; Hesketh & Barrett, 1990) that also attempts
to model expertise, such that it can be utilized in a
knowledge-based software development project.

We shall utilize other cognitive engineering practices
later in the methodology to assist in the assessment of
validation and verification, quality assurance, in the
selection of a representation as well as developing the
system interfaces.

The creation of an initial specification provides the
knowledge engineer with the first specification in the
creation of the composite-specification of the system.
A composite-specification is a set of specifications, each
of which focuses upon an aspect of the development
process: domain specification, representation specifi-
cation, and so forth, the composite of which enables
an approximation of a total specification for the system
to be made. Figure 3 illustrates the six areas where
specifications can be derived in a knowledge-based sys-
tem, to varying degrees of formality.

From Figure 3 we can see that there are two distinct
types of specification present: The dynamic specifica-
tions and the static specifications. Dynamic specifica-
tions refer to aspects of the system that are under con-
stant change or for which the interaction of the com-
ponents are undetermined due to their combinatorial
complexity. Static specifications refer to those aspects
that do not change, but rather remain consistent over
a period of time. Thus, there are five static specifica-
tions:

I

t++- i io- Description Spec.

Composite-]
Specification

I
I I

i i - -+ t++++ Spec. Engineertngspec.

I
ContrOtspec.Arch. I

I

11+++ Assur~e
Spec.

FIGURE 3. A composite specification.

266 R. T. Plant and P. Tsoumpas

6.7.1.1. The specification of the domain knowledge.
We can easily model this aspect as the knowledge elic-
ited from the domain expert(s) and knowledge source(s)
is finite, and through the use of transformational pro-
cesses, this can be specified formally in a language such
as "Z" (Spivey, 1990). From a specification in a lan-
guage such as this, we obtain several advantages. First,
the Z notation in which it is written is clear, concise,
unambiguous, and allows for both a technical and
nontechnical readership. Second, the use of a formal
notation has significant maintenance benefits, such as
allowing knowledge engineers to keep a correct docu-
ment of the domain information in an implementation-
independent form, allowing the implementation lan-
guage to vary if necessary.

6.7.1.2. The specification of the representation. The
aim of this specification is to allow the knowledge en-
gineer an opportunity to consider and identify those
aspects of the knowledge representation language to be
used and specify them in a formal manner. The selec-
tion of a representation is a difficult consideration that
we shall discuss further in the next section; however,
once a representational form has been selected, it is
imperative that this be specified fully in terms of its
denotational semantics and its syntax. For without
these, it is extremely difficult to reason about a domain
description/representation with any certainty. Included
in this specification is the specification of the control
architecture to be used in the system.

6.7.1.3. Specification of the cognitive engineering
aspects. The cognitive engineering aspects of the system
definition are those that involve:
• specification of the man-machine interface
• cognitive task analysis
• knowledge-encoding
• competence modeling
• performance modeling
The man-machine interface can be subjected to formal
specification techniques, as demonstrated by Sufrin and
He (1990), who use the Z notation to specify an inter-
face, and Jacob, who formally specifies a man-machine
interface (Jacob, 1983). The Z notation is again a su-
perior form of specification to the pseudo-code, or nat-
ural language descriptions that are usually used.

As mentioned, cognitive engineering has an impact
upon many aspects of system development, from the
initial specification, through acquisition, elicitation,
quality assurance to validation and verification. We
shall consider each of these aspects later.

6.7.1.4. Specification of quality assurance. We can
consider the quality assurance methods we wish to em-
ploy in the validation and verification of the system.
These have to be defined both in terms of the tech-

niques involved and the boundaries that are acceptable
to the project.

In addition to the static specifications, there are those
aspects that are dynamic in nature. The principal aspect
of this type is the specification of the problem descrip-
tion. The nature of the techniques for formally speci-
fying systems is, however, limited to static aspects of
a system and does not facilitate full specifications of
the dynamic aspects; thus we are unable to define the
system in its entirety; this necessitated the utilization
of prototyping~ in the creation of the initial specification
in addition to the utilization of the composite-speci-
fication technique and the design tenets identified ear-
lier.

Thus, we have identified the need for specifications
in the creation of knowledge-based systems. We now
discuss how these specifications can be brought together
through the use of a rigorous development method-
ology.

