Homework 1: Warm-up Exercises Eco 603 Fall 2017 Due: August 31

Consider the following social planning problem in which total factor productivity (A_t) grows along with population.

$$\max_{C_t, K_{t+1}} \sum_{t=0}^{\infty} \beta^t L_t \left[\frac{\left(\frac{C_t}{L_t}\right)^{1-\sigma} - 1}{1-\sigma} \right]$$
(1)

Subject to a resource constraint:

$$C_t + K_{t+1} = A_t K_t^{\gamma} L_t^{1-\gamma} + (1-\delta) K_t$$
(2)

and exogenous growth rates:

$$L_{t+1} = (1+\eta) L_t \qquad A_{t+1} = (1+\theta) A_t \tag{3}$$

Here $\sigma > 0$ with $\sigma = 1$ being log utility.

Question 1: Normalization

- a. Normalize the model: rewrite the model defining new variables so that L_t and A_t are removed from the problem, and no remaining variables are growing without bound exogenously.
- b. Interpret the normalized variables.
- c. What assumption on β is required so that social welfare is finite?
- d. Assume all normalized variables are constant. What is the growth rate of output and output per capita?

Question 2.

Prove that the limiting case is log utility:

$$\lim_{\sigma \to 1} \frac{\left(C_t\right)^{1-\sigma} - 1}{1-\sigma} = \log C_t. \tag{4}$$

Question 3 (Productivity Growth).

Growth in productivity implies (all other things equal) an income effect in that we are wealthier in the future and a substitution effect in the form of greater returns to saving, since capital is more productive in the future.

- a. Explain how the above income and substitution effects affect today's savings decision.
- b. Explain how the income and substitution effects are affected by the concavity of the utility function (a graph of the utility function will help).
- c. Explain the relationship between σ and the concavity of the utility function.
- d. Use the above results to explain how σ and θ affect the normalized discount rate.
- e. Finally, explain what happens to the normalized discount rate under log utility.

Question 4 (Recursive Form)

- a. Write the problem recursively using the value function (Bellman's equation).
- b. Write the first order condition(s). Interpret.

Question 5 (Recursive Form)

Suppose a variant of the problem where capital takes two periods to build. Let X_{2t} denote net investment today which becomes capital in period t+2. Let $X_{1,t+1} = X_{2t}$ denote capital under construction in t+1. Capital in t+1 is then undepreciated capital plus capital under construction today: $K_{t+1} = X_{1,t} + (1-\delta) K_t$. All other assumptions are the same as question one.

- a. Normalize the problem.
- b. Write the value function.