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Abstract

We study stabilization targets: common environmental policy recommendations
that specify a maximum probability of an environmental variable exceeding a fixed
target (e.g. limit climate change to at most 2°C above preindustrial). Previous work
generally considers stabilization targets under certainty equivalence. Using an inte-
grated assessment model with uncertainty about the sensitivity of the temperature to
greenhouse gas (GHG) concentrations (the climate sensitivity), learning, and random
weather shocks, we calculate the optimal GHG emissions policy with and without sta-
bilization targets. We characterize the range of feasible targets and show that the
climate is difficult to control in the short run, although as learning resolves the planner
eventually achieves the target with a sustained reduction in emissions over time.

We find that uncertainty exacerbates the welfare cost of stabilization targets. First,
the targets are inflexible and do not adjust to new information about the climate sys-
tem. Second, the target forces the emissions policy to overreact to transient shocks.
These effects are present only in a model with uncertainty. Introduction of a stabiliza-
tion target into the baseline model with uncertainty results in a welfare loss of 4.7%,
which is 66% higher than the cost of introducing the target in the certainty version of
the model.
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1 Introduction

A common feature of international climate agreements are stabilization targets: the maxi-

mum allowable change in an environmental variable tied to greenhouse gas (GHG) emissions.

The most well-known stabilization target, and a central component of the 2015 Paris Climate

Accord, calls for limiting the increase in global mean surface temperature to 2°C above its

pre-industrial level. Staying below the 2°C target is widely advocated to prevent irreversible

and catastrophic climate damages. With a target in hand, researchers assume certainty

equivalence and compute the least cost emissions path that ensures remaining below the

stipulated threshold.

However, uncertain parameters and random weather shocks affect climate dynamics. A

sequence of large shocks, or an unexpectedly sensitive relationship between temperature

and GHG concentrations (the climate sensitivity), can cause the temperature to exceed the

target, irrespective of the emissions policy. Pure stabilization targets are thus not feasible in

a dynamic setting with uncertainty. An alternative is probabilistic stabilization targets (see

for example, Held, Kriegler, Lessmann, and Edenhofer 2009) which instead require that the

environmental variable stay beneath the target with a maximum allowable probability.1 A

probabilistic target is feasible if the maximum allowable probability of exceeding the target

is sufficiently high. We analyze stabilization targets in an integrated assessment model of

the climate and economy with uncertainty, Bayesian learning, and random weather shocks.2

We show that a probabilistic target in an environment with uncertainty induces two welfare

losses previously undocumented in the literature.

First, the arrival of new information changes beliefs about the climate sensitivity over

time, changing the optimal temperature. For example, an unexpectedly high climate sen-

sitivity raises the optimal temperature, since achieving a given temperature requires more

abatement expenditures, while the damages from that temperature are unchanged. By defi-

nition, however, the target temperature remains unchanged. Therefore, a welfare cost ensues

because the target is inflexible. Second, we show that stabilization targets force overly strin-

gent policy responses to transient weather shocks. Weather shocks cause the temperature to

exceed the target with positive probability. If so, abatement expenditures must rise to bring

the temperature back to the target. The abatement cost is excessive, since the temperature

naturally returns to the target as the shock dies out regardless. Therefore, a second welfare

cost occurs because stabilization targets cause an overreaction to transient shocks.

Both welfare losses are new to this paper, and are present only when the temperature

is a function of uncertain and/or random variables. In models which assume certainty, a

welfare cost only occurs if the target is set below the temperature resulting from the optimal

1A pure stabilization target is a special case of a probabilistic target where the probability of exceeding
the target is zero. Therefore, without loss of generality, we consider only probabilistic targets.

2See Kelly and Kolstad (1999a) for a survey of integrated assessment models.
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emissions policy. For example, Nordhaus (2007) calculates the welfare loss of restricting the

temperature to 2°C under certainty, relative to an optimal temperature change of 3.5°C. This

result is sensitive to the damage function, the discount rate, the lack of tipping points, and

other assumptions in the DICE model. Indeed, we show that when uncertainty about the

climate sensitivity is added to the DICE model, the optimal temperature without a target

falls to 3.26°C, which reduces the welfare loss associated with the 2°C target.3 In contrast,

welfare losses associated with inflexibility and overreaction depend only on the interaction

of uncertainty and the target and are therefore robust to alternative modeling assumptions.

We show that introducing a stabilization target into the baseline model with uncertainty

causes a welfare loss of 4.7%, which is 66% higher than the welfare cost of introducing a

stabilization target into the model with certainty.4 We find that most of the increase in

welfare loss comes from the inflexibility of the target, but overreaction accounts for 8.2% of

the increase in welfare loss.

Further, the welfare loss is relatively insensitive to the policy parameter which specifies

the maximum probability of exceeding the target. The welfare loss increases, however, with

the unknown true value of the climate sensitivity. If the climate sensitivity is higher than

expected, the abatement cost of keeping the temperature at the target increases, which

increases the optimal temperature. We show that the welfare loss can increase to 14% or

more, depending on the true value of the climate sensitivity.

Our results yield several implications for climate change policy. First, large and immedi-

ate reductions in GHG emissions are necessary in order to keep the temperature below the

2°C target with reasonable confidence: even if GHG emissions are immediately and perma-

nently reduced to zero, enough inertia exists in the climate that the global mean temperature

will exceed 2°C with 15% probability. Second, to mitigate the welfare costs of inflexibility,

international climate agreements should feature provisions that call for adjusting the target

temperature in response to better information about the climate sensitivity. Third, targeting

a different environmental variable which is less variable then the temperature would reduce

the costs of overreaction. For instance, a target on GHG concentrations, which are more

stable on year-to-year basis, would lead to fewer overreactive abatement responses.

We also study the dynamics of learning in the presence of stabilization targets. Since the

target reduces emissions, the planner learns the climate sensitivity more slowly. We find the

standard deviation of the prior distribution of the climate sensitivity is approximately 10%

higher in 2050 than without the stabilization target, if the true climate sensitivity is equal

to the mean of the prior. If the true climate sensitivity is unexpectedly high, then learning

3With uncertainty, the risk averse planner becomes more conservative, reducing emissions which are more
damaging if the climate sensitivity turns out to be higher than expected.

4We follow Neubersch, Held, and Otto (2014) and calibrate a maximum probability of exceeding the
target of 0.33, based on an interpretation of IPCC statements calling for policies for which achieving the 2°C
target is likely.

2



slows further. In turn, unexpectedly slow learning makes achieving the temperature target

more difficult, because if the climate sensitivity is sufficiently high relative to the mean of

the prior distribution, the planner does not abate emissions enough.

2 Stabilization Targets

Stabilization targets are ubiquitous in climate change policy. Policy makers recommending

a 2°C stabilization target include the European Commission (2007), the Copenhagen Ac-

cord (2009), and the German Advisory Council on Global Change (Schubert et al. 2006).

Many atmospheric scientists (Hansen 2005, O’Neill and Oppenheimer 2002) also advocate

for warming targets. Other stabilization targets differ according to the choice of target. For

example, the German Advisory council recommends limiting sea level rise to at most 1 meter

and ocean acidification to at most 0.2 units of pH below its preindustrial level. Some policy

groups such as 350.org favor a GHG concentration target.5 Replacing a temperature target

with an alternative target variable would not change our qualitative conclusions. However,

the overreaction welfare loss would change quantitatively, as alternative target variables may

be more or less variable than temperature.

A large literature computes the least-cost emissions path which stabilizes the climate at

2°C under certainty (Nordhaus 2007, Richels, Manne, and Wigley 2004, Lemoine and Rudik

2014). However, it is well known that parameters of the climate system are uncertain. For

example, the climate sensitivity, which measures the elasticity of the global mean tempera-

ture with respect to GHG concentrations, is notoriously uncertain (Intergovernmental Panel

on Climate Change 2007, Kelly and Kolstad 1999b). Therefore, following the least cost

pathway calculated under certainty can, under uncertainty, result in warming that exceeds

the target by a considerable margin.6 Indeed, a branch of the literature focuses on the

likelihood of meeting stabilization targets for various emissions scenarios proposed by policy

makers, or what emissions paths satisfy the target for various values of the climate sensitivity.

For example, Hare and Meinshausen (2006) and Keppo, O’Neill, and Riahi (2007) compute

temperature changes for various emissions scenarios; Harvey (2007) proposes allowable CO2

emissions paths for different ranges of the climate sensitivity. This research provides an

important first step in estimating the probability of exceeding the target. Here we take two

important next steps by introducing learning and fat-tailed uncertainty. Learning allows the

emissions policy to adjust as new information arrives, while fat tailed uncertainty implies a

relatively large value of the climate sensitivity is expected to occur more often than if the

5den Elzen, Meinshausen, and van Vuuren (2007) and Lemoine and Rudik (2014) study GHG targets.
6Stabilization targets evolved as method of dealing with damage uncertainty in integrated assessment

models. If expected damages are sufficiently high when the temperature exceeds a threshold, a limit on
temperature changes is optimal. Somewhat paradoxically, climate sensitivity uncertainty is more difficult to
address within this framework.
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uncertainty was normally distributed. Learning and fat-tailed uncertainty have competing

effects on the ability of the planner to stabilize the climate.

