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Abstract

We demonstrate that fund investors employ a heuristic benchmark model to estimate alphas
and allocate capital. This can result in observational equivalence to CAPM driven investment
decisions. The benchmark estimator trades off bias against precision, accommodating finite
sample constraints. The estimator does not require knowledge of the (unknown) true model.
Under a diffuse prior on alpha, the benchmark estimator dominates factor model estimates by
the MSE criterion in 88% of our sample. We derive a sufficient condition under which the
benchmark estimator dominates, even when the true pricing model is known. Fund investors
employ a sophisticated approach to capital allocation.
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Recent work has shown that investors are not utilizing multifactor alphas to evaluate mutual

fund managers and allocate capital.1 We argue that this behavior should be interpreted as a

sophisticated model-free benchmark-driven heuristic rather than a naive decision rule or a revealed

preference for any particular pricing model. We posit a benchmark model that substitutes the

return of a single passive benchmark for one or more factors from the true pricing model. We

demonstrate, empirically and analytically, that fund alphas estimated with respect to a benchmark

model are often preferable to estimates generated by the true model.2 Although such a procedure

can increase bias in estimated alphas, it can dramatically improve precision as well — by an order

of magnitude, on average, in our sample. For investors, the net effect is more accurate estimates

of alpha and, consequently, better allocation decisions.

It is natural for investors to acknowledge and make some trade-off between bias and precision

when estimating alphas, rather than focusing exclusively on minimizing bias.3 Such a balance is

consistent with Merton (1969), which shows that the sufficient statistic for portfolio formation is

an asset’s information ratio, i.e. the ratio of its alpha to its idiosyncratic volatility. Intuitively, ad-

justing for idiosyncratic volatility—as Merton (1969) prescribes in a setting where return dynamics

are known—is similar to adjusting for estimation error, which is what we advocate. In either case,

the benefit of a positive alpha is attenuated in the presence of noise. Investors’ motives are thus

different from those of researchers, who seek to understand the underlying risk factors and associ-

ated betas driving risk premia. For investors, who are not concerned with betas, the benchmark

model sidesteps the factor zoo while improving estimates of alpha.

The benchmark model is especially relevant since the academic literature itself has not reached

consensus regarding the true asset pricing model.4 Given such model uncertainty, Pástor and

Stambaugh (2002) show that investors can utilize passive assets (including benchmarks) in lieu of

1Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) show that, conditional on CAPM alphas,
multifactor alphas do not have additional explanatory power with respect to aggregate fund flows.

2We will formally adopt a mean squared error (MSE) criterion in our analysis.
3If zero bias is truly the objective, then only the true model will suffice, and investors must contend with the many

competing approximations (e.g. CAPM, Fama-French-Carhart, etc.) to the unknown true model. Once precision is
allowed to influence decisions, we show that the true model often turns out to be irrelevant to their decision-making.

4See Barillas and Shanken (2018) for a recent study demonstrating that the posterior probabilities associated
with various models are never close to one. If a single model is to be selected, it cannot be on the basis of empirical
fit alone.

1

Electronic copy available at: https://ssrn.com/abstract=2869426



the unknown risk factors:

Loosely speaking, if you believe that some pricing model holds exactly and want a fund’s

alpha with respect to it, you need not identify the model. The appropriate estimate of

alpha is then simply the estimated intercept in a regression of the fund’s return on all

of the passive assets (p. 319).

Since it is not feasible to run a regression on “all of the passive assets,” as suggested by this

thought experiment, sophisticated investors may employ a second-best heuristic that reflects its

spirit. A sensible approach that narrows the set of passive assets is to focus on salient benchmarks.

Specifically, in the case of sector funds, Pástor and Stambaugh (2002) recommend the use of sector

benchmarks:

It is likely that future research could refine the selection of non-benchmark assets and

further increase the precision of estimated alphas. A different set of non-benchmark

assets could be specified for each fund, so that the assets have a high correlation with

the specific fund at hand. With sector funds, for example, a passive index for the same

sector could be included (p. 326).

The benchmark model that we propose, consisting of the market factor as well as the passive bench-

mark return associated with a given mutual fund, follows these insights to their logical conclusion.

While Pástor and Stambaugh (2002) can be understood as normative—it describes an optimal

Bayesian procedure that explicitly incorporates model uncertainty but that is infeasible for most

investors—our analysis is descriptive. We show that the simple two-“factor” benchmark alphas

correspond to observed investor behavior, providing higher explanatory power for fund flows than

CAPM alphas.5 Moreoever, among sector funds, we show that these benchmark alphas usually

have lower mean squared error than more conventional Fama-French-Carhart alphas.6

Our focus on the space of sector funds allows us to distinguish between the use of risk factors

and passive benchmarks as explanatory variables. Like general equity mutual funds, sector funds

5We also show that the benchmark alphas have significantly higher explanatory power than benchmark-adjusted
returns; investors are not simply return-chasing.

6Section 3.2 shows that under a diffuse prior on alpha, the benchmark alpha dominates the FFC alpha for 88%
of the funds in our sample, according to the MSE criterion.
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self-designate a passive benchmark.7,8 But, crucially, these sector benchmarks have sufficiently low

correlation with the Fama-French-Carhart factors that it is possible in realistic sample sizes to

discriminate between investor reliance upon the benchmark and investor reliance upon the factors.

In contrast, general equity funds designate benchmarks corresponding to their styles (e.g. small

growth) and, as these are long-only portfolios diversified across industries, they tend to have very

high correlation with the market itself.9 As a result, statistical power in the space of general equity

funds for the tests that we propose is quite low. Among sector funds, however, there is sufficient

power to show that investors are responding to the two-“factor” benchmark alphas rather than

CAPM alphas.

To establish the viability of the benchmark model, we conduct three related analyses. Our first

analysis consists of empirical tests that show that aggregate sector fund flows are consistent with

the utilization of the benchmark model. The intuition behind our tests is that if investors evaluate

funds according to their CAPM alphas, then the sector benchmark should not have incremental

explanatory power for fund flows. We find that the opposite holds in the data, across a range

of specifications.10 Adding the sector benchmark as a “factor” dramatically improves the corre-

spondence between estimated alphas and fund flows. We can therefore reject the null hypothesis

that investors assess mutual funds according to the univariate regression implied by the CAPM.

Moreover, we can reject the hypothesis that investors are simply return-chasing, i.e. allocating

capital to funds with the highest performance relative to their benchmark.11

In our model-free bootstrap analysis, we determine the empirical distributions of the benchmark

alpha and the Fama-French-Carhart alpha for each of the funds in our sample of N = 759 actively

7Sensoy (2009) shows that investors in general equity mutual funds are influenced by the manager-selected bench-
mark. To the extent that there is substantial within-sector variation of factor loadings across competing sector bench-
marks, there is scope for sector fund managers to play a similar game. However, our empirical results with respect
to exogenously constructed sector benchmarks suggest that mis-matched benchmarks are not of first-order concern,
as aggregate flows are robustly predicted by outperformance with respect to these exogenous benchmarks.

8A good benchmark will have factor loadings that are similar to the fund in question, even as these loadings vary
over time. Thus, a single benchmark can act as an observable dynamic projection of a fund’s systematic exposures to
an arbitrary number of (potentially unidentified) risk factors. As the benchmark’s idiosyncratic volatility approaches
zero, the (conditional) relevance of the risk factors approaches zero as well.

9See Table I in Cremers, Petajisto, and Zitzewitz (2012) for a comprehensive summary of mutual fund benchmarks.
10Our principal specification follows the semi-parametric methodology of Berk and van Binsbergen (2016).
11In the benchmark model we posit, both βmarket and βsector are free parameters. The CAPM imposes the

restriction that βsector = 0, while the return-chasing model effectively imposes βmarket = 0 and βsector = 1.
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managed sector funds. We find that for 94% of the funds, the variance of α̂benchmark is smaller

than the variance of α̂factor. Variance is reduced, on average, by an order of magnitude.12 As a

consequence of this dramatic increase in precision, the benchmark alpha will often dominate the

FFC alpha by the MSE criterion, even though the former may have a larger bias. Under a diffuse

prior on the true α, the realized empirical distributions imply that α̂benchmark dominates α̂factor for

88% of the funds in our sample. This fraction remains above 50% as long as the prior on alpha

has a standard deviation of at least 1.7% per year.13 Only under a dogmatic prior, as the standard

deviation goes to zero, does this fraction fall below 50%. Even then, the benchmark estimator

dominates for at least 46% of the funds in the sample.

Finally, we provide a theoretical analysis that demonstrates that the benefits of the benchmark

model revealed by the bootstrap are widely applicable beyond our particular sample. We derive

a sufficient condition under which the MSE of the alpha estimated with respect to the true (pos-

sibly unknown) pricing model is larger than the MSE of the alpha estimated with respect to the

benchmark model. We find that the benchmark alpha is more likely to dominate the multifactor

alpha when (a) the fund’s loadings on non-market factors are closer to zero, (b) the R2 of the

fund with respect to the multifactor model is lower, and (c) the R2 of the benchmark with respect

to the multifactor model is higher. We calibrate the sufficient condition according to the realized

moments of the Fama-French-Carhart factors, and determine the boundary between the regions of

four-factor dominance and benchmark dominance.

