Decision Support

ELSEVIER Decision Support Systems 21 (1997) 307-323

A survey of tools for the validation and verification of
knowledge-based systems: 1985—-1995 '

Stephen Murrell *, Robert T. Plant ™*

* Department of Electrical and Computer Engineering, University of Miami, Coral Gables. FL 33124, USA
b Deparmment of Computer Information Systems, University of Miami, Coral Gables, FL 33124, USA

Abstract

This paper presents the findings of a survey of software tools built to assist in the verification and validation of
knowledge-based systems. The tools were identified from literature sources from the period 1985-1995. The tool builders
were contacted and asked to complete and return a survey that identified which testing and analysis techniques were utilised
and covered by their tool. From these survey results it is possible to identify trends in tool development, technique coverage
and areas for future research. © 1997 Elsevier Science B.V.

Kevwords: Verification; Validation; Verification tools; Validation tools; Testing; Knowledge-based system testing

1. Introduction

A literature search was made of journal and con-
ference publications for the period 1985-1995 for
material on tools for the validation and verification
of knowledge-based systems. Included in this survey
were the workshop notes of the seven AAAI/IJCAI
workshops on validation and verification, as well as
EUROVAYV and the ECAI workshops. This search
identified 40 tools.

" Corresponding author: Tel.: + 1-305-284-1963; fax: -+ [-305-
284-5161; e-mail: rplant@umiami.miami.edu

! Research Sponsored in part by SBIR Contract Number
DAHHO1-96-C-R013.

In order to evaluate the tools’ characteristics, the
tool creator was asked to assess their tool against a
list of 145 testing techniques as identified in the
literature. One hundred and twenty-nine of these
were taken from the EPRI survey and assessment of
conventional software verification and validation
techniques [15]. EPRI categorised their 129 tech-
niques into three major categories: Re-
quirements /Design Methods, Static Testing, and
Dynamic Testing. These in turn being broken down
into their own subcategories. The classification
scheme of EPRI was extended to cover testing tech-
niques found in the validation and verification litera-
ture associated with testing knowledge-based sys-
tems, this included 16 additional techniques. A table

0167-9236 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.

PII S0167-9236(97)00047-X

308 S. Murrell, RT. Plant / Decision Support Systems 21 (1997) 307-323

Table 1
A summary of the testing techniques usec in the survey

Description of major classes of techniques

V&V classes /subclasses Desciption

1.0 Requirements and design evaluation: Evaluation of the adequacy of the requirements and design

1.1 Formal methods Use of mathematical and logic formalisims for rigorous and unambiguous representation of initial
system documents, including the requirements document, the requirements specification, and the
design document. These representations may then be subjected to formal (sometimes automated)
deductive reasoning to detect anomalies or defects such as ‘correctness’, “contradiction’,
‘ccmpleteness’, ‘deadlock’, and ‘consistency’.

1.2 Semiformal methods Techniques whose normal, forced, or prescribed method of use effectively constrain users in their
specification of requirements or designs. such that various problems of expression and elaboration
can be avoided or reduced. Such problems include aspects of ambiguity, incompleteness,
inconsistency, contradiction, and ‘ill-formedness’. These techniques, while often based on
methematical and logic formalisms, do not explicitly require the user to specify or use such
formalisms. The techniques are typically embedded in function-rich. computer-based environments
which provide sophisticated graphical representations of user input and often permit the user
spacifications to be simulated or animated to permit assessment of time and performance

characteristics.

1.3 Formalized reviews Reviews by various specified personnel of requirements or design products. The reviews follow a
detailed checklist or set of procedures.

1.4 Traceability analyses Determination of correspondence between individual requirements and design elements, between

individual requirements and implemented system features, or between design elements and
implemented system features. The two types of problems identified by these analyses are (1)
vnfulfilled requirements or design elements, and (2) unintended {(unmotivated) design or
implementation elements

2.0 Static testing: Examination of the program source code or some transformation or mapping fo support various kinds of analyses
(e.g., unused code, inconsistencies, anomalies)

2.1 Algorithm analysis Analysis of the overall algorithm(s) for achieving required function.

2.2 Control analysis Analysis of the control characteristics of the program.

2.3 Data analysis Analysis of the data specifications and flow of the program.

2.4 Fault /failure analysis Analysis for particular or any kind of fault or failure, and/or an analysis to determine how
particular faults and failures could occur.

2.5 Inspections Examination of various aspects of the program by various personnel.

3.0 Dynamic testing: Actual execution of the program, generating owtput for sets of input conditions

3.1 General testing Cieneric and statistical methods for exercising program.

3.2 Special input testing Special methods for generating test-cases to explore the domain of possible system inputs.

3.2.1 Random testing Selecting test-cases according to some random statistical procedure.

3.2.2 Domain testing Analysis of the boundaries and partitions of the input space and selection of interior, boundary,

extreme, and external test-cases as a tunction of the orthganality. closeness, symmetry, linearity,
and convexity of the boundaries.

3.3 Functional testing Selecting test cases to assess required functionality of program.

3.4 Realistic testing Choosing inputs /environments comparable to intended installation situation.

3.5 Stress testing Choosing Inputs /environments which stress the design/implementation of the code.
3.6 Performance testing Measuring various performance aspects for realistic input.

3.7 Execution testing Actively following (and possibly interrupting) sequence of program execution steps.
3.8 Competency testing Comparing the output “effectiveness’ against some preexisting standard

3.9 Active interface testing Testing Various interfaces to the program

3.10 Structural testing Testing selected aspects of the program structure

3.11 Error-introducing testing Systematically introducing errors into the program to assess various effects

4.0 KBS error checks: Techniques that specifically cover the potential for errors in the structures associated with knowledge-based systems
(e.g.. rules, frames, etc. These may be logical, semantic, methodological, knowledge or data-induced

Categories 1.0-3.11 are reproduced from table 5.2-2, pp. 5-6 of Ref. [15].

S. Murrell, R.T. Plant / Decision Support Systems 21 (1997) 307-323 309

of concise definitions for these categories is given in
Table 1, and the techniques are based on Refs.
[1-12] [13,14,16-23] [24-33] [34-43] [44-53] [55~
63].

The survey was initially sent by mail to the
authors of the 40 tools identified in the literature
search. Included in this mailing was & brief outline of
each of the 145 testing techniques as well as refer-
ences for each technique. Authors were also given
instructions on how to complete the survey, which
amounted to asking the tool builder to mark off each
technique their tool covered. The su-vey respondent
was free to annotate their comments if they deemed
it necessary. A second round of survey requests was
posted to the tool builders via electronic mail in
order to ease and maximise survey returns.

2. Results

The survey resulted in 33 responses. The tools for
which responses were received are outlined in Ap-
pendix A together with the major reference for that
tool.

The seven tools that were identified in the litera-
ture but for which responses could not be obtained
are given in Appendix B, with outlines and citations.

The 33 responses were taken and the data com-
piled into a matrix, shown in Appendix C. The
matrix uses an “ X’ to identify a positive response
confirming a tool performs a given tzchnique, other
entries in the table such as a number or star corre-
spond to annotated comments from the tool builder.
These are explained in Appendix D. The tools are
ordered by year of the literature citation for that tool.

3. Data

The data as provided by the tool builders is as
accurate an approximation of the tools capabilities as
can be achieved through this form of standardised
data collection format. An original intent was to
develop the survey from the literature [54], however,
this data source often does not detail all of a system’s
capabilities. This problem is inherent in the nature of
the research literature that often only allows publica-
tion of new advances and does not permit authors to

document aspects that may be found elsewhere in the
literature.