Learning allows the planner to more easily meet a target by quickly adjusting emissions

if new information indicates the climate sensitivity is greater than previously thought. Fur-

ther, learning allows the planner to move closer to the target, while still remaining below

the target with the same probability. However, Kelly and Kolstad (1999b), Leach (2007),

and Roe and Baker (2007) show that learning about the climate sensitivity is a slow pro-

cess, because noisy weather fluctuations obscure the climate change signal. Further, small

uncertainties about the climate sensitivity ultimately have large effects on the temperature

through feedback effects (Kelly and Tan 2015). Therefore, controlling the temperature re-

quires a precise estimate of the climate sensitivity, which takes time. We find the optimal

near term policy with Bayesian learning is similar to the case without learning. We find

that learning eventually allows the temperature to move closer to the target, but the effect

is marginal since learning is slow.

It is well known that the prior distribution of the climate sensitivity has a fat tail, since

small, uncertain feedback effects eventually have large effects on the temperature (Kelly and

Tan 2015, Weitzman 2009). We show that stabilizing the climate is more difficult when the

climate sensitivity is high, as the climate has more inertia and learning slows. The welfare

loss from inflexibility of the target also increases with the climate sensitivity.

We analyze targets when the climate sensitivity is unknown. Rudik (2014) considers

targets with damage uncertainty and learning. He shows that if the learning model is

misspecified, targets become attractive since they prevent the planner from increasing the

temperature when believing incorrectly that damages are not very convex. Here we show

stabilization targets are more problematic when the climate sensitivity is uncertain. The

relationship between the policy variable, emissions, and the target, temperature, is unknown

and nonlinear, which makes the target difficult to achieve.

Other authors compute optimal emissions paths under certainty which keep temper-

atures below a threshold, beyond which specific irreversible and disastrous consequences

occur. Keller et al. (2005) propose emissions paths which prevent coral bleaching or the dis-

integration of ice sheets. Kvale et al. (2012) propose emission paths which limit ocean level

rise and acidification. Additionally, Bruckner and Zickfield (2009) compute emission paths

that reduce the likelihood of a collapse of the Atlantic thermohaline circulation. The afore-

mentioned studies employ the tolerable windows approach, an inverse modeling method that

asks: in order to limit GHG concentrations or warming below a threshold at all future dates,

how should emissions be controlled in every period moving forward? These studies have

some similarities to stabilization targets with certainty in that the optimal policy stabilizes

the climate below the threshold. Lemoine and Traeger (2014) compute the optimal emissions

path in a model with various climate tipping points in an environment with uncertainty and
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Bayesian learning, but do not study stabilization targets. While we do not specifically model

irreversibilities, our model combines convex damages with uncertainty. Therefore, the plan-

ner insures against very high damages by pursuing a conservative emissions policy. Thus, the

literature with irreversibilities and thresholds consider either certainty, or do not consider

stabilization targets. We show that the stabilization targets are fundamentally different with

uncertainty: control of the climate becomes difficult and additional welfare losses occur.

3 Model

We consider an infinite horizon version of the Nordhaus DICE model (Nordhaus 2007). In the

DICE model, economic production causes GHG emissions, which raise the global mean tem-

perature. Higher temperatures reduce total factor productivity (TFP). The social planner

chooses capital investment and an emissions abatement rate to maximize welfare. Our model

has four differences from the DICE model. First, we use an annual time step rather than

the 10 year step in DICE. Second, we use the simplified model of the atmosphere/climate

due to Traeger (2014), in which the ocean temperature changes exogenously and only two

reservoirs exist for carbon (atmosphere and ocean/biosphere). Third, the model is stochas-

tic, with an uncertain climate sensitivity and random weather shocks that obscure the effect

of GHGs on temperature. The planner learns about the uncertain climate sensitivity over

time by observing temperature changes. Fourth, we impose stabilization targets to ascertain

their effects on welfare, temperature, and economic growth. Sections 3.1-3.2 describe the

economic and climate models briefly (refer to Traeger 2014, for a detailed discussion).

3.1 Economic system

The global economy produces gross output, Q, from capital K and labor L according to:

Qt = A (t)Kγ
t L (t)1−γ . (3.1)

Here variables denoted as a function of t, such as L (t) and TFP, A (t), grow exogenously.

Appendix A.1 gives the growth rates for all variables which change exogenously over time.

Variables with a t subscript are endogenous.

An emissions abatement technology exists which can reduce emissions by a fraction xt

at a cost of Λ (xt) = Ψ (t) xa2t fraction of gross output. Here Λ is the cost function and Ψ (t)

is the exogenously declining cost of a backstop technology which reduces emissions to zero.

Further, increases in global mean temperatures above preindustrial levels, Tt, reduce TFP

by a factor 1/ (1 +D (Tt)), where D (Tt) = b1T
b2 is the damage function. Therefore, output
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net of abatement spending and climate damages, Yt, is:

Yt =
1−Ψ (t) xa2t
1 + b1T

b2
t

A (t)Kγ
t L (t)1−γ . (3.2)

The presence of the damage function makes the model a DICE-type model of optimal

policy, rather than a cost-effective analysis (CEA) framework typically used to study targets

under certainty. Under certainty, CEA models do not include a damage function, but instead

constrain temperatures to remain below the target. This is equivalent to a damage function

which is zero for temperatures below the target and arbitrarily high for temperatures above

the target. However, given climate sensitivity uncertainty, the target is exceeded with a

strictly positive probability that depends on emissions. Therefore, the optimal policy with

such a damage function is to emit zero for all time periods.7 Since we study targets with

climate sensitivity uncertainty, the model has a DICE-type damage function. For compu-

tational reasons we do not include damage uncertainty, but we note in Section 5.4 how the

results would change if damages were also uncertain.

Let Ct be consumption and let capital depreciate at rate δk. Then the resource constraint

is:

Yt = Ct +Kt+1 − (1− δk)Kt. (3.3)

Period utility is constant relative risk aversion:

u =
(Ct/Lt)

1−φ − 1

1− φ
. (3.4)

We follow Costello, Neubert, Polasky, and Solow (2010) and assume Tt ≤ Tmax << ∞ to

prevent expected utility from being unbounded from below.

The discount factor for future utility is exp (−δu), where δu is the pure rate of time

preference.

3.2 Climate System

Current period GHG emissions, Et, depend on the planner’s choice of emissions abatement

rate xt, the emissions intensity of output σ (t), exogenous emissions from land use changes,

B (t), and gross global output:

Et = (1− xt) σ (t)Qt +B (t) . (3.5)

7Some CEA studies include a penalty function for exceeding the target. Such an approach is equivalent
to using a damage function in which damages are zero below the target, and increasing above the target.
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The stock of GHG equivalents, Mt, depends on current period emissions and the natural

decay rate of GHGs into the biosphere and ocean. Let δm (t) denote the decay rate (which

changes exogenously) and MB denote the stock of GHGs during pre-industrial times. Then

Mt accumulates according to:

Mt+1 −MB = (1− δm (t)) (Mt −MB) + Et. (3.6)

We normalize GHG stocks relative to pre-industrial. Let mt ≡
Mt

MB
, then:

mt+1 − 1 = (1− δm (t)) (mt − 1) +
Et

MB

. (3.7)

Radiative forcing of GHGs, Ft, increases the temperature:

Ft+1 = Ω log2 (mt+1) + EF (t) . (3.8)

Here EF (t) is forcing from other sources, which grows exogenously and Ω is the increase in

radiative forcing from a doubling of GHGs.

The global mean temperature evolves according to:

T̂t+1 = T̂t +
1

α

(

Ft+1 −
T̂t − Γ

λ̃
+ ξ

(

Ô − T̂
)

(t)

)

+ ν̃t+1 (3.9)

Here T̂ and Ô denote the absolute global atmospheric and oceanic temperatures in °C, re-

spectively; α is the thermal capacity of the upper oceans; Γ is the pre-industrial atmospheric

temperature; ξ is a coefficient of heat transfer from the upper oceans to the atmosphere;

ν̃t ∼ N(0, 1/ρ) is the random weather shock; λ̃ is the uncertain climate sensitivity. We

assume the ocean-atmosphere temperature differential changes exogenously. The climate

sensitivity λ̃ describes how sensitive the atmospheric temperature is to GHG concentrations,

and is the subject of great uncertainty.

Let ∆T2× be the steady state atmospheric temperature deviation from pre-industrial time

resulting from a doubling of GHG concentrations, also relative to pre-industrial levels. Then:

∆T2× = Ωλ̃. (3.10)

Since the climate sensitivity is uncertain, ∆T2× is also uncertain. Stocker, Dahe, and Plat-

tner (2013) estimate that ∆T2× is most likely to lie somewhere between 1.5°C and 4.5°C.