In summary, the theoretical analysis provides econometric foundations for the use of the bench-

mark estimator of alpha instead of the usual estimator of alpha that includes all factors as indepen-

dent regressors. When the sufficient condition is satisfied, the benchmark estimator will dominate

the usual estimator by the MSE criterion, even when the true pricing model is known and all

factors are observable. The calibration exercise shows that this condition is likely to be satisfied

for many funds. Moreover, the bootstrap analysis shows that this condition is satisfied for nearly

all (88%) of the sector funds in our sample. And our empirical flow regressions show that investors

12This is the average over all funds, including the 6% for which variance increases. A histogram of this highly
skewed distribution of variance ratios is shown in Panel B of Figure 1. The median variance ratio is 3.0.

13The prior mean is assumed to be zero.
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are responding accordingly.

Our focus on sector funds has several motivations. As noted previously, our empirical tests

will have much higher power among sector funds, given the covariance structure of common factor

returns and general equity benchmarks. Additionally, even though sector funds are a large segment

of the mutual fund industry with 10–15% of the total assets invested in active mutual funds,

previous work has not focused on this part of the fund market. From the perspectives of Berk and

van Binsbergen (2016) and Barber, Huang, and Odean (2016) who focus entirely on general equity

funds, our analysis is an out-of-sample test.

A concern with our empirical strategy is that sector fund investors and managers might be

different from their general equity counterparts.14 For example, sector fund investors may be at-

tempting to bet on momentum (Moskowitz and Grinblatt, 1999) or sector fund managers may be

better informed about their sectors (Kacperczyk, Sialm, and Zheng, 2005). To address this concern

regarding external validity, we conduct an experiment and test our hypothesis out-of-sample using

micro-data. An advantage of the experimental setting is that we can conduct within-respondent

comparisons. The experimental evidence also suggests that when benchmark information is pro-

vided, respondents utilize it to make capital allocation decisions. While these results support our

hypothesis, we recognize that experimental subjects are not representative of mutual fund investors.

Two recent papers argue that it is Morningstar ratings and not CAPM or multifactor alphas

that drive fund flows (Evans and Sun, 2018; Ben-David, Li, Rossi, and Song, 2019). These findings,

in the space of general equity funds, are not inconsistent with ours. In particular, Evans and

Sun (2018) includes a passive benchmark as an explanatory variable, in addition to the fund’s

Morningstar rating. Our argument relies upon the ability of a benchmark to capture risk exposures

that are unspanned by the market factor. If a fund’s market beta is sufficiently highly correlated

with its Morningstar rating, employing the latter is a distinct but reasonable heuristic.

Although we demonstrate that investors’ decisions are consistent with the two-factor benchmark

alpha, our purpose in labeling this a heuristic is to emphasize that mutual fund investors are not

necessarily performing multivariate regression analysis. In the well-known example from Friedman

14Although, in a fully rational world where some factor model (e.g. the CAPM) holds, investors in any fund should
base their allocations on funds’ alphas with respect to this model.
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and Savage (1948), an expert billiard player behaves “as if” he knew the physics required to predict

the consequences of his shots, but is actually making decisions via some other heuristic process.

So too, in our setting, we draw no conclusions about investors’ actual decision-making process,

which is unobservable in any event. A disaggregated sample would surely reveal a multitude of

decision rules to be in use, including CAPM and return-chasing. But, given the limitations of our

aggregated data and the corresponding representative agent analysis, the benchmark alpha is the

best explanatory model.

Our paper does not address the question of which risk-adjustment procedure investors should

employ. But, in a setting with adequate statistical power (sector funds), we show that investors’

aggregate fund flows correspond to the two-“factor” benchmark alpha. This heuristic is consistent

with belief in some (set of) multifactor model(s). As the mapping from behavior to beliefs is

not one-to-one, investors’ true beliefs are unknowable. But in practice, we show that they utilize

benchmark assets to estimate managerial skill — sidestepping the need to identify the true pricing

model and the associated factor loadings — and that this is a sophisticated response to a challenging

problem.

1 Data

This section provides details regarding the construction of our data.

1.1 Sample selection

We use a monthly panel of sector fund returns as our main dataset with a sample period of Jan

1999–Dec 2016. Observations from Dec 1998 are included to calculate lagged measures. To identify

our fund universe, we utilize the Center for Research in Security Prices (CRSP) Survivorship-Bias

Free Mutual Fund Database. Within that sample of mutual funds, our analysis focuses on sector

funds.

In the case of general equity funds, passive performance benchmarks are highly correlated with

the overall market return. This makes distinguishing between a CAPM alpha and a benchmark-
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adjusted alpha an empirical challenge. In contrast, sector funds provide a valuable empirical setting.

In addition to a broad market benchmark, sector funds provide information regarding sector-specific

benchmarks which are less correlated with general equity benchmarks, e.g. the market, size, and

value factors. (See Table B.1 in the Appendix). Hence, if investors utilize benchmark information

to evaluate managers, sector funds provide a useful laboratory. Compared to previous research that

focuses on general equity mutual funds, sector funds are out of sample.

To identify sector funds, we utilize Lipper Objective Codes. In our sample, the sectors with

significant fund presence are Health and Biotechnology, Natural Resources, Real Estate, Science and

Technology, Telecommunications, and Utilities.

1.2 Variable construction

The benchmarks in our analysis are constructed by forming a value-weighted portfolio of all sector

funds within a given sector. This approach is similar in spirit to the benchmark selection procedure

in Berk and van Binsbergen (2015), as it corresponds to investors’ opportunity set. This also

avoids concerns regarding strategic benchmark choice, as described by Sensoy (2009) in the context

of general equity funds.15

Fund flows are calculated following Berk and van Binsbergen (2016). Over a horizon of length

T , this is:

Fp,t = qp,t − qp,t−T
(
1 +RVp,t

)
,

where RVp,t is defined to be the return on the relevant sector benchmark.16 We define the signal of

managerial skill on fund p with respect to pricing model j to be:

αjp,t+1 = Rep,t+1 −R
j
p,t+1,

i.e., the difference between the fund’s excess return and its risk-adjusted return. If model j is a

15In unreported results, we create alternative benchmarks following Hartzell, Mühlhofer, and Titman (2010) and
find similar results in all empirical tests.

16In Berk and van Binsbergen (2016), RV
p,t is the projection of fund p’s returns on the space of available Vanguard

index funds, i.e. the passive alternative investment opportunity.
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linear factor (beta) model, then

Rjp,t+1 = F jt+1 β̂
j
p (1)

and

αjp,t =
t∏

s=t−T+1

(
1 +Rep,s − F js β̂jp

)
− 1. (2)

We compute this signal of skill conditional on two simple models: a single factor model (CAPM)

and a two-factor model that includes both the market return and the sector’s benchmark return.

While one could estimate (1) once for each fund, over the entire sample, we employ rolling

regressions to estimate the factor loadings in (1) and, in turn, the managerial skill in (2). This

approach corresponds to the information set actually available to investors in real time and avoids

any look-ahead bias.

1.3 Summary statistics

Panel A of Table 1 reports summary statistics for our data. We begin by showing the number of

active share classes that we identify in each sector. This number ranges from 63 for Telecommu-

nications to 473 for Real Estate. The table also reports distributional statistics for the number of

share classes that exist in a given year.

Our empirical analysis in Section 2 consists of a set of flow-performance regressions. Although

share classes within a given fund may have identical performance, their investor bases and cap-

ital flows are necessarily distinct. Thus, the share class is the appropriate level of analysis for

flow regressions. Our bootstrap analysis in Section 3 employs only returns data, and is therefore

conducted at the fund/portfolio level.

Panel B of Table 1 provides descriptive statistics regarding fund and benchmark performance.

The benchmark portfolio for each sector is the value-weighted portfolio of all stocks within the

sector. Data are at a monthly frequency. The average sector fund has a positive mean raw return

of 0.68%, but close to zero alpha with respect to the Fama-French-Carhart four factor model.

Figure B.1 reports the four-factor risk-adjusted three-year rolling alphas of sector funds in the

sample. The unit of observation is fund-month. Table B.1 reports correlations between monthly
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value weighted sector returns in our sample with monthly returns of the market index.

2 Empirical analysis of sector fund flows

This section presents our first empirical result: investors utilize benchmark returns to estimate alpha

— rather than explicitly adopting the CAPM or any other pricing model — when making capital

allocation decisions. Section 2.1 compares alternative specifications from the literature to provide

justification for our empirical tests. Section 2.2 demonstrates, using the framework from Berk and

van Binsbergen (2016), that the benchmark model has greater explanatory power for aggregate

fund flows than the CAPM. Section 2.3 utilizes a hybrid approach that draws from the strengths

of the approaches of Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016) to

again establish that in our dataset, investors utilize benchmark returns along with market returns

to allocate capital. Section 2.4 shows that the benchmark model also has greater explanatory power

for aggregate fund flows than a return-chasing model in which investors’ allocation decisions are

based on the simple difference between a fund’s realized return and the return on the associated

passive benchmark.