The methodology as a whole can be introduced by
considering Figure 4. These stages are now examined
in greater detail.

As we have already seen, the initial specification is
a document that can act as a baseline for the remainder
of the systems development. Each of the resultant
phases can be compared to the objectives and system
specifications laid down in this document.

Init ial Specification ~ Pr°t°tyl~es
I
I

I Basel { ne Requl remnta Spat. I

A,:q.laitton, I ~,,catq, .ti~it.tio.]

J
[ttlctted r no , , t . ,We.ont.tlon]

- - [, ,]= Acquisition KnowLedge
1!

11 l

l ~ ~.ont.tLon
t
I

[code Creation m
I

[Va.d.tton L V...Icat~on t

FIGURE 4. Design of knowledge-based component.

Knowledge-Based System Development 267

6.7.2. The Knowledge Elicitation Process. The unique
nature of knowledge-based systems is that they utilize
domain-specific information that is "expert" in nature.
This has several implications. The information may in
itself be unique, scarce, or uncommon; however it is
the way that the expert employs that information that
makes the information valuable. Thus, one of the most
important tasks befalling the knowledge engineer is to
ensure that he or she elicits as much structural, control,
and relational knowledge from the expert source as
possible. Thus, this forms the basis of the knowledge
elicitation task and the knowledge-based system de-
velopment process itself. As later in the process, the
knowledge engineer will have to consider specifying
the static domain knowledge (facts, rules, heuristics
etc.) and select a representation in which to manipulate
this knowledge, which entails consideration of such
factors as structural, control, and hierarchical knowl-
edge types. Thus the knowledge engineers task in
knowledge elicitation can be seen as falling into two
categories:-
• elicitation of static knowledge
• elicitation of dynamic knowledge
The knowledge engineer has several different ap-
proaches to the knowledge elicitation process, (Roth
& Woods, 1989; Welbank, 1983), for example:
• verbal transfer of knowledge, for example, inter-

viewing--structured, focused and unstructured
• reporting techniques, for example, on-line, off-line,

and hybrid
• psychological techniques, for example, repertory grid,

critical incident, inference structure, goal decom-
position, and distinguishing evidence

• knowledge engineer investigates literature
The choice of elicitation technique depends heavily

upon the domain under consideration, the type of
knowledge to be extracted, and the point the elicitation
has reached. For example, the elicitation may com-
mence with the knowledge engineer performing a series
of unstructured interviews to extract high level con-
ceptual knowledge. This may then be followed by
structured interviews where the relationship of the do-
main, its structure, and more detailed information are
obtained. This may then be followed by a series of
focused interviews to fill in the low level information
of a fine grain size. Several frameworks for the analysis
of these techniques have been proposed (Burton,
Shadbolt, Hedgecock, & Rugg, 1987; Dhaliwal & Ben-
basat, 1990), including cognitive mapping and knowl-
edge encoding, two aspects of Woods's cognitive en-
gineering paradigm (Roth & Woods, 1989; Woods &
Roth, 1988).

The result of the elicitation process, depending upon
the technique employed, will be what we have termed
the elicited representation. This will be for example, a
transcript in the case of an interview or an on-line re-
port. The aim of this stage in the life cycle is to provide

a permanent record of the knowledge in the form in
which it was extracted. This will enable the knowledge
engineer to follow a knowledge trail later in the process
if necessary (e.g., maintenance phase).

The process of eliciting the different knowledge
types, perhaps from different sources, with differing
knowledge levels, using different techniques at different
periods of time means that there will be a set of elicited
representations that together form a historical data base
of elicited knowledge.

6.7.3. The Intermediate Representation. Having cre-
ated an elicited representation, we then have to analyze
the knowledge that is embedded within it. The aim of
this phase is to produce a new representation--the in-
termediate representationmthe primary function of
which is to provide a mechanism that is rigorous
enough to allow several demanding analyses to take
place upon it. One of these ultimately produces a for-
mal specification of the domain knowledge, and an-
other acts as the basis for the selection of the high level
"classical" representation such as a production system,
which ultimately will be used to represent the domain
knowledge held in the formal specification.