The initial mean of the prior distribution is 3.08, taken from the mean of estimates in the

atmospheric science literature (Roe and Baker 2007).8

8More precisely, the initial mean of the climate feedback parameter, defined below, is identical to Roe
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Let Tt = T̂t − Γ and Ot = Ôt − Γ be the current deviations from pre-industrial temper-

atures, β̃1 = 1 − 1/λ̃α denote the climate feedback parameter, β2 = 1
α
, and β3 = ξ/α. The

climate system simplifies to:

Tt+1 = β̃1Tt + β2Ft+1 + β3 (O − T ) (t) + ν̃t+1. (3.11)

Since λ̃ is uncertain, the climate feedback parameter is also uncertain. The climate feedback

parameter is increasing in λ̃. For example, if GHG induced warming reduces ice cover,

which reduces the amount of sunlight reflected back into space (the albedo effect), causing

still higher temperatures, we have a positive feedback (higher β̃1 and λ̃).
9 Uncertain climate

feedbacks cause uncertainty in the climate sensitivity (Stocker, Dahe, and Plattner 2013).

3.3 Learning

Following the literature (Roe and Baker 2007, Kelly and Tan 2015), we assume the planner

has prior beliefs that the climate feedback parameter is drawn from a normal distribution

with mean µt and precision ηt. However, values of the feedback parameter greater than or

equal to one imply infinite steady state temperature changes for any positive concentration

of GHGs. Therefore, the computational solution requires truncating the prior distribution

at a value less than one.10

When prior beliefs about the feedback parameter are normal, the prior distributions of

the climate sensitivity and ∆T2× have fat upper tails (Kelly and Tan 2015). Thus, the

probability of relatively large temperature changes from a doubling of GHGs is large relative

to the normal distribution.

The weather shock ν̃t occurs at the beginning of each period, before the abatement rate

is chosen. We combine the two uncertain terms in equation (3.11) and denote the sum H̃ :

H̃t+1 = β̃1Tt + ν̃t+1. (3.12)

Since H̃t+1 is the sum of two normally distributed random variables, it is also normally

distributed with mean µtTt and variance:

σ2
H̃
= T 2

t /ηt + 1/ρ. (3.13)

The planner observes Ht+1 = Tt+1 − β2Ft+1 − β3 (O − T ) (t) at the beginning of t + 1 and

updates beliefs of β̃1. Bayes’ Rule implies that the posterior distribution of β̃1 is also normal,

and Baker (2007). Our implied ∆T2× is slightly lower because of small differences in the other parameters
of the model.

9Other feedbacks include changes in cloud cover and water vapor.
10See Costello, Neubert, Polasky, and Solow (2010) for a justification of truncation. We assume numerically

that beliefs evolve ignoring the truncation. See appendix A.6.2 for more details of the truncation.
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with mean and precision:

µt+1 =
ηtµt + ρHt+1Tt

ηt + ρT 2
t

, (3.14)

ηt+1 = ηt + ρT 2
t . (3.15)

Perfect information implies that µ = β̃1 and η = ∞. The information set used by the planner

to select xt includes µt and ηt.

3.4 Recursive Problem

The planner chooses emission abatement rate, xt, and capital investment each period to

maximize social welfare.

W = max
kt+1,xt

E

[

∞
∑

t=0

exp (−δut)Ltu

(

Ct

Lt

)

]

. (3.16)

Let k ≡ K/
(

LA
1

1−γ

)

denote normalized capital per productivity adjusted person (Kelly and

Kolstad 2001, Traeger 2014) and the same for y and c, f denote the normal density function,

and s = [k, T,m, t, µ, η]. The recursive version of the social planning problem is:

V (s) = max
k′,x∈[0,1]







u (c) + β (t)

∞
∫

−∞

V [s′] f

(

H|µ,
1

η

)

dH̃







, (3.17)

subject to:

c = y − exp

(

gA (t)

1− γ
+ gL (t)

)

k′ + (1− δk) k. (3.18)

T ′ = β2F
′ + β3 (O − T ) (t) + H̃ ′, (3.19)

F ′ = Ω log2 (m
′) + EF (t) , (3.20)

m′ = 1 + (1− δm (t)) (m− 1) +
E

MB

, (3.21)

E = (1− x) σ (t)A (t)
1

1−γ L (t) kγ +B (t) . (3.22)

µ′ =
ηµ+ ρH̃ ′T

η + ρT 2
, (3.23)

η′ = η + ρT 2. (3.24)

t′ = t+ 1. (3.25)
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Equation (3.17) condenses the double expectation over β̃1 and ν̃t+1 into one expectation over

the random variable Ht+1. Appendix A.1 gives the equations which govern the evolution of

variables that change exogenously over time, including the growth rates of productivity and

population, gA and gL. Time, t, is a state variable which determines all exogenous variables.

The discount factor accounts for growth in population and productivity. Because the growth

rates change over time, the normalized discount factor β (t) is not constant, but is exogenous.

In the model, two state variables, t and η, are unbounded. Therefore, the computational

solution replaces the precision η with the variance 1/η, and replaces time with a bounded,

monotonic increasing function.11 Table 1 gives parameter values and definitions for the above

problem.

3.5 Stabilization Targets

As discussed in Section 2, stabilization targets differ primarily by the choice of target variable.

Here we analyze a temperature target, which is the most common. The qualitative channels

we find apply regardless of the target variable: all targets are by definition inflexible and

force policy variables to respond to transient shocks. However, the magnitude of the effects

differ depending on, for example, the volatility of any shocks to the target variable.

Other differences in stabilization targets include the probability of exceeding the target

and possibly the timing (when the constraint becomes active). The model treats the prob-

ability of exceeding the constraint, ω, as a given policy (not optimized). The probabilistic

stabilization target is a sequence of constraints:

Pr (Tt+1 ≥ T ∗) ≤ ω, ∀t = 0, . . . . (3.26)

A pure stabilization target is a special case of equation (3.26) with ω = 0. The constraint

is always satisfied if ω = 1, so ω = 1 corresponds to the unconstrained case. The planner

must choose abatement to prevent the temperature from exceeding the target in t + 1, and

chooses abatement anticipating binding targets in future periods. A constraint exists for

each period, t = 1, . . ., which restricts the probability that Tt+1 ≥ T ∗. The constraints

limit the temperature change in every period. Alternative choices for the timing, such as

compelling the planner to choose abatement today to restrict the probability of exceeding

the target in all future periods (as opposed to anticipating today of being compelled in the

future), are discussed in Appendix A.2.

The stabilization target is effectively a sequence of constraints on the abatement rate x,

since xt affects Tt+1. Appendix A.4 shows that condition (3.26) may be written as:

xt ≥ PC (st, T
∗, ω) . (3.27)

11See for example, Kelly and Kolstad (1999b) or Traeger (2014).
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Mathematically, PC equals the abatement rate which reduces emissions and therefore GHG

concentrations and radiative forcing by just enough to cause the probability of Tt+1 exceeding

T ∗ to be exactly ω. A stabilization target is therefore equivalent to a minimum abatement

rate. For t close to the initial period, PC ≈ 0. The temperature is very unlikely to exceed

2°C regardless of the emissions level, so the constraint is non-binding. Instead, in the early

periods the planner chooses xt anticipating that constraints in the future will bind with high

probability.

Let θ denote the Lagrange multiplier on the probabilistic constraint. The recursive version

of the problem, which includes the probabilistic constraint, is then:

V (s) = max
k′,x∈[0,1]







u (c) + θ

[

x− PC (s, T ∗, ω)

]

+ β (t)

∞
∫

−∞

V [s′] f (H|µ, σH) dH̃







, (3.28)

subject to equations (3.18)-(3.25) and the Kuhn-Tucker conditions. In period t, the planner

anticipates facing constraints in periods t+ i, which restrict the probability that Tt+i+1 ≥ T ∗

for all i = 1, 2, . . .. Constraints on the probability that Tt+i+1 ≥ T ∗ are implicit in the

derivatives of V (shown formally in Appendix A.3), since the planner anticipates in period

t facing a probabilistic constraint in t+ i.

4 Feasibility

4.1 Tightness of the Constraint

Given current information and an emissions path Xt−1+i ≡ {xj}j=t...t−1+i
, an expected prob-

ability ω (st;Xt−1+i), exists in period t of exceeding the target in t + i. Appendix A.4

calculates the probabilities ωmin
t+i = ω (st;Xt−1+i = 1) and ωmax

t+i = ω (st;Xt−1+i = 0), which

are the expected probabilities in t of exceeding the target in t + i when the abatement rate

is set to 1 and 0, respectively, for all t, . . . , t− 1+ i, conditional on current information. For

i = 1, the probabilities satisfy:

1 = PC
(

st, T
∗, ωmin

t+1

)

(4.1)

0 = PC
(

st, T
∗, ωmax

t+1

)

(4.2)

Values of ω greater than ωmin
t+i are expected to be feasible policies in t + i, conditional on

current information. For ω > ωmax
t+i , the constraint is expected not to bind in period t + i,

since the planner can set Xt+i = 0 for all periods up to t + i and still expect to satisfy the

constraint.12 Conversely, any value of ω < ωmin
t+i implies in expectation PC (st+i) > 1, even

12Note that the planner may optimally set xt > 0, even if the constraint is not expected to bind in t+ i,
anticipating that the constraint will bind at some point after t + i. Here a low value of ωmax

t+i
indicates
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if the abatement rate is set to one immediately for all periods up to t + i. By doing this

exercise we glean intuition as to how tight the constraint is as a function of ω, which helps

to explain the results in the next section. The tightness of the constraint may equivalently

be controlled by altering T ∗, but we assume here T ∗ is a given policy.