2.1 Discussion of alternative specifications

Barber, Huang, and Odean (2016) and Berk and van Binsbergen (2016) both establish that fund

flows are consistent with investors utilizing the CAPM. We consider both specifications, which are

largely consistent but with some important differences. The primary specification for aggregate

fund flows from Barber, Huang, and Odean (2016) is:

Fp,t = a+
∑
i

∑
j

bi,jDi,j,p,t + cXp,t + µt + εp,t, (3)

where flows for fund p and time t are projected onto a set of control variables, X, and a collection

of indicators, D, corresponding to the fund’s alpha decile rankings according to two competing

models, i and j. For example, if the estimated alpha according to model i is in decile 4 while

the estimated alpha according to model j is in decile 7, then D4,7,p,t = 1 and Di 6=4,j 6=7,p,t = 0.
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This specification abstracts away from the numerical estimates of alpha and considers only relative

rankings. It is therefore robust to non-linearities in the fund flow-performance relationship.

To assess the relative predictive powers of models of i and j, the authors compare
∑

i>j bi,j

and
∑

i<j bi,j . If the difference is statistically significant, then it can be reasonably concluded that

one model is more consistent with investors’ decisions than the other.17 Note, however, that the

bi,j ’s are assumed not to depend on the fund; the exact (non-linear) flow-performance relationship

is common to all funds.

The methodology proposed by Berk and van Binsbergen (2016) is robust to this assumption as

well, allowing heterogeneous (nonlinear) flow-performance relationships. They estimate:

sign (Fp,t) = γ0 + γ1

 sign
(
αip,t
)

Var
(

sign
(
αjp,t

)) − sign
(
αjp,t

)
Var

(
sign

(
αjp,t

))
+ εp,t, (4)

where the notation has been slightly modified to allow straightforward comparison with (3). γ1 > 0

if and only if model i is a better pricing model than model j with respect to explaining fund

flows. By considering only the signs of both flows and alphas, (4) makes no assumptions about the

functional form of the flow-performance relationship, either within or across funds. Positive alphas

should be associated with positive flows, and vice-versa.

Overall, the two approaches are largely consistent. We utilize two specifications below. The

first approach is that of Berk and van Binsbergen (2016), and a second hybrid approach that builds

on the strengths of Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016).

2.2 Berk and van Binsbergen (2016) specification

To compare two models, i and j, (4) regresses the sign of capital flows on the difference in the

standardized signs of fund outperformance with respect to models i and j. Essentially, the semi-

parametric approach of Berk and van Binsbergen (2016) identifies the better model by focusing

on the cases when the two models disagree regarding the direction of fund flows. For example, in

17An alternative test could impose a monotonicity constraint, such that the b coefficients are weakly monotonic in
both i and j. This would still allow for a nonlinear flow-performance relationship, but it would disallow some locally
suboptimal behaviors (for example, negative marginal flows for improving rank) that would otherwise be admissible.
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certain time periods, model i might suggest that the manager has a positive alpha and therefore

investors should invest more with her. In contrast, if for the same time period, model j suggests

that the manager has a negative alpha, we would expect investors to withdraw (some) of their

capital from the fund.

The fund flow data allow us to observe which model better captures investor decisions in these

cases when the models disagree. The main variable of interest is the second term in (4), i.e. “Diff of

Signs,” which is the difference in signs of fund outperformance measured by the two-factor sector-

plus-market model and the one-factor market model. A statistically and economically significant

positive coefficient suggests that the two-factor benchmark model is better than the CAPM at

predicting investors’ allocations.

Table 2 reports the results. Column (1) provides estimates for a pooled OLS specification.

Column (2) adds fund size to address search cost differences (Sirri and Tufano, 1998) and differences

in returns to scale (Berk and Green, 2004; Stambaugh, 2014; Pástor, Stambaugh, and Taylor, 2015).

Column (3) includes sector-fixed effects to address concerns regarding time-invariant differences

in sectors. Column (4) includes fund-fixed effects that address cross-sectional variation in time-

independent differences in funds.

Column (1) reports that the coefficient on “Diff of Signs” is positive and significant. This result

suggests that investors use the sector benchmark along with market returns to determine whether

the manager outperformed in a specific period, and that this model explains fund flow signs better

than the CAPM. Column (2) also reports similar results. The point estimates in columns (3) and

(4) remain similar in magnitude (and significance) to the previous columns, suggesting that time-

invariant sector-specific or fund-specific differences are not driving the results. Such differences can

include variation in how funds are marketed (Del Guercio and Reuter, 2014).

2.3 Hybrid specification

As an alternative test, we build on the strengths of both Berk and van Binsbergen (2016) and

Barber, Huang, and Odean (2016) and develop a hybrid specification. We compute decile ranks for

funds with respect to both the CAPM and the benchmark model, as in Barber, Huang, and Odean

11

Electronic copy available at: https://ssrn.com/abstract=2869426



(2016). As the cells have non-linear flow effects, Barber, Huang, and Odean (2016) compare the

differences in a pairwise manner and report the sum of coefficient differences.

We sidestep the issue of non-linear flow effects by utilizing the sign of fund flows, as in Berk

and van Binsbergen (2016). This approach allows for robust aggregation across funds. As we can

aggregate across funds, we create an indicator variable Di,j,p,t that equals one when the decile rank

according to model i is higher than the decile rank according to model j for fund p in time t.

This approach effectively collapses the upper off-diagonal 45 cells of the 10× 10 matrix in Barber,

Huang, and Odean (2016) into a single statistic.

Thus, we conduct a joint test of the superiority of the benchmark model over the CAPM. The

specification is as follows:

sign (Fp,t) = a+ bi,jDi,j,p,t + cXp,t + ηp + εp,t,

Table 3 reports the results. Columns (1) and (2) report the estimates where we divide outper-

formance into deciles as in Barber, Huang, and Odean (2016). We also conduct robustness tests in

columns (3) and (4) where we divide the funds into terciles. This is a more stringent test because

the disagreement has to be stronger: top tercile by benchmark model rank and bottom tercile

by the CAPM. Columns (1)–(4) confirm that when the two models disagree with respect to the

quantile rank of alpha, investors allocate capital in the direction of the benchmark model’s alpha.

2.4 Are investors simply chasing returns?

So far, we have presented evidence that investors’ allocation decisions are consistent with the es-

timated alphas from the two-factor “benchmark model.” Some readers may have in mind the

alternative explanation that investors are simply chasing funds that are producing higher non-risk-

adjusted returns than the benchmark. In that scenario, investors are not doing anything sophisti-

cated, but simply using sector fund returns net of sector benchmark returns to make investment

decisions. Note that such a prior is at odds with the findings of Berk and van Binsbergen (2016)

and Barber, Huang, and Odean (2016), as both show that the CAPM dominates return-chasing as
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an explanation for aggregate fund flow (among general equity funds).

Nevertheless, to address this alternative, we need to show that fund flows can be explained

better by the (risk-adjusted) alphas estimated from a two-factor benchmark model than by raw

outperformance implied by the return-chasing model. Table 4 reports the results of such a test.

The positive coefficients in the specifications for the difference of signs variable suggest that risk-

adjusted alpha from the two factor model is better able to explain fund flows than fund return net of

the sector benchmark return. Thus, investors are not simply chasing fund returns. In addition, the

results also provide supportive evidence for Berk and van Binsbergen (2016) and Barber, Huang,

and Odean (2016), as they show that investors are adjusting for risk and not using raw returns.

3 Model-free analysis

The empirical analysis in Section 2 establishes that investors evaluate funds with respect to both

the market return and the sector benchmark, not just the market return as suggested by a belief

in the CAPM. This section shows that this behavior — using the benchmark alpha instead of a

factor model alpha — minimizes MSE, regardless of the true pricing model, when investors’ priors

on alpha are not excessively dogmatic.18

3.1 Methodology

We start by calculating fund-level MSE as a function of the true (unknown) alpha. To do so,

we obtain model-free estimates of bias and variance conditional on the benchmark model and the

four-factor model.

Let Rj denote the Tj × 1 vector of excess returns associated with each active sector fund,

j ∈ {1, . . . , 759}, in our sample.19 Let Bj denote the Tj × 1 vector of excess returns associated

with the passive sector benchmark, and let Fj denote the contemporaneous Tj × 4 matrix of Fama-

18By dogmatic, we mean a prior belief that alpha is very close to zero. Under such a prior, it can be the case that
the factor model alpha obtains lower MSE, but it is more important to observe that in such cases, one may as well
assert that α̂ = 0 and dispense with the regression entirely.

19While the analysis in Section 2 is conducted at the share class level, as investor bases and fund flow responses
are not common across share classes of a single fund, the bootstrap analysis in this Section is conducted at the fund
level, since only returns data are used. The results are not sensitive to this choice.
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French-Carhart factor returns.

