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ABSTRACT

In recent years, scientists have become increasingly certain that the rise in global mean
temperature is due in part to rising concentrations of greenhouse gasses (GHGs).  Evidence has
come from two directions, observation of the climate and greenhouse gas concentrations
(detection of the climate change fingerprint) and from computational models which use physical
relationships (GCMs).  However, as has often been pointed out, such work does not account for
the possibility that the recent warming trend could be part of the natural long run cycles in the
climate (as evidenced by ice ages which last for thousands of years).  Such cycles have a
statistical analog in the presence of near-unit roots.  We find that a unit root in the temperature
series cannot be rejected, and the forcing from greenhouse gas concentrations is very similar to a
time trend.  Hence there is the possibility that the temperature rise is due to long run cycles, and
that the relationship between temperature and GHGs is spurious.  However, when we adjust the
data to account for the possibility of unit roots, the relationship between temperature and GHGs
remains, indicating that previous findings are robust.
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I. Introduction

Scientists are increasingly certain that the rise in global temperatures over the last 140 years

is due at least in part to increasing concentrations of greenhouse gasses (GHGs).  The global

mean temperature has risen by .7 degrees Celsius since 1860, when statistics were first kept. 

Over the same period, carbon dioxide (the leading GHG) concentrations have increased 46

percent. 

There is now a wide body of literature attempting to pin down the relationship between

GHGs and temperature. There are two main lines of work.  The first uses relationships from

physics to build a bottom up circulation model of the climate.  These are often referred to as

general circulation models (GCMs).1  Other authors use reduced form statistical models, trying to

detect a climate change fingerprint from observations of the atmospheric temperature and GHG

level in order to validate the GCMs.  Such work is important because until GCM models are

validated by direct detection of the GHG effect, GCMs are open to doubts based incorrect

specification of the model (Wigley and Barnett, 1990).  In general, if a climate change fingerprint

is clearly evident, there is a much stronger case for controlling the problem. 

Additionally, researchers such as Kelly and Kolstad (1999) and Wigley and Barnett (1990)

show that when the climate change fingerprint is detected has important policy consequences.  If

detection of the fingerprint in the near future is likely, a wait and see approach might be best.  If

detection is unlikely in the near term, an act now strategy is more preferable.

An important and uncertain parameter of GCMs is the climate sensitivity, which is the

equilibrium temperature change per unit of the change in radiative forcing (heat radiated back to

the earth). An alternative measure which is directly proportional to the climate sensitivity is the

total equilibrium (steady state) temperature change from a doubling of GHGs.  The climate

sensitivity measures the long run effects of GHG emissions on temperature.  Therefore, statistical

models also focus on the equilibrium temperature change per unit of forcing, in order to validate

                                                
1 See Cubasch and Cess (1990) for an overview.
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the equilibrium temperature change found in GCMs.  Although previous work on detection of the

climate change fingerprint is extensive, such work on detection does not account for the

possibility that the warming trend could be part of the natural long run cycles in the climate.  For

example, cold trends such as ice ages last for thousands of years.  There is also evidence that the

temperature has been significantly warmer (Folland, Karl, and Vinikov, 1990).  Long run trends

could be the result of “shocks” to the system, such as volcanoes or solar irradiation which affect

the climate for centuries (Wigley and Barnet, 1990).  The fact that GHG levels have increased

over the past century could be just a coincidence.  Accounting for such a possibility statistically

requires unit root analysis, which has not been considered in the literature. 

The purpose of this paper is to account for the possibility that the warming trend could be

caused by persistent shocks and climate inertia.  In fact we implicitly test the two competing

hypothesis to explain the rise in temperature:  radiative forcing from increases in GHG

concentrations and persistent shocks and climate inertia.  When we test the radiative forcing

effect alone we find strong evidence that radiative forcing from GHGs explains temperature

changes.  The equilibrium temperature change is 1.27 degrees Celsius for a doubling of GHGs,

and the standard error is only .083.  We then test the hypothesis that shocks persist in the data,

and cannot reject the hypothesis.  However, when we correct for the possibility of persistent

shocks, the evidence becomes only marginally less clear:  the equilibrium temperature change

estimate is 1.30 with a standard error of .173.  Hence we can still reject the hypothesis that there

is no GHG effect or that the equilibrium temperature change is zero. 