4. Analysis

In considering the results of the survey, it can be
seen that there are distinct areas in which work has
been concentrated, primarily in the areas of control
flows. The techniques that have had most coverage
are listed in Table 2. The table indicates that many of
the tools have significant overlap and that they vary
only incrementally since VERITE in 1990 (it is also
assumed that EVA also performed many of these
tasks as early as 1987 but the EVA workers did not
respond to the survey).

In contrast to the multiple systems that cover the
techniques listed in Table 2, many techniques have

Table 2
The most frequently utilised error search techniques

Number of tools
employing the technique

Technique

Static testing
Algorithm analvsis
Cause—effect analysis 11

Control analysis
Control flow analysis 15

Data analysis
Dependency analysis 13

Fault / failure analysis
Anomaly testing 11

Dynamic testing

General testing

Unit /module testing 13
System testing 13

Structural testing
Path testing 10

Knowledge-based checks

Logic checker 22
Structure checker 17
Omission checker 16
Semantics checker 14
Rule statisfiability 13
Rule retiner 12
Test case generator 10

310 S. Muvrell, RT. Plant / Decision Support Systems 21 (1997) 307-323

not been included in any tool, and these are listed in
Table 3. These techniques are clearly an area richly
deserving further development in terms of there ap-

Table 3
The least frequently utilised error search techniques

Technique Number of tools

employing the technigue

REQ / Design methods
Formal methods

EHDM 0
VDM 0
Concurrent system calculus 0

Semiformal methods

Ward-Mellor method 0
Hatley~Pirbhai method 0
Harel method 0
Extended systems modeling 0
language

Systems engineering 0
Systems requiring 0
engineering methodology

Critical timing /flow 0
Simulation language 0
PSL /PSA 0

Static testing

Algorithm analysis

L-D relation methods 0
Algebraic specification 0

Data analysis
Concurrency analysis 0

Fault / failure analysis
Fault-tree analysis 0

Inspections
Standards audit 0

Dyvnamic testing
General testing
Software reliability 0

Special input testing

Category partition method
Revealing subdomains

Uniform boundary testing
Gaussian whole program testing
Gaussian boundary testing

[l =R R e B o]

Realistic testing
Benchmarking
Human factors experimentation 0

o

Table 3 (continued)

Number of tools
employing the technique

Technique

Stress testing
Stress /accelerated L 0

Queue size, etc. 0

Active interface testing
Organisational impact 0
analysis /testing

Structurat testing
Linear code sequence 4]

Error introduction
Mutation testing 0

plicability and use in knowledge-based systems vali-
dation and verification. However, in some cases, the
absence of certain features is due to an absence of
fundamental research into the underlying theory and
the practical applicability of those techniques. This is
particularly true of the categories covering formal
and semiformal methods, and error induction.

5. Comments and conclusions

It has been the aim of this paper to draw together
the research and development in the area of tools for
knowledge-based systems, covering the period
1985-1995. The research has shown that even though
significant progress has been made by many re-
searchers in the area in this decade, there has also
been much duplication of effort. The paper provides
an indication of the areas in which researcher can
provide practitioners with valuable tools for valida-
tion and verification of knowledge-based systems
where currently there are none, these primarily being
formal techniques, useful in the early stages of the
development life cycle.

S. Murrell, R.T. Plant / Decision Support Systems 21 (1997) 307-323

TON

ESC

‘1

CRSV-CLIPS |

RAPPING

COVADIS

CONKRET

FEAAK-MKAT

KRFOCL
VASTT

IMELODIA

PROLOGA

VVR
COVER

SACCO

-

SYCOIET

P/HUNTER
VITAL

ALIDATOR

KB Reducer3
IMVER

FAULT/FAILURE ANAL

VERITE
B

1

| [kvat
|vaLID

ST]al ure Mode. Effects. Cansality Analysis

L1

38 ‘(riticality Analysis

|
a
!

»>q ICLINT

>

. 3T "Hazards/Safety Analysis

At
|

|
i

{40 Anomaly Testing

LA

129 [FAUlt-Tree Analysis

2 TFailire Modelling

F\‘T”(‘o_nﬁnon:(ause Failure Analysis

- [
i

i INSPECTIONS

|
' [T ITAformed Panel Thspections o f

T3 Strictured Walk-throughs

[

147 TFormal Customer Review

35 (Cleai-Room Techniques

357 Peer Code Checking o

s
3
14 Desk Checking

40" Data Inferface Inspection

3T TUSer Interface Tnspection

147 Standards Audit

39 Requircments Tracing

DYNAMICTESTING

GENERAL TESTING

'30 " Uni/Module Teshing

T4 System Testing

,12 Conipilation Testing

!5 Retiability Testing

b3 TStatishical Record-Keepmg o

S—TSTIW'lre Reéhability Lstimafion

Ietric-Based Testing T

[4 ‘Ad-hoc Testing

|
[3fTﬁReanfs§|m Testing
i
i
|
I

1
I
|
i |

SPECTALTNPUT TESTING {

> Randoi Testng

3™ TCwiform Whole Pr Togram Testing
3 Uniform Boundary Tesung

¥ Gaussian WIole Progrant Testing

"3 aussian Boundary Testing

4 "Domain Testing

k3

37 Equivalence partitioning

37 Boundary Value Testing

"33 Category Partition Method

61 Revealing Subdomains Méthod

FUNTIONAL TESTINT,

23 SpecilicFanctional Requirement Testinig

48*§lmu ation Testing

[2 "ModeT Based Testing

47 "Assertion Tesfing

I3 Henristic Testing

REALISTIC TESTING

5T Field Tesfing

31 "Scenario Tesfing
{76 Qualification/Cerurication Testing,

40" "Simulator-based Testing

31 Benchmarking

™ Humiah Faciors Experimentation

STRESS TESTING

38 'Stress/Acceterated Life Test

47 Stabilily Analysis

133" TRabustness Testing

40 LimitRange [¢sting

730 | Botiléneck Testing

(Jueue Size. efc.

SO W

TIONTESTING

14 TACTvily Tractig

40 Tricremental EXécuiafion

.39 Results MonTtoring

6 Thread Testing

3

()

ro

S. Murrell. R.T. Plant / Decision Support Systems 21 (1997) 307-323

COMPETENCY TESTING

CRSV-CT IS
{COVADIS

L VERITE

KRFT
VASTT

160N

TFAAKAMKAT
IMLELODIA

{PROLOGA

T

CLINT
COVER

IVVR

SACCO

SYCOILT

VALID

KB Reducer3

IMVER

31

Gold Standard

{
S

O S SRS —

30 “Effectiveness Procegures :
ST Workplice Averages . . ’ X [

P
i

l

ACTIVE INTERFACE TEST) ;
40 Drita Taferface Testing TR A
i4T " User Interface Testing
j':&l Tnformafion System Analysis .
34" Upcrational Concept Testing : . X
"6 Organisational Impact Analysis o
[4 Transaction-Now Tesfing

{

{

I STRUCTURALTESTING
"Statement Testing

Branch Testing

FPath TesTing N
Call-Pair Tesfing

[Cinear Code Sequence and Jump =

TestCoverage Analysis Tesling

Conditional Testing

T IDala-Flow Testing

{

L ERRORINTRODUCTION i T : T T ; . . ; i .
TEtror Seeding X i
“STTTFauTt Insertion

"0 T™utation Testing

|
KBS ERRUOR THETKS

EThaitation Checker

[

Structure Chiecker

A

o

Logic Thecker

A

3
3
3
3
3

EXtended Structure Checker

Txtended Togic Checker

PRV RS

L
'

f&0

Y

-

|
4

Semantics Checker

13 1Omission Thecker

=

“Rule Refiner

"Control Checker

A

LA A A] A A

M

. Behavior Verilier

29

TesT Case Generator

P

1

. Uncertainty Checker

16

Rule Statisfiability

34 Model-based Verilier

|16 "Case-Based Tesfing

wd A s i

AT Cluster Analysis

'
H

[coco

S. Murrell, R.T. Plant / Decision Support Systems 21 (1997) 307-323

TIMvePCeA

Reference

4

I
i

=4
@©
&
o«

" DERVIVER

I
\

i |
| |
H
(=

e
=
x
=

|

|

TRUBAC

TECHNTQUT:

REQ/DESIGN METHODS
i FORMAL METHODS T

t 2 "General Regs. Tanguage Andlysis

T I Mathematical Verification

32 ENIDM

_ i

127 VDM

[40 [R&Tine Specificafion Languiage

-

|38 [Cancurreat System Calcnlus

} |
| L

i SEMI“FORMAL METHUODS

[ol

|
"Ward-MeIlor Method oo

. 27 "Hatley-Pirblai Mcthod

1‘) Harel Mcthod
“Extended Svstems Modelling Langliage

TS

|39 Syatens Engmeering Methodology

sfems Reqs. Engimeering. MethodoTogy ™ ™~

70 TAM

(SR Crnncar Timing/TTow Analysis

30 TSimulation-Tanguage ARAIVSIS

29 Telr-Net Safely Analysis X

53 PSLPSA B s

FORMALISED REVIEWS

’, Formal Réguirements Review

o g Fornval Design Review T T ”"%"“ -
‘ - TRACEABILITY ANALYSTS - '
17 O TREGUITEMERts Tracing Analysis 77 I -
[3% 1esign Compliance Anal. -
ISTATICTESTING) co vy

I ALGORTTHM ANALYSIS T
T XT2TTAWAIVGE Modeling
X T3 Catsc-ETect Analvsts

X »"gﬁ Symbolic EXection

oo

TX TDeCT5iGn Tabcs
N Tl Tvace- Asseriion Vietfiod

IFunctional Absiraction™ ™~

J7 LD Retation Methods

X35 Program Proving

e

XT38 MEETC Analyses

T8 i Algebraic Specification

X :22 Thduction-, Asscmon Muhud

i CONTROL ANALYSIS

‘Tontrol Flow Analysis X

39 [Stafe Transition Diagram ARalysis

;"X [42 iProgram Control Analysis

49 70perational Concepi ARalysis

: X 130 [CalT Stricture Analysis

Worsl-Case & Process Trigger lnnm" Analisis

) Cunumun Pru ~.> Amﬂ

DATA ANALYSIS]

1[3 Data Flow Analysis X

Signed Dirccted Graphs

- "f‘)\'ﬁlfﬁ*'(‘iua tative

Dependency” Analysis B

Cavsal Models

Laok-uip Table Gencrator

TData Dictionary Generator

[Crass Reference TasT Gencrator

3G TATiasing Analysis

—”Y*rf 7 I Dat-Model Evaluation

‘s() Concurrency Analysis
39 Dialabase Ahaly

hl) iDatabase Titerface Analyzer

|
|

TOOL
SOCRATES
IRS-CBR

PREPARE

\
|
i

DERIVER

FAULT’FATLURE ANALYSTS

37 [Failufe€ Mode. Effects” Causality Analysis X i

T X 38 Criticality Analysis

“Hazards/Safety Analysis

X140 Anomaly Testing

297 Fanlt-Tree Analvsis

12 "Failure Modelling

>

131 Commén-Cause Failure ARATysis

{1 Tiiformed PaneT Tispections X

X T3 STructired Walk-Throughs

i
}» , INSPLCTIONS
i
1
f
i

473 |Formal Customer REvicw

33 1 CIcan-Room Techniques

1
[337 {P&&ér Code Checking f
- “TI3ésk Checking :

afa Interface Inspection

User Tnferface Tnspection) ! X

[[T47;Standards Audit

o HTTV)_"KLqulremenls Iracing o 1

l)\ NAMICTESTING

GENERALTESTING
UnityModule Testing I
j X

TTXR0

T4 [System Testing

T
{3 [Compilation Testing N
X3 Reliability Testing T

ISTERtcal Kecord-Keeping

Software Reliability Esfimation

39 Regression Testing - X

T 27 Metnic-Based Testing

T4 AdGT Testing T . X

j SPECIAL TNPUT TESTING

; 3 Random Testing - Xt

i 3 Uniitorm Whole Program Testing X

3“‘Un formy Boundary Tesfing
T aussian WhHOTS Program 1¢shing

7**"_3 “Giaussian Boundary Testing

X7 4 " Doimain Testing X

i 37 TEquivalence paritioning

{ ' 377 Boundary Valiic Tesfing
35 Category Partition Méthod ™

"7"‘77 i Revéaling Subdomaims Method

R S
1

FUNTIONAL TESTING

23 T Specilichunctional Reqiirement ﬁ.slmﬂ
48 Simulation TesTig

e o e

TR T T MOdST Based Teshing
X747 " Asserlion Testing
J1THeunstic Testing

i KREALISTIC Itbll’\(:
Y TFierd Testing

T TR TScenario Testing X

ES lQlldllllLdtIUn’l ertification Icsnnﬂ
T4y

TSimulator-based Testing TUUUURTOEXC

T3 [BeERchmarking

*'3 9" THiman Tactors Experimentation

L R — i

Pt STRESS TESTING

T Strcss7Accelerated Tife Test ;
T T Stabitity Analysis A R

133 [Robustness Testing

i
“ILimiZRange Testing X
T30 BAMIeneck Tes T ”

.4]Quicue Size. elc i T

EXECUTIONTESTING : i
I

:’_ ! “ T3 ACHVity Tracing X X X
14D Incremental Executution " X X X
39 Results Monitoring XX X
i Y

"I TTTIRCad Testing

314 S. Murrell, R.T. Plant / Decision Support Systems 21 (1997) 307323

|
|

.
|

DERJVER

IRS-CBR
TRUBAC

|
|

| SOCRATES

)
-

-

C
157 Gold Standard
30 TETIEcTiveness Procedures
| ISTTWorkprace Averages
4+

C L?%L
) HTREPARF‘

*r*m’vmmg ‘ﬁf,"'%’"JF
[T T3 TUSET Tntetface Testing— - = —
o AT TTnformation System Analysis

[T]34 1Opcrational Tonce pt Testing

T 6 [Organisa mn_lepact nalysis~ 4;
- e
-

§ T Transaction-1low Testing

| ~—‘_STRUCTURFIL TESTING
f lﬂsrmmﬁﬁg
b X33 {Branch Testing f

X |36 (Paih Testing X1]
} X733 (Wrﬁfﬁg——_—”—“w“f‘ i 1t
r I3 Tinear Code Sequence and Jamp ‘_L R
—=x WWW:"H‘ i

X4 {Condifional Testing
X T4 [Dafa-Fiow Testing

14 JEmor Seeding
JEM Faull hséraon
40 ;Mufafion Testing T

X 11 (Eficitation Checker f ——r —

i X 33 [Structure Thecker i TX X T
. LR
X

33 JLogic Uhecker X FA

53 |Extended Structure CHeeker [TX XY

53 |Extenided Togic Checker [X

X TX 133 Wﬁ\a—ntus(.neckcr X

;‘_t);‘ﬂ ~ Omission Checker X

X X" 16 TRule Refiner Y

X 60 TControl Checker T X7

— X TT Behavior Vertier 1 T 7 1

X"{24 [Test Case Generalor !