The bootstrapped benchmark estimator of alpha is computed by running the following regres-

sion,

R
(n)
j =

(
1 MktRf (n) B

(n)
j

)
α̂

(n)
benchmark,j

β̂
(n)
benchmark,j

δ̂
(n)
benchmark,j

+ ν
(n)
j ,

where the (n) superscript on an observed variable indicates the nth bootstrapped realization of the

underlying variable. Analogously, the bootstrapped factor model estimator of alpha is computed

by running the following regression,

R
(n)
j =

(
1 F (n)

)
α̂

(n)
factor,j

β̂
(n)
factor,j

γ̂
(n)
factor,j

+ u
(n)
j .

In all cases, samples are drawn from the full matrix,

(
Rj Bj Fj

)
, so all contemporaneous

relationships in the data are preserved. Regardless of Tj , all bootstrapped samples have a length

of 36 (months) to facilitate straightforward comparisons across funds.

For each fund, this bootstrap procedure is repeated 10,000 times to provide model-free esti-

mates of E [α̂benchmark,j ], Var (α̂benchmark,j), E [α̂factor,j ], and Var (α̂factor,j). Conditional on the true

(unknown) alpha, the MSE for a given estimator (i.e., “benchmark” or “factor”) is

MSEj (αj) = (αj − E [α̂j ])
2 + Var (α̂j) . (5)

3.2 Results

Before examining MSEs, we first consider the variances of the benchmark and factor model esti-

mators. Figure 1 shows Var (α̂factor) and Var (α̂benchmark) for each active sector fund in the sample.

In Panel A, each point in the scatterplot represents one fund. 94% of the funds are above the

dashed 45° line, indicating that Var (α̂factor) > Var (α̂benchmark) in nearly all cases. This asymme-
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Figure 1: Bootstrapped variances of estimated alphas under the factor model and the benchmark model.
Panel A shows a scatterplot of Var (α̂factor) versus Var (α̂benchmark) for each of N = 1, 687 active sector funds.
94% of the funds are above the dashed 45° line, indicating that Var (α̂factor) > Var (α̂benchmark). Panel B
shows a histogram of the common logarithm of the variance ratio for each fund. On average, Var (α̂factor) is
9.7 times larger than Var (α̂benchmark). The median variance ratio is 3.0. Estimated alphas are measured in
units of percent per year, i.e. a value of 5 indicates an annualized alpha of 5%.

try is expected, as the benchmark estimator ideally reduces the dimensionality of the regression

without a proportional reduction in R2. Conversely, the higher-dimensional factor model would be

expected to result in lower bias than the benchmark estimator; it is this trade-off between bias and

variance that results in the benchmark estimator’s MSE dominance in most cases.20 Panel B of

Figure 1 shows a histogram of the common log of the ratio of the two variances. Positive values

correspond to funds where Var (α̂factor) > Var (α̂benchmark). The distribution has both a positive

mean and substantial positive skewness. On average, Var (α̂factor) is almost 10 times larger than

Var (α̂benchmark).

Figure 2 shows the bootstrapped distributions of α̂benchmark and α̂factor for one particular fund.

In this case, |E [α̂benchmark]| > |E [α̂factor]|, which is to be expected if the higher dimensional model

reduces bias and if the true alpha is close to zero. Also as expected, we see that Var (α̂benchmark) <

Var (α̂factor). The implications for MSE naturally depend on the true value of α. Using (5), we

compute the MSE for each estimator as a function of α. The green line in Figure 2 shows the

20If the Fama-French-Carhart model were the true model, then the bias of α̂factor would be zero by definition. But
we make no assumption about the true pricing model, one way or the other.
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common log of the ratio of the two MSEs. Positive values imply that the benchmark estimator is

preferred according to the MSE criterion. In this case, we find that the critical value of α is -0.3%

per year. Below this value, α̂benchmark dominates. Above this value, α̂factor dominates.

-20 -10 10 20 30
α

-1.0

-0.5

0.5

1.0

1.5
α

benchmark

α

factor

log10
MSE α

^
factor

MSE α
^
benchmark

Figure 2: Bootstrapped alpha distributions and implied MSE ratio under the factor model and the bench-
mark model for one fund in our sample. The horizontal axis represents the true (unknown) alpha. Alpha is
measured in units of percent per year, i.e. a value of 5 indicates an annualized alpha of 5%. Each histogram
depicts the results of 10,000 replications. The distribution of α̂factor has a mean of 4.2% and a standard
error of 5.6%. The distribution of α̂benchmark has a mean of -6.8% and a standard error of 3.1%. Consistent
with Figure 1, Var (α̂factor) is 3.2 times larger than Var (α̂benchmark) for this fund. In expectation, α̂factor is
(1.6 times) closer to zero than α̂benchmark. The solid green line shows the common logarithm of the ratio
of MSEs based on the bootstrapped alpha distributions. If the true alpha is less than -0.3% annually, then
MSE (α̂factor) > MSE (α̂benchmark) and the benchmark estimator is preferred.

Since the true value of α is unknown, we must evaluate MSEs in the context of some prior belief

regarding α. For simplicity, assume that the prior on α is normal with zero mean and standard

deviation σ,

α ∼ N
(
0, σ2

)
. (6)

Then the expected MSE conditional on σ can be computed by integrating (5) against the normal

density implied by (6). For the fund in Figure 2, this results in the expected MSE ratio shown in

Figure 3. Again, positive values imply that α̂benchmark dominates according to the MSE criterion

in expectation. For this fund, if the prior standard deviation of α is greater than 1.1% per year,
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Figure 3: Expected MSE ratio as a function of the prior standard deviation of alpha for one fund. The
horizontal axis represents the prior standard deviation of the true (unknown) alpha. Alpha is measured
in units of percent per year, i.e. a value of 5 indicates an annualized alpha of 5%. Under a dogmatic
prior that α = 0, implying that the prior standard deviation of alpha is zero, MSE (α̂factor) is less than
MSE (α̂benchmark) by 12%, corresponding to a log-ratio of -0.06. (The intercept in this Figure is equivalent
to the intercept in Figure 2.) For prior standard deviations greater than 1.1%, MSE (α̂factor) is greater than
MSE (α̂benchmark) for this fund. The prior mean on alpha is fixed at zero.

the benchmark estimator is preferred.

This same analysis is repeated for all funds, generating a critical σ for each fund in the sample.

As long as Var (α̂factor) > Var (α̂benchmark), there will always be some value of σ above which the

benchmark estimator will dominate. (As shown in Figure 1, this condition holds in 94% of the

funds in the sample.) Furthermore, if |E [α̂benchmark]| happens to also be lower than |E [α̂factor]|, the

benchmark estimator will dominate for all values of σ.

The aggregate results for the critical σ are shown in Figure 4. The vertical axis shows the

fraction of funds for which the benchmark estimator dominates with respect to the MSE criterion.

The horizontal axis shows σ, the prior standard deviation of α. Under a default uninformative

prior, as σ → ∞, the benchmark estimator dominates for 88% of the funds in the sample. This

fraction remains above 50% as long as σ > 1.7% per year. Only under a dogmatic prior, as σ → 0,

does this fraction fall below 50%. But even then, the benchmark estimator dominates for at least

46% of the funds in the sample.
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Figure 4: MSE dominance as a function of the prior standard deviation of alpha. The vertical axis shows the
fraction of all active sector funds for which the benchmark estimator dominates. The horizontal axis shows
the prior standard deviation of α. Alpha is measured in units of percent per year, i.e. a value of 5 indicates
an annualized alpha of 5%. For approximately 46% of the funds, the benchmark estimator dominates for
any σ ≥ 0. As σ increases, the fraction of funds increases as well. This fraction does not converge to 1 as σ
grows. Thus, there is an implied asymptote at 88%. That is, for 12% of the funds in the sample, the factor
model estimator dominates for any σ ≥ 0. If the prior on α is sufficiently diffuse — greater than 1.7% per
year in this sample of sector funds — the benchmark estimator will be preferred overall to the factor model
estimator.

4 Theory of the benchmark estimator

In Section 3, we demonstrated the superiority of the benchmark estimator with respect to the

Fama-French-Carhart alpha without making any assumptions about the true pricing model. In

this section, we consider the hypothetical case in which the true pricing model is known. We derive

a sufficient condition for the dominance of the benchmark estimator with respect to the alpha

estimated under the true pricing model. We show that when the R2 of the passive benchmark

with respect to the true pricing model is high—which it is likely to be—the benchmark estimator

is likely to dominate.

The heuristic approach adopted by investors and documented in Section 2 is not a sign of low

sophistication. Rather, it is a well-founded and pragmatic resolution of a complex challenge—the

estimation of alpha—to which academics have failed to provide a consensus recommendation. While

the analysis of Section 3 shows the value of the benchmark heuristic in the sample of sector funds,

this section establishes the dominance of the benchmark estimator (by the MSE criterion) for any
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asset, even when the true pricing model is known and all factors are observable.

4.1 Assumptions

We begin by making some assumptions regarding fund and benchmark returns:

Assumption 1 Fund returns follow a factor structure.