The reason that the elicited representation is not
used directly as the basis of these analyses is that the
elicited representation may be in a form that is far too
ambiguous in nature. Also, the elicited representation
may be noisy, suffer from problems of continuity, lack
modularity, or have poor linkage between areas of
knowledge, problem areas that are not always apparent
in their original form.

As stated, the aim of this phase is to produce from
the elicited knowledge a more rigorous, intermediate
representation (Scott, 1991). This representation will
be structured in form, syntax, and semantics, such that
the knowledge acquisition necessary to transform the
elicited representation will identify the inconsistencies,
incompleteness, and any incorrectness in the elicited
representation. The knowledge engineer will use this
intermediate representation to draw together the
knowledge from the varying elicited forms: transcripts,
repertory grids, questionnaires, and so forth. Inter-
mediate representations are of the form: decision tables
and/or graphs, decision trees, each of which encourage
completeness, correctness, and consistency, and allow
for refinement and reduction while having clean yet
concise structures.

6.7.4. Domain Specifications. The intermediate rep-
resentation provides us with a more rigorous form than
the elicited representation with which to reason about
the domain. This reasoning takes three directions: the
creation of a domain specification, the creation of a
cognitive-engineering specification, and the creation of
the representation specification. The first of these spec-
ifications, the domain specification, is intended to pro-

268 R. T. Plant and P. Tsoumpas

vide a specification that focuses exclusively upon the
domain knowledge, the static knowledge of rules, facts,
and heuristics. The aim of this specification is to allow
a knowledge-based system to have a repository from
which the domain can be considered in isolation. This
has several advantages, for example, in the course of
maintenance or subsequent system updates the domain
specification will be the unique location for the domain
knowledge to be added, deleted, or modified. The
knowledge engineer will be able to maintain the cor-
rectness, completeness, and consistency of the system
as far as possible. These changes then can be traced
throughout the remainder of the development process.
The formalized procedures for updating the domain
specification also can be specified for added rigor.

The domain specification therefore will have to have
mathematics as its basis, and this leads to the adoption
of the Z notation, a formal specification language.
Specifications in Z consist of formal text and natural
language text. The former provides a precise specifi-
cation, whereas the latter is used to introduce and ex-
plain the formal parts. Specifications are developed via
small pieces of mathematics that are built up using the
schema language to allow specifications to be struc-
tured. This leads to formal specifications that are more
readable than a specification presented in mathematics
alone.

It is also advantageous to have a domain specifica-
tion from the perspective of knowledge engineer-user-
domain expert communication, as the specification can
act as a medium for communication. Thus, it can be
seen that the use of a formal language in the devel-
opment of a knowledge base is very advantageous.

6.7.5. The Cognitive Engineering Specification. The
cognitive engineering specification, as we have already
noted, is composed of many aspects, including cog-
nitive task analysis, knowledge-encoding, competence,
and performance modelling. The combined effect of
utilizing these cognitive components is very powerful
and can be considered as a chief factor in maintaining
the semantic correctness of the system as a whole, filling
the gaps in the decision-making process. This can be
seen as aspects of differing phases feed into each other.
For example, the knowledge contained in the domain
specification can be considered in light of the knowl-
edge-encoding techniques, and this has an impact upon
the choice of representation in the representation spec-
ification, which in turn will determine the systems'
ability to manipulate domain knowledge.

The cognitive engineering specification also provides
two models:
• The competence model that provides a model of the

required competence expected from the model in
the domain. (Roth & Woods, 1989)

• The performance model that describes the knowledge
and strategies that characterize good and poor per-
formance in the domain. (Roth & Woods, 1989)

The adoption of the cognitive engineering specification
in these two roles then can act as the basis of a quality
assurance mechanism for competence and perfor-
mance.

6.7.6. The Representation Specification. The next step
in the development methodology is to identify which
(if any) classical or hybrid representation is the most
suitable form around which to base the representation
specification, where the classical representations are
frames, production systems, semantic networks, and
so forth. To find the most suitable form, several influ-
encing factors have to be taken into account:
• information obtained from performing knowledge

acquisition upon the intermediate representation
• information pertaining to representation selection

that can be obtained from considering the compo-
sition of the domain specification

• information resulting from the cognitive engineering
processes

Each of these information sources provides valuable
insights on which representation would provide the best
basis for the domain under consideration. The analysis
of the intermediate representation will allow a coarse
analysis of the underlying domain structure to be ob-
tained. This is refined by considering the composition
of the domain specification in terms of its knowledge
and data types, their interrelationships, and structures.
This is then enhanced by the cognitive mapping drawn
from the cognitive engineering processes.