We use unit root analysis to account for the possible presence of persistent shocks.  The

term unit root refers to the possibility that one or more coefficients in an autoregressive process

are equal to one.  In such a case shocks to the system persist forever.  For example, if GDP

follows a unit root process then centuries old shocks, such as the invention of the wheel, affect

today’s GDP.2  In this case, there are difficulties drawing inference from standard regression

                                                
2 Of course few shocks are ever truly permanent.  Even the effect of the wheel on GDP may

eventually die out if better technology is invented.  However, a root which is close to one still
poses an identical problem, given that our data set consists of only 140 observations.
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techniques such as ordinary least squares.  The problem manifests itself most often as a spurious

regression.  If both the dependent and independent variables are non-stationary, ordinary least

squares is no longer asymptotically well-behaved.

We perform several unit root tests on both global mean temperature and in radiative forcing

from GHG concentrations.  We are unable to reject the hypothesis that there is a unit root in the

global mean temperature at even the 90 percent level.  We can reject the presence of a unit root in

the radiative forcing with high confidence, however a time trend is highly significant.  This

indicates that the relationship between temperature and forcing may be spuriously precise

because both variables are non-stationary.  Although unit root tests frequently have low power,

failure to reject (especially at such a low percent) indicates that one should account for the

possible presence of unit roots.  The problem can be corrected via first differencing or by using a

robust estimation method such as fully-modified OLS (FM-OLS) or equivalently augmented least

squares (ALS).  Accordingly, we ran the modified regression of temperature and forcing using

augmented least squares and found that while the standard error of the equilibrium temperature

change does rise from .083 to .173, the 95 percent confidence lower bound is .954 degrees

Celsius.  Hence accounting for the presence of long run cycles in the climate does increase

uncertainty, but the GHG effect is still strongly present in the data.

In the next section we review some related work.  Section III develops a reduced form, but

widely used temperature model and computes the implied equilibrium temperature change as a

function of the estimated coefficients.  In section IV we present the data along with alternative

possibilities.  In section V we show that standard estimation techniques implies a highly

significant equilibrium temperature change.  We then show that a unit root cannot be rejected in

the temperature data.  We then test for cointegration and consider the appropriate way to account

for the presence of a unit root.  The results indicate that ALS is most appropriate for our problem.

 Finally we re-estimate the model and show that using ALS, which is robust to the presence of

unit roots, produces little change in the results.  We conclude with some policy implications.
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II. Related Work

Many researchers estimate the effects of GHGs on the climate through empirical data. 

These papers generally fall into the category of pure statistical models and hybrid approaches

which estimate some parts of GCMs and calibrate other parts.  For example, Bassett (1992)

calculates the probability that the record global mean temperature recorded in 1988 will be

broken.  Bassett estimates various temperature statistical models of temperature, including a time

trend, a constant model, and a time trend with first order autocorrelation and concludes that

autocorrelation and time trends in temperature will likely result in further temperature records. 

Solow and Broadus (1989) also show that the non-stationarities in temperature could by

themselves generate the recently observed high temperatures.

An example of the hybrid approach is Schlesinger and Ramankutty (1995), which simulates

the Energy-balance climate/upwelling diffusion (EBC) GCM with white noise and perform

spectral analysis on the simulated global mean temperature data to assess the likelihood that the

observed 65-70 year oscillation in the temperature data is due to random variation in the climate.

 They reject the hypothesis. 

Researchers also search for the climate change fingerprint using data obtained from climate

sensitive phenomena.  Climate sensitive phenomena include ice cores, tree rings, pollen remains,

ocean sediments, and animal remains, all of which can be found over a long time span and vary

with temperature in a relatively known way.  Such data sets imply a history of both dramatically

cooler periods (ice ages) and warmer periods, which last for hundreds or thousands of years.  For

example, the medieval warm period lasted from about 1000-1400 AD.  Data on GHG

concentrations is also available from several sites.  Some warming periods show increased GHG

concentrations, however, many do not.  Statistical inference from such data is difficult due to the

large number of differences between ancient periods and today, such as different topography, sun

position, and ecology.  Additionally, the dates of the data sets vary widely and are unavailable

over large portions of the world.  However, some researchers argue that some climate variations

are the result of shocks to the climate such as volcanic eruptions or solar irradiance (see for
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example Hammer, 1977 and Porter, 1986).  Folland, Karl, and Vinikov (1990) provides a survey

of results.