The set of probabilities achievable with an interior abatement rate expands over time,

since the planner can lower future temperatures via a sustained reduction in emissions. On

the other hand, the uncertain climate feedback parameter has a multiplicative effect over

time. Therefore, future temperatures are more uncertain and therefore are more difficult to

control. Figure 1 plots estimated values of ωmin
t+i and ωmax

t+i for t = 2005 and i = 1, . . . , 95

from a sample of 10,000 simulations using the calibrated parameter values.
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Figure 1: Probability of exceeding T ∗ = 2°C, given various emissions policies. The left panel
gives the fraction of 10,000 simulations, each of which draw a random realization of β1 from
the prior distribution and a sequence νt, for which the temperature exceeds the target in the
given year, for the given abatement policy. The right panel gives the 69.6% error bars, so in
15.2% of the simulations the temperature was greater than or equal to the top error bar. In
all figures the data is annual, but markers are plotted only every five years for clarity.

For the first period, the probability of exceeding 2°C is nearly zero. Hence the current

probabilistic constraint is non-binding for almost any ω. Given current information, however,

there exists an approximately 15.2% chance that the 2°C target will eventually be exceeded,

even with an immediate, permanent drop to zero emissions. Therefore, values of ω < 0.152

are expected to be infeasible given today’s information.

The fat upper tailed uncertainty, calibrated from Roe and Baker (2007), is visible in the

right panel of Figure 1, where the error bar extends further above the mean than below. Fat

the constraint is relatively slack in t + i, since even a zero abatement policy will in expectation satisfy the
constraint in t+ i for most values of ω.
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tailed uncertainty implies very high values of the climate sensitivity occur relatively more

often than under the normal distribution. Therefore, the temperature change exceeds the

2°C target with surprisingly high probability, regardless of the emissions policy.13

An immediate, permanent, 75% drop in endogenous emissions below 2005 levels is ex-

pected to violate the constraints for any ω < 0.41 by 2100.14

Figure 1 also shows that a zero emissions policy can eventually overcome the inertia

in the climate and reduce the probability of exceeding 2°C to near zero. A policy of zero

emissions over time will slowly return the GHG concentrations to preindustrial levels (see

equation 3.7).

The planner chooses a current emissions policy, anticipating future emissions policies over

a period of decades, which is expected to satisfy future constraints, given current information.

However, learning and inertia in the climate may cause the temperature to enter the infeasible

range, even along a path where all long run probabilistic constraints were expected to be

satisfied.

4.2 A Feasible Constraint

Assuming emissions cannot be negative, constraint (3.27) may not be feasible; the set of

x ∈ [0, 1] which also satisfy (3.27) may be empty, violating a necessary condition for the

existence of a maximum. The problem is not feasible when PC (s, T ∗, ω) > 1, since the

maximum abatement rate is one. This occurs when the temperature rises close to or above

T ∗. In this case, given the inertia of the climate, even an abatement rate of 1 cannot reduce

the temperature enough to satisfy the constraint. Feasibility is also affected by ω: as ω → 1,

the planner is allowed to exceed the target with high probability, and so the model has a

feasible solution even if the temperature is relatively high.

To solve the infeasibility problem while keeping with the spirit of a stabilization target,

we assume that x = 1 whenever PC > 1. That is, whenever even zero emissions results in

the target being exceeded with probability greater than ω, the planner must return to the

feasible range as quickly as possible by setting x = 1.15 This is appealing in the sense that

13Relatively high values of the feedback parameter cause both GHG concentrations and weather shocks to
have more persistent effects on temperature, both of which amplify the variance of temperature over time.

14An immediate 75% drop below 2005 emissions is a far stricter policy than, for example, a 350 ppm GHG
target or the Kyoto agreement of 7% below 1990 levels.

15Other options are possible, but less attractive for welfare analysis. Ignoring infeasible constraints is not
attractive because the planner would have an incentive to push the climate change as close as possible to T ∗

in the hope that the climate will go over the target so that the constraint can be ignored. The other option
would be to include a penalty function for going over T ∗ (Neubersch, Held, and Otto 2014). However, a
penalty for high temperatures already exists (the damage function), so it is unclear from a welfare perspective
what real world phenomena to calibrate the penalty to. In contrast, here exceeding the constraint causes
two penalties: first damages increase, and second the planner must incur the cost of returning as quickly
as possible back to the target. Both penalties are therefore implicitly consistent with the welfare costs and
damages in the model. Finally, note that our solution is not equivalent to a sufficiently strong penalty
function. Both a very strong penalty function and our assumption imply x = 1 when the target is exceeded.
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it provides calibrated incentives to reduce emissions in the near term to avoid the jump in

welfare losses when the target is crossed. Indeed, catastrophic damages (which we do not

model) induce a similar jump in welfare loss beyond T ∗. Both catastrophic damages and

our assumption imply x = 1 when the target is exceeded. Of course, damages and costs

interact differently with the other state variables, so the two approaches are not equivalent.

Sufficiently convex damages would lead to even lower current emissions as the planner has a

stronger incentive to reduce the risk of exceeding the target.

The feasible constrained problem is then:

V(s) = max
k′,x∈[0,1]

{

u (c) + θ

[

x−min {PC (s, T ∗, ω) , 1}

]

+

β (t)

∞
∫

−∞

V [s′] f (H|µ, σH) dH̃







, (4.3)

subject to equations (3.18)-(3.25) and the Kuhn-Tucker conditions.

Problem (4.3) always has a feasible solution. Further, when the probabilistic constraint

is exceeded due to a large random weather shock or an unexpectedly high realization of

β1, the planner must return as quickly as possible (by setting x = 1) to the range where

PC < 1. This is in keeping with the idea that exceeding the target causes damages and

should be avoided if possible. The planner anticipates future constraints in (4.3), through

the derivatives of V [s′] (see Appendix A.3).

The requirement that x = 1 when exceeding the target affects near term abatement,

even though the temperature is initially well below the target. Abatement costs are convex,

so the planner raises current abatement to smooth abatement costs over time. In addition,

the model now has an endogenous probability of crossing a “threshold” (the target) into

a region with higher abatement costs. This creates two extra incentives to increase near

term abatement, which are related to incentives in Lemoine and Traeger (2014) for the case

of threshold damages. First, increasing abatement reduces the likelihood of crossing the

target and incurring higher costs (the marginal hazard effect). Second, increasing current

abatement reduces the climate inertia, which reduces the number of periods for which x = 1

upon crossing the threshold (similar to Lemoine and Traeger’s differential welfare impact).

The next section analyzes the how the constraints affect optimal abatement and tem-

perature paths, determines how the planner adjusts abatement today in response to future

constraints, and determines how learning affects the constrained optimal policy.

But they have different effects on current emissions: if the penalty function is sufficiently strong, current
emissions are less as the planner has a stronger incentive to reduce the risk of exceeding the target.
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5 Results

5.1 Optimal policy and uncertainty

Appendix A.6 details the solution method. First, we analyze how the optimal abatement

policy varies with the probabilistic target and the uncertainty. The left panel of Figure 2

plots the optimal abatement policy for two different true values of β1: the mean of the prior,

for which a doubling of GHGs causes a steady state temperature change of ∆T2× = 3.08°C,

and a relatively high value for which ∆T2× = 4°C.
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Figure 2: Emissions abatement rate and temperature for ∆T2× = {3.08, 4}, unconstrained
and constrained with ω = 0.5. Mean of 10,000 simulations.

In both cases, the probabilistic constraint increases the abatement rate. The constraint

increases the abatement rate initially as the planner must begin reducing emissions immedi-

ately to prevent the target from eventually being exceeded. The initial abatement rate with

the probabilistic constraint is 35%, in contrast to the unconstrained initial abatement rate of

29%. As new information arrives, when ∆T2× = 4, the planner updates the prior and there-

fore must increase the abatement rate to meet the target. When ∆T2× = 4, the constrained

planner must dramatically increase the abatement rate to 71% by 2015. In contrast, when

∆T2× = 3.08, the constrained planner has more time to slow the climate inertia, and the

abatement rate is only 33% in 2015.

The unconstrained abatement rate drops over the period 2005-2010 when the true climate

sensitivity equals the mean of the prior. This result is found in other computational models

with uncertainty that use the DICE framework (see for example Rudik 2016, Kelly and Tan

2015). Kelly and Tan (2015) show that, while overall learning of the climate sensitivity is a

slow process, the planner can rule out extreme values of ∆T2× relatively quickly if the true

climate sensitivity is close to the mean of the prior. Therefore, when ∆T2× = 3.08, learning
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reduces one motivation for early abatement- to insure against potentially extreme values of

the climate sensitivity (note that abatement is monotonic when ∆T2× = 4). The abatement

rate then rises over time as abatement becomes less expensive, unabated emissions rise due to

economic growth, and wealthier future households are more willing to purchase abatement.