Fund returns, R ∈ RT×1, are generated according to

Rt = α+

(
Ft Zt

) β

γ

+ ut; E
[
uu
′
]

= σ2
u I, (7)

where the factors have been partitioned into two sets, F ∈ RT×p and Z ∈ RT×q, to facilitate our

analysis. �

F represents the “consensus” factors that appear in both the true pricing model and the bench-

mark model. In our empirical work, we take F to be the market factor (p = 1), but the theoretical

analysis here is general. Z represents the (possibly unknown) factors that appear in the true pricing

model but that will be replaced by the benchmark return in the benchmark model.

Assumption 2 Existence of a passive benchmark.

There is a passive benchmark asset with observable returns B ∈ RT×1 generated according to

Bt =

(
Ft Zt

) βB

γB

+ et; E
[
ee
′
]

= σ2
e I. (8)

Note that, unlike the fund return in (7), the benchmark return has zero alpha by definition. �

Assumption 3 Joint normality.
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All random variables in (7) and (8) are jointly normal,



F
′
t

Z
′
t

ut

et


iid∼ N





λF

λZ

0

0


,



ΣFF

ΣZF ΣZZ

0 0 σ2
u

0 0 0 σ2
e




.

�

While Assumptions 1 and 2 are standard, Assumption 3 is required in order to explicitly consider

the case of stochastic regressors (factor returns). As investors cannot specify factor realizations

in advance, there is little value in considering the alternative, and much simpler, case of fixed

regressors.

4.2 Analysis

We now consider the benchmark specification for the estimation of alpha and establish the con-

ditions under which this deviation from the factor specification—i.e., the specification that corre-

sponds to the true factor model—improves alpha estimates by the MSE criterion.

The usual estimator for α is the OLS estimate of (7), which requires that all factors are known

and observable, 
α̂

β̂

γ̂

 =

((
1 F Z

)′ (
1 F Z

))−1(
1 F Z

)′
R. (9)

The benchmark estimator replaces the factor returns matrix, Z, with the vector of benchmark

returns, B, 
α̂benchmark

β̂benchmark

δ̂benchmark

 =

((
1 F B

)′ (
1 F B

))−1(
1 F B

)′
R. (10)

Use of (10) instead of (9) can be motivated in several ways. If the true pricing model is unknown,

then (9) is not feasible to begin with. F can then be taken to represent the observable risk factors
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that are, by consensus, assumed to be included in the true pricing model.21 Z then represents

the factors that are unknown, unobservable, or otherwise subject to disagreement. Substituting

the observable vector B for the matrix Z (of potentially unknown dimension) leads to the feasible

estimator in (10), whose econometric value will be established in Proposition 1, below.22

Even when the true pricing model is known, and Z is observable, it may be advantageous

to estimate (10) rather than (9). In finite samples of the size commonly used in performance

evaluation—e.g. 36 or 60 months—(9) is the best linear unbiased estimator (BLUE) of alpha,

but not the estimator that minimizes mean squared error (MSE). An investor assessing funds will

rationally want estimates of alpha that are as “close” as possible to the true values; bias per se is

not the concern.

More technically, a rational investor will optimize her estimate of alpha with respect to a loss

function, which in turn is determined by her preferences. Any continuous utility function implies a

loss function that trades off bias against variance. In particular, quadratic utility—as often assumed

in portfolio optimization problems—implies quadratic loss and minimizing MSE is the unique utility

maximizing response. To rationalize adoption of the BLUE, we would need lexicographic loss with

respect to bias and variance, and this implies discontinuous utility.

Thus, regardless of whether the true pricing model is known, there are strong theoretical argu-

ments in favor of minimizing MSE rather than bias, and there are realistic conditions under which

(10) dominates (9) by this measure. The following proposition provides a sufficient condition for

α̂benchmark to dominate α̂ with respect to the MSE criterion.

Proposition 1 MSE dominance of the benchmark estimator.

A sufficient condition for the MSE dominance of the benchmark estimator in (10) with respect to

21In our setting, we take F to be the excess return on the market. But the analysis is general, and F can be of
arbitrary dimension.

22Note that, unlike (9), (10) cannot be used to generate estimates of γ. If the true objects of interest are the factor
loadings, then some implementation of (9) that allows for model uncertainty will be required. In the context of fund
evaluation, however, factor loadings are nuisance parameters, and alpha is the object of interest.

21

Electronic copy available at: https://ssrn.com/abstract=2869426



the BLUE estimator in (9) is given by

(
T − p− 3

σ2
u

)γ ′ΣZZ·Fγ −

(
γ
′
ΣZZ·FγB

)2

γ
′
BΣZZ·FγB + σ2

e

 < 1, (11)

where ΣZZ·F denotes the conditional variance, Var
(
Zt
∣∣Ft),

ΣZZ·F = Var
(
Zt
∣∣Ft) = ΣZZ − ΣZFΣ−1

FFΣFZ .

Recall from Assumption 1 that p is the number of columns in F .

Proof. See Appendix A. �

When (11) is satisfied, then investors should rationally evaluate funds and allocate capital

according to α̂benchmark. Since the condition depends on unobservable parameters, it cannot be

independently verified and in practice must be computed with respect to investors’ beliefs.23 Nev-

ertheless, employing the factor model estimator from (9) as a default is an implicit assertion that

the sufficient condition does not hold. The relevance of investors’ beliefs is not easily circumvented.

Note, however, that (11) is written in terms of quadratic forms in the unobserved factor loadings.

Each of these forms is a scalar that corresponds to a variance. To evaluate (11), it is not required

for investors to form beliefs over each factor loading and each term of the covariance matrix of the

factors. It is sufficient to form beliefs over the systematic variance that can be explained by the

excluded factors, Z, conditional on F , as well as the idiosyncratic variances with respect to the

true pricing model.24

In the following corollaries, we provide sufficient conditions for special cases in which (1) the

fund return is regressed only on the benchmark return, (2) the fund and the benchmark have

identical factor loadings, and (3) the benchmark is omitted entirely.

23As we will show in Section 4.3, the sufficient condition often obtains using realistic parameter values calibrated
to the Fama-French-Carhart 4-factor model.

24See Teräsvirta (1987) and Thursby (1989) for further discussion of the formation of beliefs over the latent
parameters in a more general framework.
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Corollary 1 MSE dominance of the “pure” benchmark estimator.

Suppose that F is omitted from the estimation, such that (10) becomes a univariate regression of

the fund return on the benchmark return. Then the sufficient condition for the MSE dominance of

the benchmark estimator is

(
T − 3

σ2
u

)Θ
′
Σ Θ−

(
Θ
′
Σ ΘB

)2

Θ
′
BΣ ΘB + σ2

e

 < 1,

where Θ =

(
β
′
γ
′

)′
, ΘB =

(
β
′
B γ

′
B

)′
, and Σ =

 ΣFF ΣFZ

ΣZF ΣZZ

. �

Corollary 2 MSE dominance of the “ideal” benchmark estimator.

Suppose that the passive benchmark is ideal, in the sense that γB = γ. Then the sufficient condition

for the MSE dominance of the benchmark estimator is

(T − p− 3) · σ
2
e

σ2
u

· γ
′
ΣZZ·Fγ

γ ′ΣZZ·Fγ + σ2
e

< 1.

Note that γ
′
ΣZZ·F γ

γ ′ΣZZ·F γ+σ2
e

can be interpreted as the R2 arising from a regression of the component of

B that is orthogonal to F , B⊥F , on the component of Z that is orthogonal to F , Z⊥F . �

Corollary 3 MSE dominance of the omitted variables estimator.

Suppose that the passive benchmark is omitted entirely, and the fund returns are regressed only

on the observed factors, F . Then the sufficient condition for the MSE dominance of the omitted

variables estimator is (
T − p− q − 2

σ2
u

)
γ
′
ΣZZ·Fγ < 1.

Proof. This is a direct application of the results of Kinal and Lahiri (1983), but can also be under-

stood as the limit of the Proposition 1 result as γB → 0. �

We note that Corollary 3 encapsulates one of the key results of Jegadeesh and Mangipudi (2019):

omitting a true factor can improve the estimation of alpha in finite samples.
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4.3 Calibration

To illustrate the applicability of the benchmark estimator more concretely, we now present the

implications of Proposition 1 under the assumptions that the Fama-French-Carhart model holds,

and that factor returns are serially uncorrelated and jointly normal, with parameters equal to the

realized sample moments in Table 5.

We consider the usual estimator of alpha, computed using the full regression of fund returns

on all 4 factors, as well as the benchmark estimator of alpha, in which fund returns are regressed

on the market return as well as the benchmark return. Proposition 1 depends on the variance of

Z (the size, value, and momentum factors) conditional on F (the excess market return). Based on

the values in Table 5, this conditional variance is given by

ΣFF ·Z =


10.2 −2.5 3.5

−2.5 9.8 −3.2

3.5 −3.2 25.0

 .

For simplicity of exposition and graphical interpretation, we make the following assumptions:

1. The conditions of Corollary 2 hold: γB = γ. This is not as strong as it seems, since the

relevance of a passive benchmark implies that γB ≈ γ. That is, we expect differences in

returns between an active fund and its benchmark to be largely attributable to managerial

choices other than systematic deviations in risk exposures.