The possibility that the observed warming trend is the result of shocks to the climate and

climate inertia has an analogue in the statistics literature known as unit roots.  In the context of

regression analysis on time series, a key assumption of ordinary least squares is that the

dependent and independent variables are stationary.  If a unit root is present, a spurious

regression may result.  That is, the OLS estimate may appear spuriously precise as the covariance

matrix grows faster than T .  Indeed Granger and Newbold (1974) simulated two unrelated

random walks (a type of unit root) and were unable to reject the hypothesis that the random

walks were related 75 percent of the time.  Moreover, the regressions often had a high R2.  Hence

a spurious regression occurred, with least squares indicating the independent variable had

explanatory power when by construction it did not.

Since the work of Granger and Newbold (1974), many authors have devised techniques for

correcting for unit roots. Hamilton (1994) and Enders (1995) suggest first differencing the data. 

After first differencing the data the estimated parameters change little, but there is no spurious

regression problem assuming the first differenced data is stationary.

There are several situations where first differencing is not appropriate.  First if the data

truly is stationary, first differencing causes misspecification.  Thus if the global mean

temperature has a root near one, but not exactly equal to one first differencing results in

misspecification.  Second, if the data is cointegrated first differencing does not correct the

problem.  Finally, if the data is trend stationary then first differencing results in a misspecified

moving-average model.  We find evidence against cointegration on both theoretical and

statistical grounds.  First, on theoretical grounds the driving processes behind temperature and

forcing from GHG concentrations are quite different.  Shocks to temperature arise from solar

irradiance variation and events such as volcanic eruptions.  Shocks to GHG concentrations are

primarily improvements in technology and changes in tastes and preferences for consumption

goods which emit carbon dioxide.  Further, forcing from GHGs behaves very similar to a time

trend while temperature is best modeled by an autoregressive process, indicating different error
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structures.  Hence we consider both first differencing and augmented least squares (ALS), which

is robust to the presence of a near unit root as well as a unit root.  We consider ALS to be the

most appropriate, because while shocks to climate may last for an extremely long time, it is

unlikely that shocks are truly permanent.

III. Temperature model and Equilibrium Temperature Change

Many climatic processes are stochastic.  In particular, the average annual global

temperature is well recognized to be stochastic, with some deterministic elements, such as

radiative forcing from increased levels of greenhouse gases.  Consider the simplest representation

of this process:

tt uT += 0α  (1a)

Here Tt is the annual global temperature (°C) difference of the upper ocean in year t from the

1961-1990 average temperature, 0α  is a constant, and ut is a random shock, assumed to have a

zero mean but perhaps exhibiting serial correlation. Bassett (1992) estimates several different

stochastic processes for temperature of the form of equation (1a).  For the case of first-order

autocorrelation of the error term ut, equation (1a) can be rewritten as:

ttt TT εββ ++= −110 (1b)

Here 1β  is a constant, εt exhibits no serial correlation and ( )100 1 βαβ −= .  Bassett (1992)

estimates values of 808.1 =β  and Var(ε)=0.0185.

Our primary interest is in the effect of GHGs on the temperature process.  Let tM  denote

concentrations of GHGs in CO2–equivalent gigatons (Gt), Mb  be the pre-industrial

concentration.  The relationship between CO2–equivalent GHG concentrations and temperature

is well-approximated by a logarithmic approximation (see Shine, et. al. 1990 for details).  Define

the radiative forcing tF  (in watts per square meter) as:
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Here 39.42 =xF  is the radiative forcing for a doubling of CO2 above the pre-industrial level Mb

given in Shine et. al. (1990).  Next let 1R  be the thermal capacity of the upper atmosphere and

ocean, then:

ttt uF
R

T ++=
1

0

1α (2b)

Hence we work with:

ttt uFT ++= 10 αα (2c)

Rather than considering 1α , scientists typically report the total equilibrium (steady state)

temperature change from a unit increase in radiative forcing, known as the climate sensitivity

( λ ).  Alternatively, researchers and policy makers often report the total equilibrium (steady state)

temperature change from a doubling of greenhouse gasses above the pre-industrial level ( Mb ),

known as xT2 .  The climate sensitivity and xT2  are standard ways to interpret 1α .  The climate

sensitivity and the total equilibrium temperature change are related by 
x

x

F

T

2

2=λ .