J k]_TUnucnme_LKeT o

I 16 TRUIE Stanshanimiy T

| X T34 [Model-based Venilier RS]
ERRS

AN N1 C L SS—— S £
: T iCTuster Analysis L,_l i

Acknowledgements

The authors would like to thank Dr. Lance Miller
of SAIC for his insights on the issues surrounding
the validation and verification of both knowledge-
based systems and conventional systems, as well as
Mr. Peter Kiss of SENTAR and ARPA for their
support of an earlier stage in this research.

Appendix A. Annotated tool references

Al ESC

The Expert System Checker (ESC) is a decision
table-based checker for rule-based systems. The sys-

tem accepts rules expressed in an almost natural
language, translating them into a more suitable inter-
nal representation; it checks for ambiguity, redun-
dancy, and completeness of the rule base. The sys-
tem also works with rule bases partitioned into mul-
tiple hierarchical levels [Brian Cragun, Harold
Steudel, A Decision Table-Based Processor for
Checking Completeness and Consistency, Int. J. Man
Machine Stud. (26) (1987) 633-648].

A.2. CRSV-CLIPS

CRSV was originally a separate verification tool
to assist in the development of expert systems in
CLIPS (C Language Integrated Production System);
it has since been incorporated into CLIPS. CRSV
performs constraint and semantic checking (using
metaknowledge), and checks efficiency, complete-
ness, and syntactic correctness, as well as the more
common logic tests [C. Culbert, R. Savely, Expert
system verifications and validation, Proc. of First
AAAI Workshop on V, V and Testing, Palo Alto,
CA, August 1988].

A.3. COVADIS

COVADIS is very similar to KB-REDUCER, the
main differences are that it accepts rules with a
slightly more expressive syntax, and is mainly con-
cerned only with consistency checking [M.C. Rous-
et, On the consistency of knowledge-bases: The
COVADIS system, Proceedings of the ECA188 Con-
ference, Mancher, Germany, 1988, pp. 79-84].

A4. RITCaG

This tool is a test-case generator aimed at smaller
rule-based systems. The system generates inputs de-
signed to test different parts of the knowledge-base,
together with their expected outputs, and checks that
the system under analysis behaves as expected [U.C.
Gupta, J. Biegel, RITCaG: A rule-based intelligent
test case generator, Working Notes, AAAI Work-
shop on KBS, Verification, Validation and Testing,
Boston, MA, July 1990].

A.5. WRAPPINGS

Wrappings is not a verification and validation tool
in itself, but provides a framework that can contain

S. Murrell, R.T. Plant / Decision Support Svstems 21 (1997) 307323 315

any or all of the standard V and V methods. Wrap-
pings provides operational descriptions of all of the
components of a system [K.L. Bellman, C. Landauer,
The modeling issues inherent in testing and evaluat-
ing K-Based systems, Expert Systems Applications
J. 1 (1990) 199-215].

A.6. KRUST

KRUST, like CLINT, is essentially a refinement
system, which when presented with a test case that
produces incorrect results, attempts to identify the
cause of failure, and then produces refinements to
the rule base (modifications to tie rules) which
would produce a correct solution, with minimal dis-
ruption [S. Craw, Automating the refinement of
knowledge-based systems, PhD Dissertation, Univer-
sity of Aberdeen, Scotland, 1991].

A.7. COVER / VERITE

COVER requires that the knowledge base be con-
verted into the COVER Rule Language, a canonical
representation based on first order logic. COVER
detects duplicate, subsumed, and redundant rules; it
also identifies conflicts between rules, and uses a
heuristic approach to assist developers in identifying
deficiencies in the knowledge base. VERITE is an
extension to COVER that uses graphics to assist the
knowledge engineer in visualising faults in the sys-
tem being examined [Alun Preece, Rajjan Shinghal,
Aida Batarekh, Principles and practice in verifying
rule-based systems, Knowledge Eng. Rev. 7 (2)
(1992) 115-141].

A.8. KRFOCL

KRFOCL is restricted to backward-chaining clas-
sification expert systems. Given a large set of test
cases together with their desired results, it partially
automates the tracing of an error back to the incor-
rect rule that caused it. KRFOCL is generally capa-
ble of detecting missing, contradictory, unnecessary,
and redundant rules, and superfluous or missing
preconditions to rules [Michael J. Pazzani, A set
covering approach to testing rule-based expert sys-
tems, Workshop Notes, AAAIL Boston, MA, 1990].

A.9. CONKRET

CONKRET is a tool for refining control knowl-
edge, represented by meta-rules (expressed in the

VETA language) that control the run-time creation
of goals and strategies, rather than the rules them-
selves. CONKRET attempts to discover control defi-
ciencies, such as following unnecessary goals or
failing to follow necessary goals, and make correc-
tions to the meta-rules [Beatriz Lopez, CONKRET:
A control knowledge refinement tool, in: Marc Ayel
and Jean-Pierre Laurent (Eds.), Validation, Verifica-
tion and Test of Knowledge-Based Systems, Wiley,
pp. 191-206].

A.10. VASTT

The Vitro Automated Structured Testing Tool
introduces a methodology for using conventional
VV&T for knowledge-based systems The system
has two approaches to validation and verification
embedded in their development methodology. The
Functional testing of a formalised data flow diagram
model of the specifications, and structural testing of
an intermediate language representation of the source
code. The structural testing focuses on control flows
through complexity metrics, and improved standards
of documentation [M. Steib, R. Small, C. Castells-
Schofield, Tailoring VASTT for expert system veri-
fication, validation and testing, Workshop Notes:
AAAI Workshop on V and V, 1991].

A1l FFAAK

FFAAK (Feedback Facilitated Automatic Acquisi-
tion of Knowledge) is based on constructing a
knowledge base in a way that guarantees consistency
and certain other aspects of correctness, rather than
the more traditional post-construction V and V tech-
niques. FFAAK relies on the generation of test cases
and prevents unreachable goals or values, unattain-
able rules, illegal input combinations, and illegal
outputs [T.V. Cuda, C.P. Dolan, Tool-aided non-for-
mal knowledge verification, Workshop Notes: AAAI
Workshop on V and V, Anaheim, 1991].

A.12. MELODIA

Works on simple knowledge bases containing
rules and constraints built from logical and relational
operators, working variables and constraints. Its main
purpose is to detect inconsistencies (i.e., the ability

316 S. Murrell, R.T. Plant / Decision Support Systems 21 (1997) 307-323

to infer self-contradictory facts, or facts incompatible
with the constraints), but is also capable of detecting
redundant or subsumed rules [E. Charles, O. Dubois,
MELODIA: Logical methods for checking K-bases,
in: M. Ayel, J.P. Laurant (Eds), Validation, Verifica-
tion and Test of Knowledge-Baszd Systems, Wiley,
Chichester, 1991, Chap. 7, pp. 95-103].

A.13. PROLOGA

The PROcedural LOGic Analyzer is a decision
table engineering workbench. The workbench is an
interactive rule-based design tool for computer-sup-
ported construction and manipulation of decision
tables [J. Vanthienen, Knowledge acquisition and
validation using a decision table engineering work-
bench, World Congress of Expert Systems, 1991, pp.
1861-1868].

A.14. CLINT

CLINT systematically generates sets of test cases,
on which the system under consideration is run, and
the expert is asked to confirm the results. When a
test fails, or an inconsistency is discovered, CLINT
locates the cause of the failure, and automatically
corrects the rule-base, synthesizing new rules from
the old ones and the test case results [L. de Raedt, G.
Sablon, Bruynooghe, Using Interactive Concept
Learning for Knowledge-Base Validation and Verifi-
cation and Test of KBS, Wiley, Chichester, 1991,
Chap. 12, pp. 177-190].

A.15. VVR

VVR works on a rule-base expressed as simple
if—then rules, together with semantic constraints ex-
pressed as logical formulae. It detects cyclic, redun-
dant, and contradictory rules, and rules that may lead
to violations of the semantic constraints [N.
Zlatarova, VVR: A uniform framework for expert
system knowledge bases verification, validation and
refinement, Workshop Notes: AAAI Workshop on V
and V, Anaheim, 1991].