In order for a suitable match, the characteristics
looked for in the intermediate representation, the do-
main specification, and the cognitive models have to
be reengineered in the examination of the represen-
tation schemes themselves (rules, frames, etc). Once
this is achieved, the match can then be made. The cho-
sen representation is specified formally in terms of its
semantics and syntax; this forms the representation
specification (Craig, 1991).

6.7.7. The Concrete Specification. Having created the
domain, cognitive, and representation specifications,
we are now at a point at which these specifications can
be combined into a form that will allow us to move
toward implementation. This stage is known as the
concrete specification.

The creation of the concrete specification is in stages.
First, the domain knowledge is transformed from its
Z specification into the form advocated by the repre-
sentation specification, and second, a formal specifi-
cation of the control architecture that is associated with
the representation is created.

It should be noted that this is not the implementa-
tion as the representation is a hybrid between a high
level version of what is to be implemented and a formal
specification in the style suggested by the syntax and
semantics of the representation specification (e.g.,
pseudo code), the aim being to produce an implemen-

Knowledge-Based System Development 269

tation-independent representation of the system. This
will allow the knowledge engineer to have a simplified
version (minus the complex syntax) with which to rea-
son about the implementation later in the systems' life
cycle, for example, maintenance.

6.7.8. Coding. Having created the concrete specifica-
tion this is then used as the basis of the system imple-
mentation, with the interface issues resolved by referral
to the cognitive engineering and man-machine inter-
face specifications. The implementation of the system
should be the most straightforward of all the stages,
due to the high degree of structuring and refinement
that has been performed upon the system in the pre-
vious phases. The mechanism through which the sys-
tem is implemented is left open to the knowledge en-
gineer as this is considered a trivial exercise once the
specifications have been developed.

6.7.9. Validation and Verification. The area of vali-
dation and verification for knowledge-based systems is
one of active research, and preliminary results have
shown that the process of validation is an extremely
difficult one. A discussion of the research in validation
and verification is beyond the scope of this paper, see
Liebowitz (1986), O'Leary (1987, 1993), Rushby
(1988), and Culbert (1990). However, it should be
noted that the representation refinement approach to
development advocated by this methodology combined
to the quality principles of the MM-Level model will
strongly promote correctness.

6.8. Testing and Integration

Having completed the development of the knowledge-
based component, the developer can now consider the
integration of the system into any other system. An
aim of this methodology is to minimize the amount
of overhead involved in the process of embedding the
knowledge-based component. This is the reason for
the use of system-wide development standards, histor-
ical data bases, metrics, formal methods, and an ad-
herence to integration throughout the system/process
life cycle.

6.9. Institutionalization

An aspect of development that we have not yet ad-
dressed is that of institutionalization. This has been
identified by Liebowitz (1991) and others as being the
critical factor affecting system acceptance, usage, and
ultimate success. The process of institutionalization can
be broken down into three fundamental aspects: im-
plementation, transitionin~ and maintenance, all three
of which have historically been weak when considered
with respect to the case of expert system development.
Liebowitz identifies four areas vital to the institution-
alization process:

1. an awareness of expert systems for managers
2. user training strategies
3. user support service strategies
4. maintenance
All of these areas incorporate what Badiru (1988) terms
Triple C--communication, cooperation, and coordi-
nation, important management aspects to the creation
of an expert system. Thus, we see the process of insti-
tutionalization as the connecting link between the ma-
cro- and microlevels of our model, the influence that
moves our methodology toward being a sociotechnical
model (Dibble & Bostrom, 1987).