The difference between the constrained and unconstrained abatement rates in 2010-2060

is much greater when ∆T2× = 4. When ∆T2× = 4, the optimal temperature rises. The

planner learns the climate is more sensitive to GHG concentrations, and so the abatement

expenditure required to keep the temperature at a given level increases, but the benefits are

unchanged. In contrast, by definition, the probabilistic constraint employs a fixed target.

Therefore, the difference between the unconstrained and constrained policies rises with ∆T2×

because the constraint is inflexible: T ∗ and ω cannot adjust as new information arrives.

The right panel of Figure 2 plots the average temperature changes for the above two

cases. When ∆T2× = 3.08, the unconstrained optimal temperature crosses the target in 31

years. Therefore, the planner has more time to slow climate change and can spread out the

increase in the abatement rate. In contrast, when ∆T2× = 4, the unconstrained temperature

crosses the target in only 14 years. Therefore, in the constrained case, the abatement rate

must rise more quickly to keep the temperature below the target. Notice the unconstrained

optimal temperature rises when ∆T2× is higher as the planner responds to the higher required

expenditure to keep the temperature at a given level by letting the temperature rise more.

However, the target stays fixed at 2°C.

Next, we examine how abatement policy and the temperature respond to changes in the

probability of exceeding the target, ω. We solve the model (4.3) for various values of ω, and

simulate each solution 10,000 times. The left panel of Figure 3 reports the mean optimal

abatement rate for various values of ω, assuming the true climate sensitivity equals the mean

of the prior.
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Figure 3: Optimal constrained abatement policy and temperature. Each curve is the mean
of 10,000 simulations, with true ∆T2× = 3.08, and the reported value of ω.

In Figure 3, ω = 1 corresponds to the unconstrained optimum. As the maximum allow-

able probability of exceeding the target (ω) decreases, the constraint becomes more strict,

causing the optimal abatement to rise. Non-monotonic regions arise in the first few periods

as in Figure 2, because learning reduces the risk that the climate sensitivity is high.

The planner must ramp up abatement spending relatively early when ω = 0.2, since the

temperature must converge to a level in which random weather shocks cause the temperature

to exceed 2°C with probability of at most 0.2. This temperature is below 2°. In contrast,

when ω = 0.85 the planner can wait a few more years before ramping up abatement, since

the constraint allows the temperature to converge to slightly above 2°C, requiring only that

the weather shock causes the temperature to fall below 2°C with probability 0.15.

After 2050, abatement rates are similar for ω = 0.2 and ω = 0.85. At this point, learning

has resolved much of the uncertainty and the climate no longer has an upward trend.16 The

difference in abatement rates therefore reflects only that the mean maximum temperature

differs with ω. The mean maximum temperature is about 0.25° higher when ω = 0.85 versus

ω = 0.2.

The unconstrained optimal abatement is far less than the constrained optimal abatement,

even for ω = 0.85. Regardless of ω, the maximum temperature must stay relatively close

to 2°, since the standard deviation of the weather shocks is only 0.11°. In contrast, the

unconstrained optimal temperature is 3.26°C, which requires much less abatement.

16Our results are sensitive to the endogenous rate of learning. Kelly and Tan (2015) perform a detailed
analysis of the rate of learning in a model with fat tailed uncertainty about the climate sensitivity, and
consider a number of extensions, including adding additional uncertainties. Adding additional uncertainties
would amplify the effect of targets on emissions and welfare. Learning would slow and the variance of the
temperature would increase, both causing the target to be more difficult to adhere to.
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The right panel of Figure 3 shows the mean temperature change for various values of

ω, assuming the true climate sensitivity equals the mean of the prior. The unconstrained

optimal maximum mean temperature change is 3.26°C, so the 2° target is about 1.26 degrees

too stringent, if the true climate sensitivity equals the mean of the prior.17 Smaller values of ω

imply a smaller maximum mean temperature change. For ω = 0.5, the mean temperature is

very slightly below 2°C after 2120. The weather shock is normally distributed with mean zero.

Hence, starting at 2°C, the temperature next period exceeds the constraint with probability

0.5. Similarly, since the standard deviation of the weather shock is 0.11°, with probability

0.2 the weather shock is greater than 0.09°. Hence, when ω = 0.2 the temperature should

converge to slightly below 1.91 (actually 1.89 by 2120). The planner stays below the target

to reduce the likelihood of crossing the target and incurring the cost of x = 1 (the marginal

hazard effect) and to reduce the number of periods for which x = 1 if the target is exceeded.

Overall, the maximum mean temperature is not very sensitive to ω. The difference

in maximum temperatures between ω = 0.2 and ω = 0.85 is only 0.25°C. The weather

shock does not have enough variance to cause changes in ω to generate large differences

in temperature. Although the maximum temperature must approach the unconstrained

maximum temperature as ω → 1, the convergence is highly nonlinear. Suppose for example

that ω = 0.999997. Then, the planner can set the abatement rate so that the temperature

converges to 2.5°C, since at 2.5° the probability of a large negative weather shock that causes

the temperature to decrease to 2° is exactly 1−ω. However, even with ω = 0.999997, the mean

temperature of 2.5° is still far from the unconstrained temperature of 3.26°. Therefore, the

imposition of a probabilistic constraint causes a significant drop in temperature and requires

significantly more abatement, for almost any value of ω, because of the large difference

between the target and the unconstrained optimal temperatures.

The right panel of Figure 3 also shows the year in which the constraint just binds, on

average. Holding emissions fixed, a smaller value of ω implies the constraint binds earlier.

However, a smaller value of ω induces the planner to reduce emissions earlier, which tends to

increase the time until the constraint just binds. The right panel of Figure 3 shows that the

emissions effect dominates when the true climate sensitivity equals the mean of the prior.

Some of the early abatement when the climate sensitivity was uncertain was not necessary

ex post and so the constraint binds relatively late for low values of ω (the constraint binds

after 2100 when ω = 0.2).

The above analysis is for the case where the true climate sensitivity equals the mean of the

prior. Sufficient time exists to slow the inertia in the climate and stabilize the temperature,

both because the true climate sensitivity is moderate and because the planner is not very

surprised by the true climate sensitivity. However, if the climate sensitivity is sufficiently

17Our model is based on the Nordhaus DICE model, which has no tipping points, irreversibilities, etc.
Other models with these features may feature smaller optimal maximum temperature changes.
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high, the temperature exceeds the target, regardless of ω. For example, Figure 4 plots

abatement and mean temperature change over time as a function of ω when ∆T2× = 5.18
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Figure 4: Optimal constrained abatement and temperature. Each curve is the mean of
10,000 simulations, with true ∆T2× = 5 and the reported value of ω.

In the right panel of Figure 4, the mean optimal unconstrained temperature change

rises to 3.71°C, indicating the optimal unconstrained temperature is sensitive to climate

sensitivity. The mean optimal unconstrained temperature change increases because when

the climate is more sensitive to GHG concentrations, the abatement expenditures required

to keep the temperature at a given level rises, but the benefits are unchanged. In contrast,

the target is by definition inflexible and does not vary with the resolution of uncertainty.

The mean maximum temperature change falls with ω as in Figure 3, but is not very sensitive

to ω. When ∆T2× = 5 and ω = 0.2, on average the temperature exceeds the target for about

104 years. Since ∆T2× = 5 is unexpectedly high, the climate has unexpected inertia, and

crosses the target after just a few years. The problem is exacerbated by the fact that the

planner believes ∆T2,× < 5 for many years, and underestimates the effect of emissions on the

climate. Once the temperature crosses the target, the planner sets emissions to zero, but the

climate continues to rise on average because the inertia is unexpectedly strong. Note that

Figure 3 is an average of 10,000 simulations. In 18% of the simulations, the weather shocks

are low enough such that the temperature falls below 2°C in less than 40 years. Conversely,

34% of the simulations require 150 years or more to reduce the temperature back to the

target.

The right panel of Figure 4 also shows that the constraint binds after just a few years.

As with the case where the true climate sensitivity equals the prior, as ω decreases holding

emissions fixed the constraint binds earlier. However, as ω declines, the planner reduces

18Weitzman (2009) using IPCC data assigns prior probability that ∆T2× ≥ 5 = 0.07.
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emissions, which tends to make the constraint bind later. When ∆T2× = 5, the planner has

little time to adjust emissions downward, so the first effect dominates and the constraint

binds slightly earlier as ω decreases.

The left panel of Figure 4 shows abatement when ∆T2× = 5. Because expectations are

being revised upward, abatement does not decline initially as in Figure 3.

5.2 Optimal reaction to future constraints

Given a sequence of emissions levels, the planner knows that the temperature may exceed the

target in the future. If so, the planner endures a cost of setting emissions equal to zero (and

high damages). Ultimately, these costs motivate the planner to reduce emissions today (to

smooth abatement costs over time, reduce the likelihood of exceeding the target, and reduce

the time during which the target is exceeded). However, abatement today is also costly, and

so how much near term abatement, and how often the target is crossed, are computational

questions. If abatement is inexpensive, the planner may choose a high level of abatement,

paying today to reduce the risk of additional costs in the future. The planner may even elect

to increase abatement to the point where the probability of exceeding the target in the future

is less than ω, if the cost of abatement is inexpensive relative to the cost of exceeding the

target in the future. Conversely, if abatement is expensive, the planner may take on more

risk, perhaps even to the point where today the planner expects the target to be exceeded

in the future with probability greater than ω.