Suppose first that ut exhibits no serial correlation.  Then clearly the total equilibrium

temperature change is 122 αxx FT =  and the climate sensitivity is 1αλ = .  For the case of first

order autocorrelation, we can rewrite equation (2c) as: 

( ) ttttt FFTT εββββ +−++= −− 112110 (3a)

Given equation (3a), the climate sensitivity is identical to the previous specification. 

However, since forcing changes relatively slowly from year to year, we use the following

approximation of equation (3a):

tttt FTT εβββ +++= − 2110 (3b)

From equations (3b) and (2a), the total equilibrium temperature change from a doubling of GHGs

above pre-industrial levels is:



8

xx FT 2
1

2
2 1 β
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−
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The climate sensitivity is thus:

1

2

1 β
βλ
−

=

 Similar calculations give the climate sensitivity and equilibrium temperature change for

autocorrelation of order greater than one.

Of course we assume 11 <β  when calculating the equilibrium temperature change.  In fact

as 1β  nears one, a radiative forcing from GHGs affect the climate for longer and longer periods. 

In the limit, radiative forcing has permanent effects.  From a policy perspective, obtaining a good

statistical estimate of 1β  is very important.  If  1β  is near one then forcing from GHGs is near

irreversible, since even if all anthroprogenic GHG concentrations are removed, the climate does

not revert back to the pre-industrial state. 1β  then represents the inertia of the climate. 

IV. Data

According to general circulation models, a clear signal of climate change from emission of

GHGs would be a general rise in atmospheric temperatures near the surface of the earth (Folland,

Karl, and Vinnikov, 1990).  Other changes such as temperature changes in more disaggregated

areas, increased rainfall, higher sea levels, rising ocean temperatures may also indicate climate

change from GHGs.   Another possibility is to examine data derived from climate sensitive

phenomena such as ice cores.  Such data is often available for a longer time span, however,

climate sensitive data is often location specific and possibly subject to more error.  Data sets on

rainfall, sea level, and ocean temperatures are less complete than the global temperature data. 

Global mean temperature data also shows a clearer pattern of climate change versus other data

sets, indicating the best possible chance of detecting climate change.  Finally, the global mean
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temperature is widely cited as evidence of climate change.  Therefore, we focus on aggregated

temperature data.

We use the data set of Folland, Karl, and Vinnikov (1990), which is standard in the

literature.  The data of interest consists of yearly observations of global mean temperature,

measured in degrees Celsius above the 1951-80 average.  The global mean is calculated via an

equally weighted average of various land stations across the globe.  The data is not without

possible problems, although these are considered small (see Folland, Karl, and Vinnikov, 1990

for details).

We use the data set for GHG concentrations developed by Keeling, et. al. (1989).  Carbon

dioxide concentrations are in gigatons, and all other GHGs are converted to CO2-equivalent

concentrations and the data is also yearly.  The data was constructed from a mix of ice core data

until 1958 and then direct observation from Mauna Loa, Hawaii.  The data set is also commonly

used in the literature.3 

Table (1) gives summary statistics of the data set, and Figure (1) and (2) plot the data.  Both

forcing and temperature trend upward.

V. Results

We first estimate equation (2c) as an experiment to see what is in the data.  Table (2) gives

the results.  We see that the climate sensitivity is .29, indicating an equilibrium temperature

change of 1.27 degrees Celsius.  The standard error is low, 95 percent confidence bounds fall at

1.49 degrees C and 1.16 degrees C.  Thus standard regression analysis implies that forcing from

emission of CO2 results in climate change with 95 percent confidence.  The R2 is .63, indicating

that variation in forcing explains a majority of the variation in temperature.  However, the results

may be spuriously precise if both variables are non-stationary.

                                                
3 Since CO2 mixes evenly in the atmosphere, there is no problem associated with collecting

the data at only one site.
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Hence we consider the hypothesis that there is a unit root in the temperature and/or forcing

series.  If we can reject a unit root, we can reject the hypothesis that the upward trend is due to

climate intertia, adding significant strength to the above result.