A.16. SACCO /SYCOJET

SACCO and SYCOJET are complementary tools
designed to perform testing and coherence checking
of a knowledge base. SACCO is used in the analysis
of the whole knowledge base in terms of its facts and
rules. SACCO uses a conceptual model against which

the knowledge base is checked for coherence.
SYCOIJET automatically builds test cases, assesses
the results of the test cases against a quality thresh-
old required for the system {Marc Ayel, Jean Pierre
Laurent, SACCO-SYCOIJET: Two different ways of
verifying knowledge-based systems, in: Marc Ayel,
Jean-Pierre Laurent (Eds.), Validation, Verification
and Test of Knowledge-Based Systems, Wiley, pp.
62-76].

A.l7. PATH-HUNTER and PATH-TRACER

Path Hunter applies structural testing to OPS5
style rule-based systems, it constructs a set of test
inputs that should cause all rules to fire in all possi-
ble sequences. Path Tracer checks the sequences of
rules that actually fire during a run, analysing the
degree to which the set of all possible sequences are
tested [A.D. Precce, C. Grossner, P.G. Chander, T.
Radhakrishnan, Structural validation of expert sys-
tems using a formal model, Working Notes: Work-
shop on V and V of KBS at AAAI '93, Washington
DC, August 1993, pp. 19-26].

A.18. VITAL

The VITAL workbench is aimed at supporting a
V and V extension to the KADS methodology for
domain and data knowledge. VITAL addresses the
issues of integration and openness. VITAL supports
the knowledge engineer in the task of integrating
systems that have been created under different
methodologies and through different tools and lan-
guages [Alain Rouge, Jean Yves Lapicque, Florent
Brossier, Yves Lozinguez, Validation and verifica-
tion of KADS data and domain knowledge. EU-
ROVAV 93, Univ. Polit. de Madrid (UPM), Palma
De Mallorca, Spain, 24-26 March 1993, pp. 69-83].

A.19. KVAT

The Knowledge Validation Tool is part of the
Knowledge Engineering Workbench (KEW); a sup-
port environment for knowledge acquisition devel-
oped as an ESPRIT project. KVAT automates the
process of running test cases (inputs and desired
outputs, provided by an expert in the form of frames)
for frame-based reasoning systems. It creates tables
showing where test cases failed or succeeded, and is

S. Murrell, RT. Plant / Decision Support Systems 21 (1997) 307-323 317

suitable for incremental testing after additional
knowledge acquisitions [O.J. Mengshoel, A tool for
incremental K-validation in a K-engineering work-
bench, Proc. of the European Workshop on the Veri-
fication and Validation of KBS, EUROVAN 91,
Cambridge, England, July 1991, pp. 133~146].

A.20. VALIDATOR

VALIDATOR is an interactive tool that performs
validation in nine areas: Illegal use of reserved words;
Rules that could never fire; Unused facts; Unused
questions; Unused legal values; Repeated questions;
Multiple Methods; Rules with illegal values; Incon-
sistent instantiations [Y. Kang, T. Bahill, A tool for
detecting expert system errors, Al Expert, February
1990. pp. 42-51].

A2l VALID

The VALID project provides a Common Concep-
tual Representation (CCR), which provides an (al-
most) universal system independent description lan-
guage for knowledge-based systems, and a meta-
validation language (VETA) providing system-inde-
pendent primitives for accessing the objects, external
components (such as file systems and utility pro-
grams), and a library of higher leve: functions. This
creates an abstract, high level environment in which
V and V tools may be designed; existing KBSs may
be converted to the CCR, on which validation tools
implemented in VETA operate [J. Cardevosa, N.
Juisto, General overview of the VALID project, in:
J. Cardenosa, P. Meseguer (Eds.), EVROVAV ’93,
Proceedings of the European Symposium on the
Validation and Verification of Knowledge-Based
Systems, pp. 53-67].

A.22. DERIVATION TOOL

This paper describes a formal approach to devel-
oping concurrent rule-based programs. The program
derivation strategy starts with a formal specification
of the problem. Specification refinement is used to
generate an initial version of the program. Program
refinement is then applied to produce a highly con-
current and efficient version of the same program.
Techniques for deriving concurrent programs through
either specification or program refinzment have been

described in previous literature. The main contribu-
tion of this paper consists of extending the applica-
bility of these techniques to rule-based programs.
The derivation process is supported by a powerful
proof logic; a logic that recently has been extended
to cover rule-based programs. The presentation cen-
ters around a rigorous and systematic derivation of a
concurrent rule-based solution to a classic problem
[G.-C. Roman, R.F. Gamble, W.E. Ball, Formal
derivation of rule-based programs, IEEE Trans. Soft-
ware Eng. 19 (3) (March 1993) 277-296].

A.23. KB-REDUCER3

Takes a rule-based system specified in terms of its
set of input, intermediate and output variables and
their domains, a constraint (a formula over those
variables, that must always be true), and a set of
rules. Rules have the format:

Formula — variable = expression
Formula — variable [i.e., variable = true]

Expressions involve arithmetic operations, the
variables, and constraints; formulae involve the logi-
cal operator A, V., — and the relational operators
>, =, < applied to expressions). The rules must
be stratified according to data dependencies. Using
an algorithm based on an extension of the knowl-
edge-base reduction technique, to detect inconsisten-
cies, redundancies and incompleteness in the rule-
base, together with some simpler fauits, such as
unattainable rules and assignments to input variables
[K. Williamson, M. Dahl, Knowledge-based reduc-
tion for verifying rule bases containing equations,
Working Notes, Vol. 6, Workshop on V and V of
KBS at AAAI, Washington, DC, pp. 66-71], [A.
Ginsberg, L. Rose, KB-reducer: A system that checks
for inconsistency and redundancy in knowledge-
bases, Technical Report, AT&T Labs, 1987].

A.24. IMVER

IMVER uses a compressed form (essentially us-
ing bit-vectors instead of unpacked arrays) of inci-
dence matrix to represent simple propositional rules
and detects subsumption, identity, and inconsistency
anomalies, and examines the connectivity of rules, to
detect circularity, dead ends, etc. [F. Coener, T.
Berch-Capon, A. Kent, A binary-encoded incidence

318 S. Murrell, RT. Plant / Decision Support Systems 21 (1997) 307323

matrix representation to support KBS verification,
Working Notes, Vol. 7, Workshop on V and V of
KBS at AAAI "94, pp. 84-93].

A.25. COCO

COCO 1is an incremental checking system that
computes the consistency of a rule-base. An incon-
sistency is detected through the use of a conceptual
model of the rule-base provided by an expert in the
form of integrity constraints. The knowledgé-base is
consistent when the rules satisfy the constraints spec-
ified by the conceptual model. The second part of the
tool ‘X', assists the expert to identify why a rule
base is inconsistent. This forms the COCO-X tool,
an interactive refinement system [Stephane Loiseau,
A method for checking and restoring the consistency
of rule bases, Int. J. Human-Computer Stud. 40
(1994) 425-442].

A.26. MVP-CA

Multi-View Point Clustering Analysis is based
upon the idea that it is generally not possible to
group the rules in a rule-based system into any single
meaningful structure; instead, different structurings
of the rules are required, depending upon the view-
point under consideration [M. Mehrotra, C. Wild,
Multi-viewpoint clustering analysis, Working Notes,
Vol. 6, Workshop on Verification and Validation of
KBS at AAAI, Washington, DC, pp. 52-63).