The institutionalization of system development can
be considered as the holistic approach to development,
where all levels of personnel, from users to managers,
are involved in the development process, what Leon-
ard-Barton terms "integrative innovation" (Leonard-
Barton, 1987). The model we have proposed here at-
tempts to overcome these problems of institutional-
ization through the participation of management in
the macrolevel and instilling an awareness of the tech-
nology involved to them. Further, our model aims
through the microlevel to actively involve the user/
client in all aspects of the development. This is vital
to the institutionalization process in that the technology
transfer is greatly eased. This is apparent in many ways;
the user becomes more understanding of the technology
involved, the developer is relieved of the total obligation
for system correctness as this is now shared with other
members of the development team, and the probability
of system success is increased if there is a continual
involvement and thus continual feedback from all
members and levels of the organization. Liebowitz has
also identified other influencing factors that affect the
institutionalization process, including the following:
• system migration
• standards
• configuration management
• testing
• user support services
• maintenance
• user training
• legal issues
We now briefly touch upon some of these areas as they
relate to our model. However, for a fuller treatment
the reader is referred to Liebowitz (1991).

The ability for the developers to perform system
migrations is greatly eased by having a set of specifi-
cations from which to work. This facilitates the changes
in platform that may occur over the system's life cycle.
These specifications and the adoption of a rigorous de-
velopment strategy also allow for close adherence to
standards and subsequent changes in those standards.
As the two-level model is also used for the development
of conventional systems, the integration of standards
is facilitated. This is also the case for configuration
management; the methodology is intended to allow for
the knowledge-based systems to be embedded into the

270 R. T. Plant and P. Tsoumpas

conventional systems and as such minimize any special
configuration management needs or criteria.

In following this two-level approach, in conjunction
with the rigorous methodology, it has been our aim to
maximize the system's correctness; however, a by-
product of the representation refinement approach is
to allow for, and support maintenance. By partitioning
the specifications into their functional areas, the
knowledge engineer can integrate any maintenance
needs into the existing specifications in such a way as
to assess the impact this will have upon the existing
specification--thus maintaining integrity and correct-
ness. As stated by Liebowitz (1991), "maintenance is
a key issue in institutionalizing expert systems" (p. 98)
and hence we have placed a heavy emphasis in design-
ing our methodology to support this function.

The institutionalization process therefore can be
seen as the link between the two levels of our model.
It provides a basis for drawing together all the aspects
of development on all levels to move toward the ulti-
mate aim: successful deployment of the system.

6.10. Summary of Micro Perspective

The micro-perspective aims to promote the philosophy
of continuous quality improvement through the uti-
lization of life support tools and the utilization of TQM,
metrics, modelling, and formal methods. The model
does not explicitly include a formal quality assurance
phase as the tenets of development have been integrated
into all aspects of development. The model has also
been designed to promote clarity of communicat ion
channels. The model is also able to accommodate dif-
fering development process needs, such as real-time,
parallel, or as shown here a knowledge-based devel-
opment component. This enables an integrated system
to be developed through rigor and quality principles.

7. C O N C L U S I O N S

This article has aimed at showing the necessity to pro-
duce and follow a new philosophy for software devel-
opment. We have shown how software development
can no longer be considered from one perspective (that
of the software development itself), but necessitates a
two-level perspective that includes the external factors
that influence development. If such an approach is fol-
lowed, we feel that this will lead to a more complete
framework from which systems can be built and mon-
itored.

The two-level perspective, we argue, will be suc-
cessful only if the developer follows certain tenets:
• utilize a philosophy of continuous quality improve-

ment in all aspects of development through the Plan,
Do, Check, Act cycle.

• integrate the life support tools into the development
process, the basis of which are formal methods, met-
tics, quality variance

• utilize metrics to control, monitor, and understand
the process

• utilize tools and resources to promote communica-
tion and improve the communicat ion mediums

• utilization of an institutionalization policy through-
out all aspects of development

Thus, we envisage the creation and development of a
new philosophy of process-oriented software devel-
opment, whose basis is the creation of quality software
through multilevel, interdisciplinary models of the de-
velopment environment, such as the MM-level process
model we have described. These process models will
be on several levels, linked together through strong in-
stitutionalization processes.

Finally, we have shown how the two-level model
can be versatile in accommodating and integrating with
other models such as the rigorous knowledge-based
systems development methodology. This allows a con-
sistent approach to be taken in developing complex
systems that may be composed of several different
component types, for example, real time, knowledge-
based etc. This is, we feel, vital, as systems become
increasingly hybrid in nature.

REFERENCES

Badiru, A.B. (1988). Successful initiation of expert systems projects.
IEEE Transactions on Engineering Management. 35, 186-190.