There are several proposed tests for the possibility of a unit root.  A classic test is the

augmented Dickey-Fuller (ADF) test (Hamilton, 1994).  The ADF test (in the most general form)

consists of a regression of a variable on lagged values, a constant, and a time trend: 

tit

P

i
itt uytayay +∆+++=∆ −

−

=
− ∑

1

1
210 βγ (5a)

subject to:

∑
+=

−=
P

ik
ii

1

γβ (5b)

Consider the hypothesis 0=γ .  If true, then (5a) reduces to an AR process in the first

differences, where it is easy to see that shocks do not die out regardless of β .  The ADF test thus

accounts for integrated processes that are fractional or are of order greater than one as well as a

random walk.  If we reject 0=γ , then we reject a unit root in the level of  ty .  Critical values are

adjusted for the autocorrelation present in the data.  Table (3) gives the result of the ADF test

along with critical values.  From the results, we can see that we are unable to reject a unit root in

the temperature series at even the 90 percent level.  The results are consistent regardless of

whether or not a time trend is included in the regression.  Hence the temperature series is best

described as a unit root as opposed to a time trend (a sensible result, since it is unlikely that the

mean temperature is simply trending upward towards infinity).  However, as seen in Table (3),

we soundly reject a unit root in the first difference of temperature.

We also calculate the ADF test statistic for the forcing variable.  Table (3) gives the results.

  When a time trend is not included, we cannot reject the presence of a unit root.  However, when

a time trend is included, a unit root is rejected.  In fact, a quadratic time trend fits the forcing data

nearly perfectly.  The forcing variable comes from GHG emissions, which in turn comes from

industrial production and energy consumption.  One possible explanation is that the time trend

results from improvements in technology, which generate additional production and/or
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consumption of energy.  Another possibility is that increased energy usage comes from economic

growth and capital formation.  Neither points directly to a unit root versus a time trend in the

forcing data.  In any event, both the temperature and forcing variables are non-stationary, so there

is a real problem that the relationship between temperature and forcing might be spuriously

precise, which must be corrected for. 

That unit root tests lack power is well-known (see Stock, 1995 for a survey).  Thus, the

above results do not show that there is in fact a unit root in temperature (i.e. that shocks to the

climate persist forever), but merely that statistical inference from the data set is difficult because

the climate may be subject to shocks which are long in duration relative to the size of the data set

(which clearly fits with the idea that long run trends such as ice ages persist for much longer than

the 140 year modern data set). 

One possible cause of unit roots and spurious regressions is cointegration.  Cointegration

occurs when the dependent variable and the independent variable are subject to the same shocks.

 In the case of climate change, cointegration is unlikely for theoretical reasons.  Shocks to

temperature include such things as solar irradiation and volcanic eruptions, while shocks to GHG

concentrations include technology shocks (inventions of new products or changes in tastes and

preferences for goods such as autos which emit CO2).  Still, on some level cointegration is

possible, for example warm weather could both increase temperature and result in increased

travelling, which results in higher CO2 emissions.

However, we do not find evidence of cointegration statistically.  First, since we can reject a

time trend but not a unit root in temperature and the reverse for forcing, the same shock process

cannot drive both models.  To be certain, we ran the Johansen cointegration test for temperature

and forcing with and without the time trend.  As shown in Table (4), we can reject the null

hypothesis of no cointegration with 95% confidence if a time trend is not included.  When a time

trend is included, we cannot reject the hypothesis of no cointegration.  Hence cointegration is not

likely, as we might suspect on theoretical grounds.
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One way to correct for the non-stationary variables in the regression is first differencing. 

First differencing in essence assumes that the dependent variable has a unit root.  First

differencing equation (2c) gives:

( ) 1111 −−− −+−=− tttttt uuFFTT α (6a)

or:

( ) 1111 −−− −+−+= tttttt uuFFTT α (6b)

We regress the first difference of temperature on the first difference of forcing.  We

summarize the results in Table (5).  As predicted by the theory, the coefficient of the forcing term

is relatively unchanged, now at .34.  There is no concept of the equilibrium temperature change

here because we assume a unit root, which implies that changes in GHG concentrations cause

permanent changes in temperature.  Hence a doubling of GHGs would eventually result in an

undefined temperature. 

Although the coefficient is relatively unchanged, the standard errors are significantly

higher.  In fact, the coefficient is no longer significantly different than zero, indicating that we

cannot reject the hypothesis that there is no climate change from radiative forcing.  Furthermore,

the R2 is almost zero, indicating that forcing has no power to explain variations in temperature. 