A.27. SOCRATES

This tool (System for Optimizing and Checking
Rules for Analysis and Translation to Expert Shells)
is a prototype providing basic functionality of dis-
playing the structure of variable declarations, facts
and rules to the user in the form of templates and
push buttons. Basic structure, logic and control
checking are also provided [B. Traylor, U. Schwut-
tke, A. Quan, A tool for American verification of
real-time expert systems, Working Notes, Vol. 7,
Workshop on V and V of KBS at AAAT 94, Seattle,
WA, August 1994, pp. 79-83].

A.28. IRS-CBR

IRS-CBR (Intelligent Information Retriever with
a Case-Based Reasoner) is used as a front—end sys-
tem on a personal computer to communicate with a

main frame computer on which financial statistical
databases are stored. IRS-CBR has two components:
a knowledge-based reasoner for general problem
solving and a case-based reasoner for using past
cases [Terano, personal communication, 1995] [T.
Terano, K. Kobayshi, Changing the traces: Refining
a rule-basé by genetic algorithms, IJCAI Workshop
on V and V of Knowledge-Based Systems Notes
1995, Montreal, Canada, 19 August 1995].

A.29. TRUBAC

TRUBAC uses a dataflow apptoach to the valida-
tion, verification and testing of rule-based systems
through an AND /OR representation of the knowl-
edge-base. A series of rule base coverage measures
are used to guide the selection of test data and
determine the extent to which a test suite has cov-
ered the rule base. The coverage measures are based
on an execution path within the DAG representation,
corresponding to all the rules fired along a ‘rea-
soning chain’ executed by a given input [V. Barr,
Rule-based coverage measures applied to testing
rule-bases with uncertainty, IJCAI Workshop on V
and V of Knowledge-based Systems Notes 1995,
Montreal, Canada, 19 August 1995].

A.30. PREPARE

PREPARE takes a novel approach to the tradi-
tional problem of detecting inconsistent, redundant,
subsumed, circular, and incomplete rules in a knowl-
edge base. The rules are translated into a
‘Predicate /Transition Net’ to which simple pattern
recognition techniques may be applied to detect the
anomalies [D. Zhang, D. Nguyen, PREPARE: A tool
for knowledge-base verification, IEEE Trans.
Knowledge Data Eng. 6 (6) (December 1994) 983—
989].

Appendix B. Tool systems for which no survey
response was obtained

B.l. EVA

EVA, (the Expert systems Validation Associate)
provides a consistent tool set for KBSs implemented
in expert system shells. EVA detects dead end rules,
unreachable rules, redundant rules. cyclic rules, in-

8. Murrell R.T. Plant / Decision Support Systems 21 (1997) 307-323 319

consistencies (possible firings of rules leading to
incomplete deductions), failures to satisfy semantic
constraints, missing rules (possible input combina-
tions not covered). The system also generates test
cases, through which the developer verifies the be-
haviour of the system, both in terms of single rules,
and possible sequences of rules. It also provides
some checking of the consistency of certainty factors
[R.A. Stachowitz, C.L. Chang, T.S. Stock, I.B.
Coombs, Building validation tools for knowledge-
based systems, First Annual Workshop on Space
Operations Automation and Robotics (SOAR ’87),
Houston, TX, 5-7 August 1987, pp. 209-216].

B.2, SPT

SPT (Schematic Programming Tool) is designed
to increase the understandability of knowledge-based
systems through a graphical represzntation (similar
to a flow chart) of the knowledge embedded in them.
A program (or schema) is built by connecting simple
operations via arcs representing data and control
flow. This construction is an interactive, graphics-
based process. SPT allows a program to run step-
by-step under the direct control of the developer, so
that its behaviour may be accurately observed [R.
Phelps, W. Aerts, Improving validation and verifica-
tion of knowledge-based systems tarough naturally
comprehensible flow representations, in: J. Car-
denosa, P. Meseguer (Eds.), EUROVAV '93, Pro-
ceedings of the European Symposium on the Valida-
tion and Verification of Knowledge-Based Systems,
pp. 295-309].

B.3. FEAT

FEAT takes a manually generated representation
of a system as a directed graph. Nodes represent
events or states of the system, arcs represent a causal
relationship. FEAT simulates the system, detecting
failures and determining what previous events led to
them [S.W. French, C. Culbert, D. Hamilton, Experi-
ences in improving the state of practice in verifica-
tion and validation of knowledge-based systems,
Workshop Notes, Sixth Annual Workshop on V and
V: AAAI 1994, Washington DC, pp. 86-93].

B.4. EFG translator

This tool translates horn-clause rule-bases into an
evidence flow graph representation. The performance

of the graphs are then analysed through a simulator.
Static analysis is performed on the graph for consis-
tency checking, and dynamic sensitivity analysis and
test case analysis is also performed through the
simulator [L.A. Becker, P.G. Green, J. Bhutinager,
Evidence flow graphs for V and V of expert systems,
NASA Contractor Report 181810].

B.5. SYSIFE

This system supports both dynamic and static
validation. The system attempts to detect flaws in the
knowledge base by examining the contexts in which
they occur. This is achieved through three functional
agents (a student, an examiner and a jury) who
interact to determine the systems constraints [P.
Mazas, Designing knowledge validation through ex-
perimentation: The SYSIFE system, in: M. Ayel, J.P.
Laurent (Eds.), Validation, Verification and Test of
Knowledge-Based Systems, Wiley, 1991, pp. 119—
145].

B.6. SAVES

SAVES examines coverage of rules within a
knowledge base through the use of validation test
cases. The system analyses the knowledge base to
determine all possible values for the rule variables.
These are then examined against test cases held in a
repository. The results of the validation being statis-
tically measured and presented to the developer [S.
Smith, A. Kandel, Verification and Validation of
Rule-based Expert Systems, CRC Press].

B.7. CHECKER

Checker, is part of MIDST (Mixed Inferencing
Dempster Schafer Tool) an expert system shell that
utilises mixed-initiative reasoning and uncertain rea-
soning. Checker has two components: Check-1 and
Check-2. Check-! is a rule comparison algorithm
that detects redundancy, conflict, subsumption and
unnecessary conditions. Check-2 detects possible se-
mantic errors where two or more rules that have
identical conditions but differ in their conclusions, as
well as detecting circular rules, unsolvable condi-
tions and unreachable conclusions [X. Yu, Biswas,
CHECKER: An efficient algorithm for knowledge-
based system verification, Proc. of the Third Interna-
tional Conference on Engineering Applications of
AL, IEA /AIE-90, 1990].

320

S. Murrell. R.T. Plant / Decision Support Svstems 21 (1997) 307-323

Appendix C. Tool /technique cross-reference matrix

| — ‘ s |

‘ o cod <i i A |
i [[< | —~ Lo« [= 5

8 < 1= Z L ZaE g = a 3 |

2 i G IE o i = z. <i2l= sl B . 3 i

£ 2 2 <12 ElZ E £ & 2,332 =2z =} o !

= = Z xS . 2'8 5 1z % 2i2i5 il -] |

2 D s 2 e i« T s Z = i <!

= SR z 2 > 2 D\ B2 & A j

' g] ISR ! : |

[e = - = = =i =

TTTECHNIQUE T
REQ/DESIGN METHODS

FORMAL METHODS
T2 Gencral ReGs. Lanigiage Analysis
7 Mathematical Verification -

"ReTine Specification [Languag
T omumnt gvslem(alculus™

"'*—_fTEWI'FDRWTZﬂIETHUD :
80 hﬁxra “Melfor Methed ™~ T T -
Z JIVWM"A T

S R S U

H'E tended .S}slems Modelling Language | I
fso7s em§ Enginééring Methodology ™ H‘"*"f S s Rt
H’”Ws‘emc ReGs. T cering. MET
10 FTAM T
‘38 Crifical Timing/Flow Analysis
120 Simuldtion-T. dnpuage Analysis Jr* :

79‘PLtr1NEl\TTy Amalysis— 7 T T
mw iPSL/PSA !