The probability today of exceeding the target in the future is therefore a constrained

optimal policy, trading off these costs. In contrast, ω acts in the future to lower the threshold

temperature beyond which the planner incurs the extra costs. Thus reducing ω creates

an extra incentive to reduce emissions today, but is different from optimal probability of

exceeding the target.

Table 2 gives the percentage of 10,000 simulations for which the temperature exceeds

the target. In the unconstrained case the temperature exceeds the target for 72.1% of the

simulations in 2050. As ω falls below one, the planner increases current abatement. Since

abatement is low and abatement cost is convex, small increases in abatement are not very

costly and by increasing abatement the planner reduces the probability of exceeding the

target in the future and incurring the cost of setting emissions equal to zero. Thus for

ω > 0.3, the planner sets abatement high enough so that the probability of exceeding the

target in 2050 is strictly less than ω.

However, given the convexity of abatement costs, eventually the cost of increasing abate-

ment today rises to the point where further reductions in the probability of exceeding the

constraint in the future are no longer optimal. For ω = 0.2, the target is still exceeded

approximately 35% of the time in 2050 (from Figure 1, an immediate 75% reduction in
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emissions cause the target to be exceeded with probability 0.25 in 2050). The planner is

unwilling to pay the cost of more severe emissions reductions today and accepts the penalty

of occasionally exceeding 2° and having to set future emissions equal to zero. The probability

of exceeding the target is therefore constrained optimal in the sense that the planner chooses

a future probability of exceeding the target today given the costs and benefits of reducing

that probability.

Finally, the last column of Table 2 shows the autocorrelation of periods in which the target

is exceeded. The correlation is very positive: once the target is exceeded, inertia typically

causes the the temperature to exceed the target in subsequent periods. In addition, only one

true value of the climate sensitivity exists. Given an emissions path, if the climate sensitivity

is surprisingly high, then probability of exceeding the target rises in every period. So an

increase in the probability of exceeding the target in one period is correlated with exceeding

the target in subsequent periods.

5.3 Learning

Learning plays an important role in the presence of a stabilization target. If learning reduces

uncertainty relatively quickly, the planner can adjust abatement and the temperature is

less likely to exceed the target. Further, learning directly affects the stringency of the

probabilistic constraint.

With regard to the speed of learning, from equation (3.24), the precision of the feedback

parameter grows approximately linearly, which implies the variance shrinks according to a

power law (t−1). Nonetheless, the rate of learning about the climate sensitivity differs from

the rate of learning about the feedback parameter. From equation (3.10):

∆T2× = Ωλ̃ =
Ω

α
(

1− β̃1

) , (5.1)

so small differences in β1 can imply relatively large differences in λ and ∆T2×. Since the

sensitivity of the climate to GHG concentrations is ultimately more important for determin-

ing abatement policy, especially with a stabilization target, we focus on the rate of learning

about ∆T2× rather than the feedback parameter.

Kelly and Tan (2015) show that overall learning about the climate sensitivity is a slow

process, although the planner can effectively rule out values of the climate sensitivity much

higher than the true value relatively quickly. Figures 5 and 6 confirm these results. The left

panel of Figure 5 plots the evolution of the mean of the prior for 200 simulations where the

true ∆T2× equals the prior. The percentage of simulations for which the estimate of ∆T2× is

above 3.5° falls from 28.5% initially to 2% in only 14 years. However, even in 2050 significant

uncertainty remains. The difference between the largest and smallest value of the estimate
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of ∆T2× is 0.42° in 2050. Further, learning slows as the true value increases. The right panel

shows that if the ∆T2× = 5°, in 2050 the difference between the largest and smallest estimate

of ∆T2× is 0.89°.

year
2000 2010 2020 2030 2040 2050

∆
T
2×

im
p
li
ed

b
y
m
ea
n
of

p
os
te
ri
or

1

2

3

4

5

6

7

8

9

10
True ∆T2× =5, ω =0.5

year
2000 2010 2020 2030 2040 2050

∆
T
2×

im
p
li
ed

b
y
m
ea
n
of

p
os
te
ri
or

1

2

3

4

5

6

7

8

9

10
True ∆T2× =3.08, ω =0.5

Figure 5: Evolution of the estimate of ∆T2× = 5° for 200 simulations when ω = 0.5 and
∆T2× equals 3.08° (the prior) and 5°.

Alternatively, Figure 6 shows that the standard deviation of the estimate of ∆T2× falls

initially as very high values are ruled out,19 but then falls at a much slower rate after.

19However, if the true ∆T2× is greater than the prior, the standard deviation of ∆T2× does not decrease
monotonically. The standard deviation of the feedback parameter does decrease monotonically (equation
3.24), but increases in the mean estimate of the feedback parameter implies small changes in the feedback
parameter have larger changes in ∆T2×. Therefore, increases in the mean of the feedback parameter estimate,
which occur when the true value exceeds the prior, increase the standard deviation of the estimate of ∆T2×

(equation 5.1).

22



year
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

S
td

. D
ev

.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Standard Deviation of ∆T2× (◦C)

ω =0.5, ∆T2× =3.08

ω = 1, ∆T2× =3.08

ω =0.5, ∆T2× = 5

ω = 1, ∆T2× = 5

Figure 6: Evolution of the standard deviation of the prior belief distribution of ∆T2×. Mean
of 10,000 simulations.

Figure 6 also shows that the stabilization target slows the rate of learning. Because the

probabilistic constraint reduces emissions, the climate change signal is less visible in the

noisy weather shocks, which slows learning. When the true ∆T2× = 3.08°C, the standard

deviation of the estimate of ∆T2× is 9.8% higher in 2050 when the stabilization target is

present. When the true ∆T2× = 5°C, the standard deviation of the estimate of ∆T2× is

27.7% higher in 2050 when the stabilization target is present. Thus the stabilization target

slows learning most when learning is most helpful for keeping the temperature below the

target.

In turn, slow learning has two offsetting effects on achieving the temperature target, when

the true climate sensitivity is greater than the mean of the prior. First, because the mean

of the prior is below the true climate sensitivity, the planner underestimates the amount

of abatement needed to meet the temperature target. Second, when learning is slow the

planner keeps abatement high to reduce the risk of exceeding the target. The former effect

must dominate when the climate sensitivity is sufficiently high. The true climate sensitivity

is unobserved, and so a higher climate sensitivity will not change the second effect, but will

worsen the first effect. Thus, slow learning and the inertia in the climate explain why the

temperature exceeds the target when the climate sensitivity is relatively high (Figure 4).20

20Although consistent with the previous literature, learning on a scale of decades may still appear relatively
rapid given that many climatic processes evolve over a period of centuries. Indeed, our two equation climate
model with a single uncertainty likely overstates the rate of learning in complex climate models with many
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The primary channel through which learning affects abatement policy is the effect of

reducing the variance of the feedback parameter on the probabilistic constraint. Since the

constraint binds frequently, changes in the constraint induced by a reduction in the variance

of uncertainty directly affect the abatement rate. It is straightforward to verify that:

∂PC (st, T
∗, ω)

∂1/ηt
> (<,=)0 ⇔ ω < (>,=)0.5. (5.2)

Therefore, how learning (reducing the variance, 1/η, of the feedback parameter) affects

abatement depends on ω. In fact, learning changes abatement so that the temperature

moves closer to the target, T ∗.

First, suppose that ω < 0.5, so that the constraint limits the temperature to a level below

T ∗ (see the green line in the right panel of Figure 3). Recall from equation (3.19) that Tt+1

is normally distributed. Since the normal distribution is symmetric and the temperature

is below T ∗, we have E [Tt+1] < T ∗. Next, learning reduces the variance of the estimate of

the feedback parameter, which means extreme realizations of the climate sensitivity, which

imply Tt+1 > T ∗, are less likely. Therefore, learning decreases Pr (Tt+1 ≥ T ∗). The constraint

relaxes (PC decreases), and (if the constraint is binding) xt falls and Tt rises closer to T ∗.

Therefore, for ω < 0.5, learning increases the temperature by decreasing abatement.

Suppose now that ω > 0.5, so that the constraint limits the temperature to a level

above T ∗ (blue line in the right panel of Figure 3). Since Tt+1 is normally distributed and

the temperature exceeds T ∗, we have E [Tt+1] > T ∗. Now learning makes extremely high

realizations of the climate sensitivity less likely, but any realization above the mean still

implies Tt+1 > T ∗, so Pr (Tt+1 ≥ T ∗) is unaffected by reducing the probability of extremely

high realizations. However, realizations slightly less than the mean are more likely. Since

T ∗ < E [Tt+1], Pr (Tt+1 ≥ T ∗) increases. The constraint tightens, so (if the constraint binds)

xt increases and Tt decreases. Therefore, for ω > 0.5 learning decreases the temperature by

increasing abatement.

In either case, learning gives the planner better control of the temperature, allowing the

planner to move closer to the target. For the case of ω = 0.5, reducing the variance has no

effect on PC, since the normal distribution is symmetric.