Hence, authors are justified in their concern about the possibility of long run cycles in the

climate.

One possible problem with first differencing is that first differencing is not robust to the

presence of a near unit root.  That is, if the coefficient of lagged temperature is close to one, but

not exactly equal to one, then first differencing results in misspecification error.  Suppose the true

coefficient of lagged temperature is 11 <β .  Then temperature evolves according to equation

(3b):

tttt FTT εβββ +++= − 2110

Adding and subtracting 1−tT  gives:

[ ]ttttttt FTFFTT εββββ ++−++−+= −−−− 12110121 )1()( (7)
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Hence three variables are included in the error term of equation (6b), resulting in

misspecification.  Here a near unit root is a strong possibility because otherwise we must believe

shocks to the global mean temperature are permanent. 

An alternative procedure is to use FM-OLS or equivalently ALS, which is robust to the

presence of both a near unit root and a unit root in the temperature series.  Given that ALS and

FM-OLS are robust in this sense, they are more appropriate versus first differencing.

Accordingly, we estimated equation (8) using ALS.  To describe ALS concisely, suppose

we have a model:

ttt XY εβ += ’ (9)

Then the ALS estimator consists of running the regression:

t

K

Kj
jtjtt uXXY +∆++= ∑

−=
−

2

1

φβα (10)

The leads and lags included in the ALS regression act to remove the serial correlation in tε .  An

important decision is the number of leads and lags to include, 1K  and 2K , which are generally

chosen so as to reduce the regression error to white noise.  Application of ALS to our model

requires some care.  For example, we cannot include as a regressor the +1 lead value of the

independent variable 1−tT , since this is the dependent variable.  Furthermore, since tF  is very

close to a time trend, all leads and lags of tF∆  are near perfectly correlated with the constant

term and each other.  Hence we must omit leads and lags of tF∆  as well as the first lead of 1−∆ tT .

We ran ALS for combinations of 3,2,11 =K  and 3,2,12 =K , excluding leads and lags of

tF∆  and the first lead of 1−∆ tT .   The regression with the closest errors to white noise consisted

of the +2 and –2 lags only.  The results for this regression are summarized in Table (6).  From

Table (6), we see that the +2 lead of 1−∆ tT  was significant.  The overall equilibrium temperature

change fell to 1.30, with a standard error of .173, which is almost double the original regression. 
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However, the 95% lower bound on the equilibrium temperature change is near one, indicating

that the forcing effect remains even after correction for unit roots. 

Finally, we also ran the regression with 01 =K  and 02 =K .  This regression

outperformed all others, the errors had even less serial correlation than the +2, -2 regression. 

This regression, given in Table (7), gives similar numbers for the equilibrium temperature

change:  1.33 degrees Celsius with a standard error of .163.  In fact, all combinations of K yield

quite similar results for the standard error of the equilibrium temperature change from a doubling

of GHGs.

The results of the robust analysis using ALS imply twice the uncertainty regarding the

effect of anthroprogenic GHG emissions than might be surmised from a regression which

implicitly assumes the change in temperature does not result from climate inertia alone.  The

above regression therefore quantifies the additional uncertainty due to the possibility that the

observed warming is not due to GHG emissions, but instead reflects the slow propagation of

climate shocks.

VI. Conclusions

There has been much concern over the possibility that the relationship between GHGs and

global mean temperature is spuriously precise:  that the primary cause of the modern era

temperature rise is merely the inertia of the climate playing out over a time scale of many

centuries.  Our first result is that these concerns are well-founded. We could not reject a unit root

in the temperature series (and we could not reject a time trend in the forcing series).  Both series

are non-stationary.  When the regression was adjusted for the possibility of a unit root, the

standard error of the equilibrium temperature change doubled.  However even after accounting

for these concerns the relationship is still strongly significant, with a 95% confidence lower

bound of about 1 degree Celsius for a doubling of GHGs.