SO S

" T FURMALISED REVIEWS ™~ — 7
735" [Formial Requirenients Review "_'"_T“_jﬁ‘

‘)Q TFormal Design wagv\

l" C’wuxe ﬂect Xna ysis ™ X!

I8 Symbofic Execution — TR ;
;44 TDecision Tables - TTIROT XN
7T S S S SR A

33 TFunctional Abstraction
37 U0 Relation Meéthods ™
II7Program Proving
235 MetnicAnalysesT T T
T8 TATgebraic Spécification
{27 Tnductich-ASseriion Method

I

397 State mnsﬂ on Diagrany Ana

mmomml ANy
4y ()psrdlxonal Toncept Analysis

3 Swocture Analysis
'Wﬁ“&,’l'mv e‘ﬁmew

|
T TOaE Flow ATalysE -
34 "Signed Dirctied Graphs — T
HFWE\W’E T *TA‘*_‘""‘T’ TTTTTTX
146 rQuah’(allve Causal Models I S S S I ;
3 cok-up Tabic Generafor
ata Dichonary Generator
/39 Cross ReTeréiive List Gei
D‘) ‘Frﬂxdw Analysis
Concurrency Analysis [!
i y') "Daiabase Analyzer TR T T T T 4‘ ‘_‘T‘—Jr‘ '*“‘—I_X :
LBW\ﬁﬁ?ﬂmW—“ — 1 B G i R ﬁ X

1 ; ! i s ——
“ b Zaﬁ“—mmaﬁ'almn - T ’ T ':' " *_ I L 77 1

,T [

S. Murrell, RT. Plant / Decision Support Systems 21 (1997) 307-323 321

Appendix D. Key to Survey Responses

KB REDUCER

1 Implemented in REFINE
2 In progress of implementation

VVR

X3 Tests for: Circular rules, redandant rules,in-
consistent rules, inconsistent data, irrelevant
premises,irrelevant rules

4 Under development for non-monotonic KBthe-
ories

VITAL

KADS Task Layer Analysis

KADS Behaviour Analysis

KADS Operational Model Analysis

Applied on KADS Behaviours Level

KADS Reference Layer Analysis

KADS Domain Layer Analysis

Validate KBS Domain Layer Correctness

To validate KADS domain layer data and

knowledge

13 To represent experts knowledge on domain

14 To use experts knowledge in KADS models
validation process

15 We have developed a language to represent
expert knowledge on the domain and we vali-
date the KADS model with this knowledge

16 Validation of KADS conceptual model

17 To be applied on KBS test

18 Applied on KADS operational model

19 Applied on KADS operational model

—_— e — \O 00 =1 O W

o - O

ESC

20 ESC was totally decision table based, methods
were shown how to break large problems into
smaller,checkable sized decision tables.

CRSV-CLIPS

21 “CRSV is no longer available with the later
version of CLIPS because the features it con-
tained have been integrated i1 most part into
CLIPS. CRSV’s popular feature was the strong

type checking and that capability is available
in CLIPS right now.” [Bebe Ly, NASA JSC]

WRAPPING

[§]
(3]

Wrappings provide a framework that can con-
tain any or all of these methods. They do not
do any of these. Because wrappings are de-
scriptions of all components of a system, they
also facilitate V&V of system architecture.

References

[1] E.P. Andert, Integrated knowledge-based system design and
validation for solving problems in uncertain environments,
Int. J. Man—Machine Stud. 36 (1992) 357-373,

[2] M. Alford. SREM at the age of eight: The distributed
computing design system. Computer 18 (4) (1985) 36-46.

[3] M. Barnes. P. Bishop, B. Bjarland, G. Dahll, D. Esp. J.
Lahti, H. Valisuo. P. Humphreys, Sottware testing and evalu-
ation methods (The STEM Project), OECD Halden Reactor
Project Report, No. HWR-210. May 1987.

[4] B. Beizer, Software Testing Techniques. 2nd edn.. Van
Nostrand-Reinhold, New York, 1990.

[S] Barry W. Boehm, Software Engineering Economics, Pren-
tice-Hall, Englewood Cliffs. NJ. 1981.

[6] H. Booher (Ed.), MANPRINT: An Approach to Systems
Integration, Van Nostrand-Reinhold, New York, 1990.

[7] W. Bruyn, R. Jeasoon. D. Keskar. P. Ward, ESML: An
extended systems modeling language, ACM Software Eng.
Notes 13 (1) (1988) 58-67.

[8] BSI Standards, Guide to the Assessment of Reliability of
Systems Containing Software.

[9] CHI (Computer—Human Interaction): Conference Proceed-
ings on Human Factors in Computing Systems, sponsored by
the ACM SIGCHI, Austin, 30 April-4 May 1989, pp. 265~
268.

[10} G.H. Chisholm, B.T. Smith, A.S. Wojcik, Formal system
specifications—a case study of three diverse representations,
Argonne National Laboratory Report ANL-90 /43, December
1990.

[L1] C. Culbert, G. Riley, R.T. Savely, Approaches to the verifi-
cation of rule-based expert systems, Proceedings of the First
Annual Workshop on Space Operations Automation and
Robotics Conference (SOAR 87), Houston. TX, 1987.

322 S. Murrell. R.T. Plant / Decision Support Systems 21 (1997) 307-323

[12] A. Davis, Software Requirements: Analysis and Specifica-
tion, Prentice-Hall, New York, 1990.

[13] M. Deutsch, Software Verification and Validation: Realistic
Project Approaches, Prentice-Hall, Englewood Cliffs, NI,
1982.

[14] R.H. Dunn, Software Defect Removal, McGraw-Hill. New
York, 1984,

[15] EPRI "93, Survey and assessment of conventional software
verification and validation techniques, SPRI TR-102106, Pro-
ject 3093-01, Final report, February 1993.

[16] M.E. Fagan, Advances in software inspection, IEEE Trans.
Software Eng. SE-12 (7) (1986) 744-751.

[17] A. Ginsberg, A metalinguistic approach to the construction
of knowledge-based refinement systems, Proc. IJCAIL Los
Angeles, CA, August 1985, pp. 367-374.

[18] J.B. Goodenough, S.L. Gerhart, Tov/ards a theory of test data
selection, IEEE Trans, Software Eng. SE-1 (2) (1975) .

[19] J.V. Guttag, J.J. Horning, .M. W ng, The larch family of
specification languages, IEEE Software 2 (5) (1985) 24-36.

[20] D. Harel, Statecharts: A visual formalism for complex sys-
tems, Science of Computer Programming, Vol. 8, North-Hol-
land Elsevier, New York, 1987, pp. 231-274.

[21] B. Hartway, J. Young, D. Thomas, Simulation characteriza-
tion, Proceedings of the Third International Conference on
Software for Strategic Systems, 27-28 February 1990,
Huntsville, AL, pp. 64—-85.

[22] D. Hatley, 1. Pirbhai, Strategies for Real-Time System Speci-
fication, Dorset House, New York, 1987.

[23] C.A.R. Hoare, J.C. Sheperdson (Eds.), Mathematical Logic
and Programming Languages, Prentice-Hall, New York,
1985.

[24] W.E. Howden, Functional program testing, IEEE Trans.
Software Eng. SE-6 (2) {1980) 162-169.

[25] D.C. Ince, The Automatic Generation of Test Data, Com-
puter J. 30 (1) 63-69.

[26] H. Jensen, K. Vairavan, An experimental study of software
metrics for real-time software, IEEE Trans. Software Eng.
SE-11 (2) (1985) 231-234.