Boehm, B. (1980). Software engineering economics. Englewood Cliffs,
N J: Prentice-Hall.

Boehm, B. (1988). A spiral model of software development and en-
hancement. IEEE Computer, 21(5), 61-72.

Breuker, J., & Wielinga, B. (1987). Use of models in the interpretation
of verbal data. In A.L. Kidd (Ed.), Knowledge acquisition for expert
systems: A practical handbook (pp. 17-44). New York: Plenum.

Buchanan, B.G., Barstow, D., Bechtal, R., Bennett, J., Ciancy, C.,
Kulikowski, C., Mitchell, T., & Waterman, D.A. (1983). Con-
structing an expert system. In F. Hayes-Roth, D.A. Waterman,
& D.G. Lenat (Eds.), Building Expert Systems (pp. 127-168).
Reading, MA: Addison-Wesley.

Burton, A.M., Shadbolt, N.R., Hedgecock, A.P., & Rugg, G. (1987).
A formal evaluation of knowledge elicitation techniques for expert
systems: Domain 1. In D.S. Moralee (Ed.), Research and devel-
opment in expert systems IV (pp. 136-145). Cambridge: BCS
Series, Cambridge University Press.

Conte, S.D., Dunsmore, H.E., & Shen, V.Y. (1986). Software engi-
neering metrics and models. Menlo Park, CA: Benjamin/Cum-
mines.

Craig, I.D. (1991). Formal specification of advanced A I architectures.
Chichester, England: Ellis Horwood.

Culbert, C. (1990). Verification and validation of knowledge-based
systems [Special Issue]. Expert Systems with Applications, 1, (3).

Davis, R., & Lenat, D. (1982). Knowledge-based systems in AL New
York: McGraw-Hill.

Deming, W.E. (1986). Out of the crisis. Cambridge, MA: Massachu-
setts Institute of Technology, Center for Advanced Engineering
Study.

Deming, W.E. (1991). System of profound knowledge. Notes from
Deming Seminar 1992. Miami, FL.

Dhaliwal, J.S., & Benbasat, I. (1990). A framework for the compar-
ative evaluation of knowledge acquisition tools and techniques.
Knowledge Acquisition, 2, 145-166.

Dibble, D., & Bostrom, R.P. (1987). Managing expert systems pro-
jeers: Factors critical for successful implementation. Proceedings

Knowledge-Based System Development 271

of the 1987 ACM SIGBDP-SIGCPR Conference. New York:
ACM.

DOD-STD-2167 A. (1988). Military standard defense system software
development. Washington, DC: Department of Defense, SPA-
WAR 3212.

Gitlow, H.S., & Gitlow, S.J. (1987). The Deming guide to quality
and competitive position. Englewood Cliffs, N J: Prentice-Hall.

Gitlow, H.S., Gitlow, S.J., Oppenheim, A., & Oppenheim, R. (1989).
Tools and methods for the improvement of quality. Homewood,
IL: Irwin.

Grady, R.B., & Caswell, D.L. (1987). Software metrics: Establishing
a company-wide program. Englewood Cliffs, NJ: Prentice-Hall.

Grover, M.D. (1983). A pragmatic knowledge acquisition method-
ology. IJCAL 8, 436-438.

Hall, A. (1990). Seven myths of formal methods. 1EEE Software, 7,
11-19.

Hesketh, P., & Barett, T. (1990). An introduction to the KADS meth-
odology. (Esprit Project P1098, Deliverable M1, EEC ESPRIT
Project). Brussels, Belgium.

Imai, M. (1986). Kaizen. New York: Random House.
Ishikawa, K. (1982). Guide to quality control. Tokyo: Asian Produc-

tivity Organization.
Ishikawa, K., & Lu, D.J. (1985). What is total quality control? The

Japanese way. Englewood Cliffs, N J: Prentice-Hall.
Jacob, R.J.K. (1983). Using formal specifications in the design of a

human-computer interface. Communications of the ACM, 26,
(4).

Juran, J.M. (1964). Managerial breakthrough. New York: McGraw-
Hill.

King, W.R. (1978). Strategic planning for management information
systems. Management Information Systems Quarterly, 2, 27-37.