The results have strong policy significance.  The results imply first that a GHG effect is a

more robust result, strengthening the argument for control of GHGs.  Second, we cannot reject a
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unit root in the climate.  Hence, there is a possibility that shocks to the climate persist for a very

long time.  In this case, emission of GHGs now will warm the climate for years or even centuries,

 which would imply an irreversibility problem.  Thus there may be a strong option value to

controlling emissions now.  Finally, further reductions in uncertainty about the climate sensitivity

caused by the possibility of climate inertia are unlikely any time soon (because of the low power

of the unit root test).  The policy debate can be largely characterized by those who advocate a

wait-and-see policy versus those who advocate acting now.  The wait-and-see policy is inherently

based on the value of improved decisions arising from reducing uncertainty.  Our results indicate

that waiting will produce little reduction of uncertainty.

An avenue for future research is to test for unit roots in longer data sets based on climate

sensitive phenomena.  However as noted earlier, these data sets are subject to more error and

tend to show less climate change  than the global mean temperature data.
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VIII. Appendix I:  Figures
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IX. Appendix II:  Tables

Series Temp ( tT ) Forcing ( tF )

Mean -0.163357 0.612523
Median -0.187500 0.417300
Maximum 0.3900000 2.405800
Minimum -0.530000 0.000000
Std. Dev. 0.205011 .588349
Skewness 0.435273 1.299411
Kurtosis 2.534017 4.004107
Jarque-Bera 5.687442 4.71023
Probability 0.058209 0.00000
Sample:  1861-1995 (140 observations)

Table 1:  Descriptive Statistics

Variable Coefficient Std. Error t-Statistic
Constant -0.431553** 0.020397 -21.15722

tF 0.289657** 0.018847 15.36854

Implied xT2 1.27** 0.082738 16.07484

R-squared 0.631205 Mean dependent var -0.163357
Adjusted R-squared 0.628533 S.D. dependent var 0.205011
S.E. of regression 0.124951 Akaike info criterion -4.145492
Sum squared resid 2.154544 Schwarz criterion -4.103469
Log likelihood 93.53305 F-statistic 236.1919
Durbin-Watson stat 0.838716 Prob(F-statistic)  0.000000

Table 2 :  OLS regression (**:  significant at the 1% level).
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Variable ADF Test Statistic MacKinnon Critical Values
1% 5% 10%

tT -2.447045 -4.0283 -3.4435 -3.1462

tT∆ -7.602243** -4.0288 -3.4437 -3.1464

tF , time trend -5.533682** -4.0017 -3.4308 -3.1387

tF , no time trend -1.445 -4.0017 -3.4308 -3.1387

Table 3:  Unit root tests (**:  reject unit root at the 1% level).

Variable ADF Test Statistic
for null of no
cointegration

MacKinnon Critical Values

99% 95%

tT  and tF , no time trend -3.096024* -3.4796 -2.8828

tT  and tF , time trend -3.084263 -4.0283 -3.4435

Table 4:  Unit root tests, cointegration (*:  reject at the 5% level).

Variable Coefficient Std. Error t-Statistic

tF∆ 0.345414 0.494402 0.698650

Implied xT2 N/A N/A N/A

R-squared 0.001205 Mean dependent var 0.005504
Adjusted R-squared 0.001205 S.D. dependent var 0.114495
S.E. of regression 0.114426 Akaike info criterion -4.328482
Sum squared resid 1.806884 Schwarz criterion -4.307370
Log likelihood 104.5970
Durbin-Watson stat 2.373708

Table 5:  OLS regression, data first differenced.
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Variable Coefficient Std. Error t-Statistic
Constant -.172779** 0.034036 -5.076097

tF 0.12058** 0.024918 4.839115

1−tT 0.593331** 0.070018 8.473936

2−∆ tT -0.115148 0.077074 -1.493988

2+∆ tT -0.265447** 0.074260 -3.574543

Implied xT2 1.30166** 0.173372 7.507915

R-squared 0.757932 Mean dependent var -0.164852
Adjusted R-squared 0.750484 S.D. dependent var 0.195090
S.E. of regression 0.097950 Akaike info criterion -4.610258
Sum squared resid 1.247252 Schwarz criterion -4.502655
Log likelihood 124.6357 F-statistic 101.7601
Durbin-Watson stat 2.379805 Prob(F-statistic)  0.000000

Table 6:  Augmented Least Squares, most uncorrelated residuals: 21 =K , 22 =K .      

(**:  significant at the 1% level).