2. The sample size is T = 36 months.

3. The loadings on the market factor are β = βB = 1.

4. The non-market loadings are γ = γB =

(
κ κ κ

)′
. That is, the loadings on all of the

omitted factors are equal to a single scalar, κ. Although somewhat restrictive, this allows a

cleaner examination of the value of the heuristic benchmark estimator for funds with “high”
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versus “low” non-market factor exposures.25

Finally, it is more intuitive to think in terms of R2 rather than idiosyncratic variance directly,

so we can express the sufficient condition from Corollary 2 in terms of R2
fund and R2

benchmark rather

than σ2
u and σ2

e . Note that these R2s are the values with respect to the true pricing model, in this

case assumed to be the 4-factor Fama-French-Carhart model.26

Calibrating according to the sample moments and making the assumptions described above, we

ultimately obtain

843κ2R2
fund(1−R2

benchmark)

(27.3κ2 − 7.1κ+ 12.4)
(
1−R2

fund

) (
1−R2

benchmark

)
+ 26.3κ2R2

benchmark

(
1 +R2

fund

) < 1. (12)

Although a bit unwieldy, this condition depends on only three parameters. When it is satisfied, the

benchmark estimator of alpha will dominate the full model estimator by the MSE criterion. When

the expression on the left-hand-side is exactly equal to one, we obtain the boundary between the

regions of dominance. The results for three representative values of R2
benchmark ∈ {0.90, 0.95, 0.99}

are shown in Figure 5. These values of R2
benchmark are high, but this is what we would expect for a

well-diversified benchmark with respect to the true asset pricing model.27

Figure 5 shows the regions of the parameter space,
(
R2

benchmark, R
2
fund, κ

)
, for which the bench-

mark estimator in (10) dominates the “full” estimator in (9), after calibrating to the observed

sample moments in Table 5 and making the simplifying assumptions described above. All panels

show the R2 of an active fund with respect to the 4-factor model on the vertical axis and the

common (non-market) factor loading κ on the horizontal axis. The dashed lines show the values

25We already know that when non-market loadings are zero, the benchmark specification will dominate, as it
includes only 1 irrelevant regressor while the full specification includes 3. And at the other extreme, sufficiently high
factor exposures will make the full specification dominate. We are interested in exploring the boundary between the
two regimes.

26Furthermore, these are the true R2s implied by the underlying factor structure of returns, not the estimated
R2s arising from any particular regression or set of regressions. In sample sizes relevant to our setting, estimated R2s
are not only noisy but biased. Cramer (1987) provides a detailed analysis along with the following recommendation:
“R2 should not be quoted for samples of less than fifty observations.”

27Intuitive arguments justifying the APT often invoke the existence of well-diversified portfolios with zero id-
iosyncratic variance. We don’t consider this boundary case explicitly, but, under the conditions of Corollary 2,
R2

benchmark = 1 =⇒ MSE (α̂benchmark) < MSE (α̂), regardless of R2
fund or the true factor loadings. This result

obtains because, in this limiting case, the benchmark estimator is unbiased and has strictly lower variance than the
full 4-factor estimator.
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Figure 5: This figure shows the regions of the parameter space for which the benchmark estimator in
(10) dominates the factor estimator in (9), after calibrating to observed sample moments and making the
simplifying assumptions described in Section 4.3. All panels show the R2 of an active fund with respect to
the 4-factor model on the vertical axis and the common (non-market) factor loading κ on the horizontal axis.
The dashed lines show the values for which the sufficient condition in (12) is exactly one. Below the lines,
the benchmark estimator produces alpha estimates with lower MSE than the full model estimator. Panels A,
B, and C correspond to the cases when the benchmark ’s R2 with respect to the 4-factor model is 90%, 95%,
and 99%, respectively. When κ is close to zero, the benchmark estimator invariably dominates, since all
non-market regressors are superfluous. When the loading on these factors is large, the 4-factor specification
will eventually dominate. Note, however, that when R2

benchmark is sufficiently high (Panel C), dominance of
the factor estimator requires a reasonably high value of R2

fund as well, regardless of κ.

for which the sufficient condition in (12) is exactly one. Below the lines, the benchmark estimator

produces alpha estimates with lower MSE than the full model estimator. Panels A , B, and C

correspond to the cases when the benchmark ’s R2 with respect to the 4-factor model is 90%, 95%,

and 99%, respectively. When κ is close to zero, the benchmark estimator invariably dominates,

since all non-market regressors are superfluous. When the loading on these factors is large, the 4-

factor specification—which holds by assumption in this example—will eventually dominate. Note,

however, that when R2
benchmark is sufficiently high (Panel C), dominance of the factor estimator

requires a reasonably high value of R2
fund as well, regardless of κ.

In this section, we have provided econometric foundations for the use of the benchmark estimator
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of alpha instead of the usual estimator of alpha that includes all factors as independent regressors.

Under the conditions established in Proposition 1, the benchmark estimator will dominate the

factor model estimator, even when the true pricing model is known and all factors are observable.

The calibration exercise shows that this condition is likely to be satisfied for many funds. Moreover,

the bootstrap analysis in Section 3 shows that this condition is satisfied for nearly all of the sector

funds in our sample. And the flow regressions of Section 2 show that investors are responding

accordingly.

5 Experimental evidence

Our empirical results are based on fund level data. This section presents an out-of-sample micro-

level test of our argument that benchmark performance affects investment choices. A benefit is

that we are able to control for respondent characteristics and conduct within respondent compar-

isons. An important caveat, which is generally applicable, is that experimental subjects are not

representative of mutual fund investors.

We conduct an online survey on the Amazon Mechanical Turk (mTurk) platform.28 The survey

recruited a sample of 149 individuals living in the U.S.29 We collect demographic characteristics

that include age, gender, race, and education. In addition, we collect financial information such

as income, employment status, industry of employment, investing experience, and risk tolerance.

Summary statistics of the complete set of respondent characteristics are provided in Panel A of

Table B.2.

The randomized control trial assigns the participants the task of allocating $100 into three

funds: a fund investing in government securities, a general equity mutual fund, and a sector fund.

Each respondent is provided five allocation scenarios where the performance numbers are randomly

drawn from uniform distributions. In each scenario respondents are given performance figures

28Recent studies that use the same platform include Horton, Rand, and Zeckhauser (2011) and Kuziemko, Norton,
Saez, and Stantcheva (2015), among others. Casler, Bickel, and Hackett (2013) compared the online responses of
participants recruited via Amazon’s Mechanical Turk (MTurk), social media, and face-to-face behavioral testing, and
found that mTurk respondents are more diverse, yet their behavioral test results are indistinguishable from the other
groups of participants.

29The survey on average lasted approximately 5 minutes 18 seconds. Participants received 75 cents, which is
competitive in the mTurk marketplace.
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for the government fund, the general equity mutual fund, the market index, and the sector fund.

The returns are drawn from independent uniform distributions. Market and sector returns are

drawn from an interval of [0%, 20%], while the return on government securities ranges from 0%

to 4%. Further, only the treatment group is provided performance figures for the sector index.

Figure B.2 reports the screens visible to respondents before they allocate capital. Given their

respective performance figures, respondents are then asked to allocate their capital. The summary

statistics of allocation decisions are also provided in Panel A of Table B.2.

Using the allocation decisions of survey respondents, we conduct two simple tests. First, we test

a relevance condition: whether the presence of information regarding benchmarks affects allocation

decisions at all. Panel B of Table B.2 shows that survey respondents allocate more to sector

funds in the presence of benchmark information.30 Next, we test how the presence of benchmark

information affects investment decisions. Panel C of Table B.2 reports the results for the subset

of survey respondents who received benchmark performance data. Column (1) reports that survey

takers respond in a statistically and economically significant manner to the hypothetical fund

outperformance with respect to the hypothetical sector benchmark.

The results obtain after controlling for variation in demographic characteristics in column (2)

and financial characteristics in column (3) as well. Column (4) includes individual investor fixed

effects. The results suggest that benchmark information is utilized in allocation decision by respon-

dents.

The results suggest that inherent differences between sector fund investors and other investors

are not driving the allocation results. In sum, the experiment provides evidence that investors

utilize benchmark information in addition to market returns.

30Column (1) of Panel B in Table B.2 reports that in presence of the treatment of benchmark information, survey
investors allocate on average 6.3% of their portfolio to sector funds. This result remains similar after including fund
and market performance metrics in column (2), demographic controls (age, income, education, marital status, gender,
race and state of residence) in column (3), and financial controls (home owner status, employment status, industry
of employment, investing experience, investing experience in mutual funds and risk aversion) in column (4). Thus,
the presence of information regarding benchmark returns positively affects allocation to sector funds on average. In
column (4), our most exhaustive specification, investors allocate approximately 5.1% of their portfolio to sector funds
in the presence of benchmark information.
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6 Conclusion

With approximately 8.5 trillion dollars invested in U.S equity funds in 2019, capital allocation

decisions across these funds are an important issue. A concern among academics and policymakers

is that U.S. households, which own a large portion of these assets, are making sub-optimal allocation

decisions. Researchers before us have identified several cases of such sub-optimal behavior (see

Hirshleifer, 2001; Barber and Odean, 2008; Choi, Laibson, and Madrian, 2010; Cohen and Lou,

2012, among others).