Figure 7 confirms the above intuition. For ω = 0.25 < 0.5, the abatement falls and the

temperature rises, moving closer to the target relative to no learning.21 For ω = 0.75 > 0.5,

abatement rises and the temperature falls, but is still moving closer to the target relative to

no learning. For ω = 0.5 the constraint is unaffected by learning and, since the constraint

binds both with and without learning, the temperatures are almost identical. Note the true

uncertainties. Introducing additional uncertainties which slow learning would magnify the results here, since
additional uncertainties would make a stabilization target more difficult to adhere to.

21Note that for the case without learning, the model is re-solved so that the planner anticipates no further
information about the climate sensitivity is forthcoming.
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climate sensitivity equals the prior in Figure 7, which allows us to focus on the effect of

learning on the variance of uncertainty in isolation of the effect of learning on the mean of

the prior.

time
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tt

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Optimal temperature, mean of 10000 simulations, ∆T2× =3.08

ω =0.75: No Learning

ω =0.75: Learning

ω =0.5: No Learning

ω =0.5: Learning

ω =0.25: Learning

ω =0.25: No Learning

Figure 7: Optimal constrained temperature. Each curve is the mean of 10,000 simulations,
with true ∆T2× = 3.08 and the reported value of ω.

5.4 Welfare loss

The probabilistic constraint at least weakly restricts the choice set for the planner, and

therefore must result in a welfare loss, relative to the unconstrained problem.22 Our interest

is in how the welfare loss varies with ω and how uncertainty affects the welfare loss.

The left panel of Figure 8 graphs the welfare loss as a percentage of the welfare of the

unconstrained problem, ω = 1.

22We are following, for example, Nordhaus (2007), who imposes a 2°C constraint a version of the model with
no uncertainty, and then calculates the welfare loss. Other authors use cost effective analysis (CEA) or cost
risk analysis (CRA), which replace the damage function with the probabilistic constraint (see Neubersch,
Held, and Otto 2014, for an excellent discussion of CEA and CRA). A damage function, despite being
uncertain, allows for a transparent interpretation of the welfare costs of temperature changes, which is the
focus of this paper.
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Figure 8: Welfare loss as a function of ω (left panel) and as a function of ω and the true ∆T2×
(right panel). The graph plots 1 − V (s0;ω) /V (s0; 1), where V is the solution to (3.28), as
a function of ω. Left panel: mean of 10,000 simulations, each with a draw of the feedback
parameter from the prior distribution and a draw of the weather shock for each period in
the simulation. Right panel: mean of 10,000 simulations, each with the feedback parameter
implied from the given value of the climate sensitivity and a draw of the weather shock for
each period in the simulation.

From the left panel of Figure 8, the unconstrained problem has no welfare loss, and

welfare loss is decreasing in ω since relaxing the constraint reduces the welfare loss. The

slope is relatively flat for ω < 0.975, since even relatively large values of ω force the maximum

climate change to be close to two degrees, rather the optimum which is 3.26°C and rises with

the true value of the climate sensitivity (see the right panels of Figures 3 and 4). Welfare

loss is about 3-5% of the unconstrained policy, depending on ω (Table 3 reports the exact

welfare losses).

Mastrandrea et al. (2010) and Neubersch, Held, and Otto (2014) calibrate a value of

ω = 0.33 based on an interpretation IPCC statements calling for policies for which achieving

the 2° target is likely. We therefore let ω = 0.33 be the baseline stabilization target recom-

mendation.23 Table 3 then indicates that the baseline stabilization target results in a welfare

loss of approximately 4.7%.24

The right panel of Figure 8 plots the welfare loss for various true values of ∆T2×. The

welfare loss increases with the true value of ∆T2×, rising to 14% when ∆T2× = 5 and

ω = 0.2.25

23One may alternatively interpret the IPCC statement as the optimal probability of exceeding the target
at some point in the future is 0.33. If so, from Table 2, the appropriate calibration is ω ≈ 0.2.

24The welfare loss in consumption equivalents is approximately 1%. That is, the household would require
an annual consumption increase of 1% in perpetuity to be willing to accept the stabilization constraint (see
Table 3).

25Note that as the true climate sensitivity decreases, the full information optimal maximum temperature
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When the arrival of new information indicates the climate sensitivity is higher than ex-

pected, the unconstrained planner learns that the cost of keeping the temperature at a given

level has risen. The planner increases abatement in response to the higher expected damages.

Nonetheless, the high climate sensitivity implies temperature is on a higher trajectory. In

contrast, the constrained planner must increase abatement still further, to keep the temper-

ature on the same trajectory despite the high climate sensitivity, because the target does not

change. Therefore, higher values of ∆T2× cause greater welfare losses, because the constraint

is inflexible.

Traeger (2014) shows that, for the DICE model under certainty, the maximum tempera-

ture change is approximately 3.6°C above preindustrial.26 Therefore, in the certainty version

of the model, the target is set 1.6° too low. After imposing a pure (ω = 0) stabilization target

on the certainty version of the model,27 we find the welfare loss of a 2°C target is 2.84%. This

result depends on the specification of the damage function, assumptions about the discount

rate, the lack of tipping points, the lack of intrinsic preferences for low temperatures, etc. In

the certainty version of the model, more pessimistic parameter assumptions would lower the

maximum optimal temperature change to 2° or lower, in which case imposing the 2° target

would create no welfare loss.

In contrast, a welfare loss exists in the model with uncertainty, irrespective of parameter

assumptions, because the target is inflexible and abatement policy overreacts to transient

shocks. Table 3 shows that the welfare loss in the model with uncertainty ranges between

5.2% for ω = 0.2 to 2.85% for ω = 0.975. The welfare loss with uncertainty differs from

the welfare loss with certainty for three reasons. First, the optimal maximum temperature

changes with the resolution of uncertainty, but the target is inflexible, creating a welfare

loss. In contrast, adjusting the target is not necessary under certainty. Second, with un-

certainty the constrained planner must respond to transient weather shocks. These shocks

are absent in the model with certainty. Third, the difference between the maximum un-

constrained mean temperature and the maximum constrained mean temperature when the

true climate sensitivity equals the mean of the prior is smaller under uncertainty than the

difference between the maximum unconstrained temperature and the maximum constrained

temperature under certainty. Therefore, the 2° target is not as restrictive when the true

decreases, eventually to below two degrees. Yet, a small welfare loss still results. If the climate sensitivity
is low, with full information the planner reduces abatement (left panel of Figure 2). The temperature still
approaches a low maximum temperature because the climate sensitivity is low. In contrast, the constraint
causes the planner to increase near term abatement relative to the unconstrained case, creating a welfare
loss as the planner undershoots the optimal temperature.

26In our model with uncertainty, the maximum of the mean temperature change is 3.26°C. The lower
temperature occurs because the risk averse planner responds to the risk of damages from a potentially high
climate sensitivity by increasing abatement.

27A probabilistic target cannot be imposed on the certainty version of the model, since the planner can
always choose a path which satisfies the target with probability one, and any path which exceeds the target
also does so with probability one.
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climate sensitivity equals the mean of the prior with uncertainty relative to certainty.

The first two channels cause a larger welfare loss relative to certainty, while the third

channel causes a smaller welfare loss relative to certainty. Overall the first two channels

dominate for all values of ω. The welfare loss of the baseline model (ω = 0.33) under

uncertainty is 66% greater than the model with certainty. Table 3 indicates the welfare loss

under uncertainty is 82.8% greater than the model with certainty for ω = 0.2, although for

ω = 0.975 the third effect becomes more important, and the welfare loss is only slightly

higher under uncertainty.

Unfortunately, the three channels by which uncertainty affects the welfare loss of a stabi-

lization target are difficult to isolate. For example, eliminating the weather shocks from the

model removes the need for the optimal constrained abatement policy to respond to transient

shocks. However, without weather shocks, the planner learns the climate sensitivity after

one observation, and the model reduces to the certainty case.

However, some channels can be approximately isolated. For example, consider an exercise

designed to isolate the welfare loss caused by the response of abatement policy to transient

shocks. We perform a simulation which keeps two sets of temperature data. The first set

of temperature data includes the weather shocks and the second set of data sets all shocks

equal to zero. We use the temperature data with shocks to compute the updates to the mean

and variance of the prior uncertainty distribution, and use the temperature data without

shocks to compute damages, the optimal decisions, and the future temperature. In this way,

the speed of learning is nearly identical to the previous case, but abatement policy does

not directly adjust to transient shocks, which are absent.28 Table 3 shows that eliminating

weather shocks (except for updating priors) reduces the welfare loss by 6.5-9.7%.

The third effect is that the probabilistic target used under uncertainty is less restrictive

than the pure stabilization target under certainty. Under certainty, the maximum uncon-

strained temperature is 3.6°, whereas the constrained target is 2°C, a difference of 1.6°C. In

contrast, the right panel of Figure 3 shows that the unconstrained maximum mean temper-

ature is 3.26°, and that the maximum constrained mean temperature is 1.89-2.24°, depend-

ing on ω. When ω = 0.2, the temperature difference is 1.37° versus 1.6° under certainty.