Variable Coefficient Std. Error t-Statistic
Constant -0.182831** 0.034276 -5.334117

tF 0.127121** 0.024925 5.100201

1−tT 0.581317** 0.069930 8.312807

Implied xT2 1.333** 0.163620 8.146926

R-squared 0.753667 Mean dependent var -0.161835
Adjusted R-squared 0.750045 S.D. dependent var 0.204957
S.E. of regression 0.102469 Akaike info criterion -4.535039
Sum squared resid 1.427992 Schwarz criterion -4.471705
Log likelihood 120.9528 F-statistic 208.0495
Durbin-Watson stat 1.967868 Prob(F-statistic)  0.000000
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Table 7:  OLS regression, equivalent to Augmented Least Squares:

01 =K , 02 =K . (**:  significant at the 1% level).

OTHER TABLES

1.   CORRELATION STRUCTURE

TEMP TEMP(-1) FORCING FORCING(-1)
TEMP 1.000000  0.840567  0.792782  0.793971
TEMP(-1) 0.840567  1.000000  0.782300  0.783346
FORCING 0.792782  0.782300  1.000000  0.999971
FORCING(-1) 0.793971  0.783346  0.999971  1.000000

2.  ADF OUTPUT, TEMPERATURE

Variable Coefficient Std. Error t-Statistic
TEMP(-1) -0.222227  0.090814 -2.447045
D(TEMP(-1)) -0.183639  0.109955 -1.670138
D(TEMP(-2)) -0.265700  0.103839 -2.558771
D(TEMP(-3)) -0.193760  0.095547 -2.027897
D(TEMP(-4)) -0.049785  0.089636 -0.555416
C -0.097456  0.043780 -2.226035
@TREND(1856) 0.000982  0.000406  2.419352
R-squared  0.222634     Mean dependent var 0.005889
Adjusted R-squared  0.186195     S.D. dependent var  0.114769
S.E. of regression  0.103535     Akaike info criterion -4.485239
Sum squared resid  1.372085     Schwarz criterion -4.334595
Log likelihood  118.1970     F-statistic 6.109754
Durbin-Watson stat  1.993081     Prob(F-statistic)  0.000012
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2. ADF OUTPUT, CHANGE IN TEMPERATURE

Variable Coefficient Std. Error t-Statistic
D(TEMP(-1)) -2.381088  0.313209 -7.602243
D(TEMP(-1),2)  1.015976  0.269352  3.771925
D(TEMP(-2),2)  0.588635  0.212505  2.769981
D(TEMP(-3),2)  0.259368  0.149019  1.740509
D(TEMP(-4),2)  0.107377  0.088489  1.213452
C  0.000642  0.019393  0.033111
@TREND(1856)  0.000165  0.000237  0.698203
R-squared  0.661483     Mean dependent var 0.001418
Adjusted R-squared  0.645490     S.D. dependent var 0.177450
S.E. of regression  0.105655     Akaike info criterion -4.444326
Sum squared resid  1.417701     Schwarz criterion -4.292946
Log likelihood  114.6321     F-statistic 41.36103
Durbin-Watson stat  1.999414     Prob(F-statistic) 0.000000

3. ADF OUTPUT, FORCING + TIME TREND

Variable Coefficient Std. Error t-Statistic
FORCING(-1) -0.004872  0.000880 -5.533682
D(FORCING(-1))  1.696275  0.253844  6.682338
D(FORCING(-2)) -0.417261  0.463610 -0.900026
D(FORCING(-3)) -1.131782  0.463374 -2.442480
D(FORCING(-4))  0.992166  0.265811  3.732601
C -0.000826  0.000218 -3.784863
@TREND(1765)  2.14E-05  3.93E-06  5.444199
R-squared  0.990937     Mean dependent var  0.010626
Adjusted R-squared  0.990688     S.D. dependent var 0.011377
S.E. of regression  0.001098     Akaike info criterion -13.59824
Sum squared resid  0.000264     Schwarz criterion -13.49230
Log likelihood 1222.921     F-statistic 3990.653
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Durbin-Watson stat  1.366268     Prob(F-statistic) 0.000000

4.  GRANGER CAUSALITY TESTS (**:  significant at the 1% level).

Null Hypothesis: Obs. F-Statistic Probability
FORCING does not Granger Cause TEMP 136 3.71846** 0.00676
TEMP does not Granger Cause FORCING 136 0.53287 0.71180