Furthermore, recent work has found that investor are not using prominent multi-factor models

to estimate fund alpha when making allocation decisions. Our paper shows that this is not a

sign of unsophisticated behavior. We document that investors use a benchmark model for capital

allocation. This approach is appropriate given the uncertainty regarding the true asset pricing

model. We further show that, in our sample, the benchmark model improves the precision of alpha

estimates by an order of magnitude over multi-factor estimates. Under a diffuse prior on alpha,

the benchmark model generates superior alpha estimates in 88% of the funds. Finally, we provide

conditions under which the dominance of the benchmark alpha will obtain, even if the true pricing

model were known and all factors were observable.

Our results demonstrate that retail funds investors do not make a naive decisions when they

employ benchmarks. These investors apply a thoughtful heuristic to address a challenging problem.
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Table 1: Summary Statistics

Panel A: Summary Statistics for Funds by Sector at the Share Class Level

The table reports summary statistics for all funds in our sample at the share class level by sector. For each sector, we provide

distributional statistics for the number of funds active each year, the total net assets in millions of USD, and the sector level

total net assets. Numbers are rounded to the nearest integer. The data sample period is 1999–2016.

Mean Stdev 1st Quartile Median 3rd Quartile

Health and Biotechnology, N = 274

Number of Funds Active in a Given Year 140 40 110 143 180

Total Net Assets (Millions of $) 386 1, 487 7 35 170

Sector TNA (Millions of $) 51, 632 27, 224 31, 915 46, 543 57, 267

Natural Resources, N = 222

Number of Share Classes Active in a Given Year 107 29 87 112 127

Total Net Assets (Millions of $) 310 959 8 45 205

Sector TNA (Millions of $) 31, 287 20, 167 7, 613 35, 390 44, 621

Real Estate, N = 473

Number of Share Classes Active in a Given Year 250 71 202 278 303

Total Net Assets (Millions of $) 291 1, 223 8 40 172

Sector TNA (Millions of $) 69, 132 48, 351 24, 059 63, 373 106, 259

Science and Technology, N = 471

Number of Share Classes Active in a Given Year 244 64 195 220 303

Total Net Assets (Millions of $) 239 830 4 24 125

Sector TNA (Millions of $) 55, 426 30, 733 35, 864 43, 986 70, 372

Telecommunications, N = 63

Number of Share Classes Active in a Given Year 37 8 35 37 43

Total Net Assets (Millions of $) 149 422 1 7 99

Sector TNA (Millions of $) 5, 095 2, 178 3, 362 4, 880 6, 520

Utilities, N = 184

Number of Share Classes Active in a Given Year 99 14 92 97 105

Total Net Assets (Millions of $) 264 659 8 41 194

Sector TNA (Millions of $) 25, 134 8, 381 18, 227 24, 333 31, 227

Combined TNA across all Sectors (Millions of $) 237, 706 101, 609 157, 173 224, 775 282, 297
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Panel B: Descriptive Statistics of Mutual Fund Performance Data

This table reports summary statistics of mutual fund performance data for the sample period (years 1999 to

2016). Data are at monthly frequency. α is computed as the difference between realized excess returns in month

t minus realized excess returns to a set of benchmarks the same month, each multiplied by its respective Beta.

For fund− sec the subject returns are the returns to a fund, and benchmarks are the fund’s sector benchmark

and the S&P 500. For sec − S&P the subject returns are the return to the fund’s sector benchmark, and the

benchmark is the S&P 500. Fund size represents the size of the fund in logarithm of Total Net Assets.

mean sd min max N

Fund Flow (Next Month) -0.0007 0.3094 -9.9958 9.8027 119,304

S&Pt 0.0059 0.0410 -0.1674 0.1096 121,631

Sector Benchmark Return 0.0071 0.0547 -0.2943 0.2675 121,631

Fund Return 0.0068 0.0612 -0.7502 2.9521 121,489

α(fund - sec)t -0.0002 0.0209 -0.6243 2.9129 120,707

α(sec - S&P)t 0.0011 0.0318 -0.1339 0.1612 121,631

4 factor αt 0.0002 0.0341 -0.4128 2.8031 120,707

(S&P - Risk-free)t 0.0047 0.0411 -0.1679 0.1096 121,631

Sign of Index-Adjusted Fund Flow -0.1461 0.9892 -1.0000 1.0000 121,107

Difference of Signs -0.0474 1.2151 -3.1500 3.1500 120,568

Fund Size (log TNA) 3.7517 2.2835 -2.3026 10.5039 119,738
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Table 2: Model Comparison: Berk and van Binsbergen (2016) Approach

Dependent variable is the sign of Index-Adjusted Fund Flow. This table shows results for a fund-
level panel regression of the sign of the index-adjusted flow of funds to a mutual fund, on the
difference in signs of fund outperformance measured by the two-factor sector-plus-market model
and the one-factor market (CAPM) model. Data is at fund-month level. Standard errors are
clustered at the fund level.

(1) (2) (3) (4)

Sign of Index-Adjusted Fund Flow

Difference of Signs 0.0659∗∗∗ 0.0669∗∗∗ 0.0624∗∗∗ 0.0521∗∗∗

(Two factor − CAPM) (16.57) (16.61) (16.21) (15.51)

Fund Size 0.0183∗∗∗ 0.0157∗∗∗ 0.0285∗∗∗

(4.43) (3.81) (3.29)

Constant -0.236∗∗∗ -0.309∗∗∗ -0.301∗∗∗ -0.357∗∗∗

(-24.74) (-17.62) (-16.82) (-10.47)

Sector FE No No Yes No

Fund FE No No No Yes

Observations 119989 118686 118686 118686

Adjusted R2 0.008 0.009 0.017 0.005

t statistics in parentheses

∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3: Model Comparison: Hybrid Specification

Dependent variable is the sign of index-adjusted fund flow. This table shows results for a fund-level
panel regression of the sign of the index-adjusted flow of funds to a mutual fund, on the indicator
variable that captures fund outperformance measured by the two-factor sector-plus-market model
compared to the one-factor market (CAPM) model. The first two columns have fund performance
ranked into deciles as in Barber, Huang, and Odean (2016) and the next two have fund performance
ranked into terciles. Data is at fund-month level. Standard errors are clustered at the fund level.

(1) (2) (3) (4)

Sign of Index-Adjusted Fund Flow

Rank(αm)≤ Rank(αs) 0.170∗∗∗ 0.175∗∗∗ 0.178∗∗∗ 0.183∗∗∗

(13.96) (14.22) (13.62) (13.91)

Fund Size 0.0315∗∗∗ 0.0216∗∗

(3.42) (2.22)

Constant -0.351∗∗∗ -0.479∗∗∗ -0.353∗∗∗ -0.442∗∗∗

(-55.70) (-12.96) (-52.90) (-11.40)

Fund FE Yes Yes Yes Yes

Observations 97403 96462 59809 59312

Adjusted R2 0.008 0.009 0.009 0.010

t statistics in parentheses

∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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Table 4: Are Investors Chasing Sector Returns?

Dependent variable is the sign of fund flow. This table shows results for a fund-level panel regression
of the sign of the flow of funds to a mutual fund, on the difference in signs of fund outperformance
measured by the two-factor sector-plus-market model and fund outperformance measured as the
raw return net of sector benchmark (return chasing against sector benchmark approach). Data is
at fund-month level. Standard errors are clustered at the fund level.

(1) (2) (3) (4)

Sign of Fund Flow

Difference of Signs 0.0187∗∗∗ 0.0190∗∗∗ 0.0124∗∗∗ 0.0128∗∗∗

(Two factor − Raw sector) (4.34) (4.37) (2.91) (3.64)

Fund Size 0.00651 0.00277 -0.0465∗∗∗

(1.28) (0.55) (-5.30)

Constant -0.218∗∗∗ -0.242∗∗∗ -0.227∗∗∗ -0.0331

(-19.09) (-11.81) (-10.92) (-0.96)

Sector FE No No Yes No

Fund FE No No No Yes

Observations 118977 117732 117732 117732

Adjusted R2 0.000 0.001 0.011 0.002

t statistics in parentheses

∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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Table 5: Data for Calibration

Monthly means, volatilities, and correlations for the Fama-French-Carhart factors estimated from data

for the period January 2000–January 2019. Data are obtained from WRDS.

Factor Mean [%] Volatility [%] Correlation Matrix

Mkt − Rf 0.42 4.37 1.00
SMB 0.27 3.31 0.27 1.00
HML 0.26 3.13 -0.06 -0.26 1.00
UMD 0.17 5.35 -0.36 0.11 -0.17 1.00
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Appendix

A Proof of Proposition 1

The benchmark estimator in (10) can be interpreted as a restricted estimation of the full model,

Rt = αbenchmark +
(
Ft Bt ψt

)βbenchmark

δbenchmark

ηbenchmark

+ ut, (13)

where the scalar ψt = Ft (β − βB) + Zt (γ − γB) − et and ηbenchmark = 0. Observe that setting

βbenchmark = 0 and δbenchmark = ηbenchmark = 1 in (13) recovers the true data generating process in

(7).