[27] R. Jensen, C. Tonies, Software Engineering, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

[28] C. Jones, Systematic Sofiware Development Using VDM,
Prentice-Hall, New York, 1986.

[29] J.C. King, Symbolic execution and program testing, Com-
mun. ACM 1 (7) (1976) 385-394.

[30] N.G. Leveson, J.L. Stolzy, Safety analysis using Petri nets,
IEEE Trans. Sofiware Eng. SE-13 (3) (1987) .

[31] J. Llinas, S. Riui, M. McCown, The test and evaluation
process for knowledge-based systems, SAIC final contract
report, Contract no. F30602-85-G-0313 C, Task 86-001-01,
prepared for Rome Air Development Center, 1987,

[32] M. Mehrotra, C. Wild, Multi-viewpoint clustering analysis,
Working Notes, Vol. 6, Workshop on Verification and Vali-
dation of KBS at AAAI Washington, DC, pp. 52-63.

[33] E. Miller, Better Software Testing, Proceedings of the Third
International Conference on Software for Strategic Systems,
27-28 February 1990, Huntsville, AL, pp. 1-7.

[34] L.A. Miller, Dynamic testing of knowledge bases using the

heuristic testing approach. Expert Systems Applications Int.
T. 1 (1990) 249-269.

[35] L.A. Miller, A realistic industrial-strength life-cycle model
for knowledge-based system development and testing, Paper
presented at the Third Annual Workshop on Verification and
Validation ot Knowledge-Based Systems. Held at the meet-
ing of the American Association for Artificial Intelligence,
29 July 1990, Boston. Published in AAAI Proceedings.
Winter 1990.

[36] H. Mills, V. Basili, J. Gannon, R. Hamlet, Principles of
Computer Programming: A Mathematical Approach, Wm. C.
Brown, New York, 1987.

[37] R. Milner, A calculus of communicating systems, Laboratory
for the Foundations of Computer Science, Edinburgh Univer-
sity Report No. ECS-L FCS-86-7, 1986.

[38] G.J. Myers, The Art of Software Testing, Wiley, New York,
1979.

[39] NBS 500-75, Validation, verification, and testing of com-
puter software, February 1981.

[40] NBS 500-93, Software validation, verification, and testing
technique and tool reference guide, September 1982.

[41] P. Ng. R. Yeh (Eds.), Modern Software Engineering: Foun-
dations and Current perspectives, Van Nostrand-Reinhold,
New York, 1990.

[42] NREG /CR-4227, W. Gilmore, Human engineering guide-
lines for the evaluation and assessment of video display unit,
July 1985.

[43] NUREG /CR-4640, PNL-5784, Handbaok of Software Qual-
ity Assurance Techniques Applicable to the Nuclear Industry,
August 1987.

[44] T. Nuyen, W. Perkins, T. Laffey, D. Pecora, Knowledge base
verification, Al Mag. 8 (1987) 65-69.

[45] A. Omar, F. Mohammed, A survey of software functional
testing methods, ACM SIGSOFT Software Eng. Notes 16 (2)
(1991) 75-82.

[46] T. Ostrand, M. Baker, The category-partition method for
specifying and generating functional tests, Commun. ACM
31 (6) (1988) .

[47] O. Oyeleye, Qualitative modeling of continuous chemical
processes and applications to fault diagnosis, PhD disserta-
tion, Massachusetts Institute of Technology, February 1990.

[48] D. Parnas, D. Smith, T. Pearce, Making formal software
documentation more practical, a progress report, Technical
Report 88-236, ISSN 0836-0227, Queen’s University at
Kingston, 1988.

[49] A.A.B. Pritsker, Introduction to Simulation and SLAMII,
Wiley, New York, 1986.

[50] J. Rasmussen, K. Vicente, Cognitive control of human activi-
ties and errors: Implications for ecological interface design,
Paper presented at the Fourth International Conference on
Event Perception and Action, Trieste, Italy, 24-28 August
1987.

{51] C. Ratray (Ed.), Specification and Verification of Concur-
rent Systems. Springer-Verlag, New York, 1990.

[52] 1. Rushby, Quality measures and assurance for Al software,
NASA Contractor Report No. 4187, prepared for Langley
Research Center under Contract NASA-17067, October 1988.

S. Murreli, R.T. Plant / Decision Support Systems 21 (1997) 307-323 323

[53] J. Rushby, An introduction to formal specification and verifi-
cation using EHDM, SRI International C'SL Technical Report
SRI-CSL-91-02, February 1991.

[54] SENTAR '95, Distributed Hybrid Sys:ems Validation and
Verification Database Annex C, Semar, 4910 Corporate
Drive, Suite C, Huntsville, AL 35805.

[55] R.A. Stachowitz, C.L. Chang, T.S. Stock, I.B. Coombs,
Building validation tools for knowledge-based systems, First
Annual Workshop on Space Operaticns Automation and
Robotics (SOAR "87), Houston, TX. 5--7 August 1987, pp.
209-216.

[56] A. Sudduth, Diagnostic reasoning usirg qualitative causal
models, Paper presented at the Electsic Power Research
Institute Conference and Expert System Applications for the
Electric Power Industry, Boston, 9—11 September 1991.

[57] D. Teichroew, E. Hershey III, PSL /PSA: A computer-aided
technique for structure documentation aad analysis of infor-
mation-processing systems, [EEE Trens. Software Eng.
SE(3)-1 (1977) 41-48.

[58] C. Tung, On control flow error detectian and path testing,
Proceedings of the Third International Conference on Soft-
ware for Strategic Systems, Huntsville, AL, 27-28 February
1990, pp. 144-153.

[59] UK Ministry of Defense Draft Interim Defense Standard
00-55, Requirements for the Procurement of Safety Critical
Software in Defense Equipment, 9 May 1989.

[60] R. Wallace, Dolores, R.U. Fujii, Software verification and
validation: An overview, IEEE Software 6 {3) (1989) .

[61] R. Wallace, J. Stockenberg, R. Charette, A Unified Method-
ology for Development Systems, McGraw-Hill, New York,
1987.

[62] P. Ward, The transformation schema: An extension of the
data flow diagram to represent control and timing, IEEE
Trans. Software Eng. 12 (2) (1986) 128--210.

[63] E. Weyuker, T. Ostrand, Theories of program testing and the
application of revealing subdomains, IEEE Trans. Software
Eng. SE-G (3) (1980) .

Robert T. Plant, is an Associate Profes-
sor in the Department of Computer In-
formation Systems at The University of
Miami. Dr. Plant obtained his PhD in
Computer Science at The University of
Liverpool. England. Previously having
studied at The Programming Research
Group. Oxford University, England, and
Wadham College, Oxford, Dr. Plant was
Chairman of the Seventh National
Workshop on Validation and Verifica-
tion of Knowledge-based Systems at
AAAL 1994 and Co-Chair of the 1997 Workshop. Dr. Plant is a
Chartered Engineer (UK), a European Engineer, a Fellow of the
British Computer Society and holds a Visiting Professorship in
Computer Science at The University of Wolverhampton in Eng-
land.

Stephen Murrell is a Lecturer in the department of Electrical and
Computer Engineering of the University of Miami. Dr Murrell
obtained his PhD in Computation from the Programming Research
Group in Oxford University, England. Previously obtaining a BSc
in Mathematics and Computer Science form the University of
Essex. England, his research interests are in Formal Specifications
of Systems, Parallel Processing and Programming Language de-
sign. Dr. Murrell has published widely on these areas and is
principal investigator in an NSF-funded project: Specialized, Fully
Declarative Logic Programming Languages for Expert Systems
and Databases.