Leonard-Barton, D. (1987). The case for integrative innovation: An
expert system at digital. Sloan Management Review. Cambridge,
MA: MIT.

Liebowitz, J. (1986). Useful approach for evaluating expert systems.
Journal of Expert Systems, 3(2), 86-96.

Liebowitz, J. (1991). Institutionalizing expert systems: A handbook
for managers. Englewood Cliffs, NJ: Prentice-Hall.

Miller, L. (1990). A realistic industrial strength life cycle model for
knowledge-based system development and testing. AAAI Work-
shop Notes: Validation and verification, August 31 st, Boston MA.

NASA COSTMODL. (1991). COSTMODL: User's Guide. NASA
Johnson Space Center, Houston, TX.

O'Keefe, R.M., Balci, O., & Smith, E.P. (1987). Validating expert
system performance. IEEE Expert, 2(4), 81-90.

O'Leary, D.E. (1987). Validation of expert systems with applications
to auditing and accounting expert systems. Decision Sciences, 18,
468--486.

O'Leary, D.E. (1994). Collected papers 1989-92: AAAI Workshops
on Validation & Verification. (In Preparation).

Plant, R.T. (1994). A rigorous development methodology for knowl-
edge-based systems. Communications of the ACM (To Appear).

Plant, R.T., & Hu, Q. (1992). The development of a prototype DSS
for the diagnosis of casting production defects. Computers & In-
dustrial Engineering, An International Journal, 22, 133-146.

Plant, R.T., & Salinas, J.P. (1992). CISEPO [City Selection Program]:
A DSS for relocating companies within the U.S. Computers, En-
vironment and Urban Systems, 16,(2), 117-130.

Roth, E.M., & Woods, D.D. 0989). Cognitive task analysis: An ap-
proach to knowledge acquisition for intelligent system design. In
G. Guida & C. Tasso (Eds.), Topics in Expert System Design (pp.
233-264). Amsterdam: Elsevier Science Publishers.

Royce, W.W. (1970). Managing the development of large software
systems. Proc. WESTCON, Ca. USA.

Rushby, J. (1988). Quality measures and assurance for AI software.
NASA Contractor Report 4187.

Scott, C. (1991). A practical guide to knowledge acquisition. Reading,
MA: Addison-Wesley.

Sheppard, M. (1990). Design metrics: An empirical analysis. Software
Engineering Journal. IEEE, 3-10.

Spivey, J.M. (1990). The Z notation. Englewood Cliffs, NJ: Prentice-
Hall.

Sufrin, B.A., & He, J. (1990). Specification, analysis and refinement
of interactive processes. In M. Harrison & H. Thimbleby (Eds.),
Formal methods in human-computer interaction (pp. 153-200).
Cambridge, MA: Cambridge University Press.

Tausworthe, R.C. (1981). Deep space network cost estimation model
(Publication No. 81-7). Pasadena, CA: Jet Propulsion Laboratory.

Tsoumpas, P. (1994). Towards a methodology for quality software
development dissertation (in preparation), Coral Gables, FL: Dept.
of CIS, University of Miami.

Weinberg, G.M., & Schulman, E.L. (1974). Goals and performance
in computer programming. Human Factors, 16(1), 70-77.

Weitzel, J.R., & Kerschberg, L. 0989). Developing knowledge-based
systems: Reorganizing the system development life cycle. Com-
munications of the ACM, 32, 482--488.

Welbank, M. (1983). A review of knowledge acquisition techniques
for expert systems. British Telecom Research Labs. Martlesham
Consultancy Services, Ipswich, England.

Wielinga, J.B., & Breuker, J.A. (1983). Analysis techniques for
knowledge-based systems: Part 1 (Report No. I. 1). Esprit Project
12, Amsterdam, Holland.

Woods, D.D., Potter, S.S., Johannesen, L., & Holloway, M. (1991).
Human interaction with intelligent systems: Trends, problems,
new directions (Technical Report). Cognitive Systems Engineering
Lab, Columbus, OH. CSEL 9 l-TR-01.

Woods, D.D., & Roth, E.M. (1988). Cognitive systems engineering.
In M. Helander (Ed.), Handbook of human-computer interaction.
New York: North Holland.

Zuse, H. (1992). Software complexity: Measures and methods. Berlin:
de Gruyter.