Now that the benchmark estimator has been recast as an omitted variables specification, and

given Assumption 3, the sufficient condition from Kinal and Lahiri (1983, p. 1215) implies that(
T − p− 3

σ2
u

)
Ξ < 1 =⇒ MSE (α̂ov) < MSE (α̂) , (14)

where

Ξ = Var [ψt]− Cov

[
ψt,

(
F
′
t

Bt

)](
Var

(
F
′
t

Bt

))−1

Cov

[
ψt,

(
F
′
t

Bt

)] ′
. (15)

Note that, compared to the expression in Kinal and Lahiri (1983), the degrees of freedom in (14)

have been adjusted to reflect the inclusion of a constant in the regression.

From Assumption 3, we have

Var [ψt] =

(β − βB)
′
ΣFF (β − βB) + (γ − γB)

′
ΣZZ (γ − γB) + 2 (β − βB)

′
ΣFZ (γ − γB) + σ2

e , (16)

Var

(
F
′
t

Bt

)
=

 ΣFF

β
′
BΣFF + γ

′
BΣZF β

′
BΣFFβB + γ

′
BΣZZγB + 2β

′
BΣFZγB + σ2

e

 , (17)

and

Cov

[
ψt,

(
F
′
t

Bt

)]′
= ΣFF (β − βB) + ΣFZ (γ − γB)

β
′
BΣFF (β − βB) + γ

′
BΣZZ (γ − γB) + γ

′
BΣZF (β − βB) + β

′
BΣFZ (γ − γB)− σ2

e

 . (18)
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To compute the inverse of the partitioned variance matrix in (17), we make use of the following

formula.

Lemma 1 Banachiewicz inversion formula. Let M denote an invertible partitioned matrix,

M =

 P Q

R S

 .

If P and M/P ≡ S −RP−1Q, are invertible, then

M−1 =

 P−1 0

0 0

+

 −P−1Q

I

 (M/P )−1
(
−RP−1 I

)
.

�

Applying this to (17) gives

Var

(
F
′
t

Bt

)−1

=

 Σ−1
FF 0

0 0

+

1

γ
′
BΣZZ·FγB + σ2

e

 βB + Σ−1
FFΣFZγB

−1

 βB + Σ−1
FFΣFZγB

−1


′

. (19)

where ΣZZ·F ≡ ΣZZ − ΣZFΣ−1
FFΣFZ , the conditional variance of Z. Substituting the results from

(16), (19), and (18) into (15) gives the full expression for Ξ,

Ξ = (β − βB)
′
ΣFF (β − βB) + (γ − γB)

′
ΣZZ (γ − γB) + 2 (β − βB)

′
ΣFZ (γ − γB) + σ2

e− ΣFF (β − βB) + ΣFZ (γ − γB)

β
′
BΣFF (β − βB) + γ

′
BΣZZ (γ − γB) + γ

′
BΣZF (β − βB) + β

′
BΣFZ (γ − γB)− σ2

e


′

×


 Σ−1

FF 0

0 0

+
1

γ
′
BΣZZ·FγB + σ2

e

 βB + Σ−1
FFΣFZγB

−1

 βB + Σ−1
FFΣFZγB

−1


′×

 ΣFF (β − βB) + ΣFZ (γ − γB)

β
′
BΣFF (β − βB) + γ

′
BΣZZ (γ − γB) + γ

′
BΣZF (β − βB) + β

′
BΣFZ (γ − γB)− σ2

e


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After some simplification, we obtain

Ξ = γ
′
ΣZZ·Fγ −

(
γ
′
ΣZZ·FγB

)2

γ
′
BΣZZ·FγB + σ2

e

.

This and (14) gives the result.
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B Additional figures and tables

Table B.1: Cross-correlation table

The table reports correlations between monthly value weighted sector returns in our sample
with monthly returns of the market index. Sample period is from 1999 to 2016.

Variables S&P 500 Index Health and Biotech Natural Resources Real Estate Science and Tech. Telecom Utilities

S&P 500 Index 1.000
Health and Biotech 0.753 1.000
Natural Resources 0.675 0.477 1.000
Real Estate 0.605 0.522 0.426 1.000
Science and Tech. 0.848 0.613 0.571 0.441 1.000
Telecom 0.885 0.633 0.589 0.502 0.908 1.000
Utilities 0.823 0.659 0.728 0.545 0.623 0.736 1.000
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Table B.2: Experimental Evidence

Panel A: Descriptive Statistics of Allocation Experiment

The table reports summary statistics of fund and index performance data for the experiment. The table also reports
summary statistics of demographic and financial experience information collected during the survey. Risk Aversion is
measured using the approach of Weber, Blais, and Betz (2002), who provide the survey questions in their Appendix C,
Questions I and G. The Domain-Specific Risk-Taking (DOSPERT) scale is a psychometric scale that assesses risk taking
in five content domains, one of which is financial decisions.

mean sd min max N

Sector Fund Allocation 0.35 0.26 0.00 1.00 745

Market Fund Allocation 0.45 0.28 0.00 1.00 745

Treatment 0.41 0.49 0.00 1.00 745

Sector Fund Return 0.10 0.06 0.00 0.20 745

Market Fund Return 0.10 0.06 0.00 0.20 745

Government Fund Return 0.02 0.014 0.00 0.04 745

Market Index Return 0.10 0.06 0.00 0.20 745

Sector Index Return 0.10 0.06 0.00 0.20 305

Government Index Return 0.02 0.014 0.00 0.04 745

Age 31–35 N/A 18–20 61–65 745

Income (’000s) 43.83 31.21 0.00 190.00 745

Gender 0.50 0.50 0.00 1.00 745

Investor? 0.60 0.49 0.00 1.00 730

Investor in Mutual Fund? 0.47 0.50 0.00 1.00 690

Risk Aversion Measure 3.84 0.52 2.13 4.75 745
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Panel B: Sector Fund Allocation with or without Benchmark Information

Dependent variable: Sector Fund Allocation, next period. This table shows regressions of sector allocation
decision, on an intercept, returns to the market fund, sector fund, market index, and the random treatment
which is information regarding the benchmark index performance. The table utilizes allocation data from a
panel of survey respondents.

Sector Fund Allocation
(1) (2) (3) (4)

Treatment 0.0630∗∗∗ 0.0629∗∗∗ 0.0669∗∗∗ 0.0511∗

(3.33) (3.59) (3.80) (2.37)

Sector Fund 1.442∗∗∗ 1.426∗∗∗ 1.422∗∗∗

(9.81) (9.54) (7.85)

Market Fund -0.972∗∗∗ -0.957∗∗∗ -0.816∗∗∗

(-6.54) (-6.45) (-4.55)

Market Index -0.230 -0.176 -0.211
(-1.56) (-1.19) (-1.12)

Constant 0.328∗∗∗ 0.307∗∗∗ 0.285∗∗∗ 0.281∗

(26.10) (10.39) (5.74) (2.14)

Demographic Controls No No Yes Yes
Financial Controls No No No Yes
Observations 745 745 735 545
Adjusted R2 0.013 0.175 0.183 0.152

t statistics in parentheses, standard errors are robust to heteroscedasticity.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Panel C: Experimental Evidence regarding Information Availability

Dependent variable: Sector Fund Allocation, next period. This table shows regressions of sector allocation
decision, on an intercept, returns to the market index, the difference between returns to the sector benchmark
and returns to the market index (Sec−Mkt), and the difference between returns to the fund and returns to the
sector benchmark (Fund− Sec).

Sector Fund Allocation
(1) (2) (3) (4)

Mkt 1.652∗∗∗ 1.602∗∗∗ 1.732∗∗∗ 1.674∗∗∗

(4.64) (4.49) (3.78) (3.86)

Sec−Mkt 1.719∗∗∗ 1.691∗∗∗ 1.903∗∗∗ 1.816∗∗∗

(5.97) (6.03) (5.49) (5.41)

Fund− Sec 1.144∗∗∗ 1.134∗∗∗ 1.281∗∗∗ 1.201∗∗∗

(5.10) (5.23) (5.17) (4.51)

Constant 0.227∗∗∗ 0.197∗∗ 0.396 0.215∗∗∗

(6.42) (2.88) (1.77) (4.81)

Demographic Controls No Yes Yes No
Financial Controls No No Yes No
Individual FE No No No Yes
Observations 305 305 240 240
Adjusted R2 0.092 0.125 0.160 0.311

t statistics in parentheses, standard errors are robust to heteroscedasticity.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure B.1: Risk-Adjusted Out-performance of Sector Funds

This figure reports the four factor risk-adjusted three year rolling alpha of sector funds in the

sample. Unit of observation is fund-month and the sample period is from Jan 1999–Dec 2016.
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(a) A brief description viewed by respondents before the task.

(b) An allocation example for the treatment group.

(c) An allocation example for the control group.

Figure B.2: Experiment Screens

The figure reports the description respondents view before the task, and allocation examples for the treatment
and control group. The control group does not receive a benchmark index return.
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