Therefore, for ω = 0.2, the third effect, the difference between optimal and constrained

temperature, is similar for uncertainty and certainty. The welfare loss for ω = 0.2 is 82.8%

higher under uncertainty, indicating that removing the third effect causes the welfare loss to

increase.

Overall, then the majority of the added welfare loss in the model with uncertainty results

from the inflexibility of the target. The climate sensitivity is uncertain, and the inability

of the constrained planner to adjust policy as new information arrives reduces the value of

28That is, we compute x (S (T (ν = 0) , µ (ν) , η (ν))), which differs from the abatement policy when weather
shocks affect the temperature, eventually slightly affecting the speed of learning.
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learning in the model.

6 Conclusions

In this paper, we evaluated the common policy recommendation of a 2°C temperature target

in the context of an integrated assessment model with uncertainty and learning about the

climate sensitivity. Uncertainty fundamentally changes the feasibility and welfare implica-

tions of a stabilization target. We show that even with an immediate reduction of all GHG

emissions to zero, the temperature eventually exceeds 2°C with probability 0.15. Given that

the temperature is already 0.8°C above pre-industrial and climatic processes are highly un-

certain and subject to inertia, it is difficult to envision controlling the climate to the precise

degree implied by the 2°C target in the short run. Nonetheless, we show that as learning

resolves the planner can eventually achieve the target with sustained emissions reductions

over time. An immediate policy implication is that implementing a stringent emissions re-

duction policy is imperative if the temperature change is to be kept under 2°C: even with

an immediate 75% reduction in emissions, the 2°C target is exceeded with probability 0.41

by 2100.29

Further, we show that adding uncertainty changes the welfare effect of stabilization tar-

gets in three ways: first, with uncertainty, as new information arrives the optimal temper-

ature path adjusts. Because the stabilization target is by definition inflexible, adhering to

a stabilization target causes welfare loss. Second, the temperature randomly evolves over

time, occasionally exceeding the target. In this case, the planner must set an excessively

high abatement rate to immediately return the temperature back to the target. Third, the

average unconstrained temperature change is lower under uncertainty. Thus, the welfare loss

associated with setting the target lower than is optimal is less under uncertainty. We show

that the total welfare loss for the baseline policy is 4.7%, most of which is due to inflexibility

of the stabilization target.

An important policy implication of our results is that introducing some flexibility into

the target can reduce the welfare loss. For example, many regulations and international

agreements have provisions whereby the regulation comes up for renewal after a prespecified

number of years, at which point the regulation may be changed to reflect new information.

Another policy implication is that a less variable target, such as GHG concentrations, is more

attractive than temperature. The welfare loss of the target increases with the variance of the

shock, through the overreaction channel. Since GHGs are less variable than temperature,

less overreaction would occur.

Our model may be extended in a number of ways. We could consider other targets such

29Indeed, some scientists now argue that exceeding the 2°C target is inevitable (Sanford, Frumhoff, Luers,
and Gulledge 2014).
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as limit GHG concentrations to 350 ppm or limiting sea level rise or ocean acidification. Our

approach would also likely extend to regulations other than climate change. For example,

some fisheries regulations try to achieve a particular stock of fish, even though fish stocks

are affected by many uncertain processes other than the size of the catch. One may envi-

sion stabilization targets as providing some welfare benefits outside the current model. For

example, they could serve as a commitment device to induce firms to invest in irreversible

abatement capital.

A 2°C stabilization targets is easier to convey to the public than, for example, a particular

carbon tax. Since damages are a function of temperature, it is also easier to understand

the impacts of 2°C temperature limit. However, one must use caution in that a stabilization

target may convey the false impression that we have precise control over an uncertain climate

and that our understanding of the optimal temperature change will not change as new

information arises.

A Appendix

A.1 Exogenous variables

The DICE model includes many variables which change exogenously over time. Further,

unlike DICE, we assume the ocean temperature also changes exogenously to reduce the

state space. Reducing the state space from seven to six variables significantly reduces the

computation time. Traeger (2014) presents a deterministic DICE model with exogenous

ocean temperature. Therefore, we take the evolution of the exogenous variables directly

from that study. For completeness, they are listed below. We refer the reader to Traeger

(2014) for details.

Population growth:

L (t) = L0 +
(

L̄− L0

)

(1− exp [−gLt]) . (A.1)

TFP growth:

A (t) = A0 exp

[

gA,0
1− exp [−δAt]

δA

]

. (A.2)

Backstop cost:

Ψ (t) =
σ (t)

a2
a0

(

1−
1− exp [gΨt]

a1

)

. (A.3)
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Emissions intensity of output:

σ (t) = σ0 exp

[

gσ,0
1− exp [−δσt]

δσ

]

. (A.4)

Exogenous emissions:

B (t) = B0 exp [−δBt] . (A.5)

Decay rate of GHGs:

δm (t) = δ̄m +
(

δm,0 − δ̄m
)

exp [−δ∗mt] . (A.6)

Exogenous forcing:

EF (t) = EF0 + 0.01 (EF (100)− EF0) ·min {t, 100} . (A.7)

Heat uptake from ocean:

O (t) = max
{

∆T1 +∆T2t+∆T3t
2, 0
}

. (A.8)

Discount factor:

β (t) = exp

[

−δu +
1− φ

1− γ
log

(

A (t+ 1)

A (t)

)

+ log

(

L (t + 1)

L (t)

)]

. (A.9)

A.2 Alternative Timing of the Target

Here we consider alternatives for the timing of the target. One alternative requires that the

temperature limit holds only in the steady state. However, in the DICE the backstop cost

Ψ (t) eventually decreases to the point where zero emissions becomes optimal. Thus, under

the optimal solution, the climate eventually returns back to prehistoric temperature levels.

Therefore, a steady state temperature limit of 2°C is not binding and the unconstrained

solution results.30

A second alternative is, at time t, to restrict the probability of exceeding the target in

all future periods:

Pr (ANY {Tt+1 ≥ T ∗, Tt+2 ≥ T ∗, . . .}) ≤ ψ ∀ t = 1, . . . . (A.10)

In contrast (3.26) restricts the probability of exceeding the target in t + 2, but not until

30Intuitively, a steady state constraint is non-binding more generally. Since the transversality condition
only requires Tt remain bounded, the temperature converges to the unconstrained solution, with a plan to
satisfy the constraint at t = ∞, which never arrives.

31



t + 1, and so on. Of course, the planner given (3.26) anticipates future constraints and

optimally increases abatement today in response to future constraints, because smoothing

abatement is optimal. Condition (A.10) is at least as stringent, because the planner must

address anticipated future temperature changes earlier.

A natural question is how much more strict (A.10) is relative to (3.26). Condition (A.10)

holds if and only if:

Pr (ALL {Tt+1 < T ∗, Tt+2 < T ∗, . . .}) ≥ 1− ψ, (A.11)

Pr (Tt+1 < T ∗)Pr (ALL {Tt+2 < T ∗, Tt+3 < T ∗, . . .} |Tt+1 < T ∗) ≥ 1− ψ, (A.12)

(1− Pr (Tt+1 ≥ T ∗))Pr (ALL {Tt+2 < T ∗, Tt+3 < T ∗, . . .} |Tt+1 < T ∗) ≥ 1− ψ, (A.13)

Pr (Tt+1 ≥ T ∗) ≤
A (s)− (1− ψ)

A (s)
(A.14)

A (s) ≡ Pr (Tt+2 < T ∗ AND Tt+3 < T ∗ . . . |Tt+1 < T ∗) . (A.15)

Thus, if the economy is at state s, constraints (3.26) and (A.10) are equivalent if:

ω =
A (s)− (1− ψ)

A (s)
(A.16)

So constraint (3.26) is equivalent at state s to a version of (A.10) with a (weaker) value of

ψ > ω. Note that the comparison is not exact because the value of ψ which equates the

constraints varies over the state space.

Unfortunately, (A.10) is computationally infeasible. Nonetheless, equation (A.16) implies

that, as ω → 1, ψ → ω. Further, the difference widens as ω decreases. Thus one can get a

rough idea about constraint (A.10) with probability ψ by looking at the results for smaller

values of ω. While no policy discussion exists regarding (A.10) versus (3.26), simulations

indicate that constraint (A.10) at the calibrated value of ω = 0.33 will likely imply far more

abatement than is indicated in most policy discussions, favoring our choice of (3.26) over

(A.10).

A.3 Presence of the Constraint in the Value Function Derivatives

The envelope theorem implies that:

Vs (st) = uc (c (st)) cs (st)− θtPCs (st, T
∗, ω) + β (t) E [Vs (G (st))Gs (st)] . (A.17)

Here subscripts on functions denote derivatives, st+1 = G (st) is the law of motion for the

state variables (given by 3.19 - 3.25), and decision variables are evaluated at the optimum.
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Note that (A.17) also implies:

Vs (st+1) =uc (c (st+1)) cs (st+1)− θt+1PCs (st+1, T
∗, ω)+

β (t + 1)E [Vs (G (st+1))Gs (st+1)] . (A.18)

Substituting (A.18) into (A.17) implies:

Vs (st) =uc (c (st)) cs (st)− θtPCs (st, T
∗, ω) + β (t) E [uc (c (st+1)) cs (st+1)Gs (st)]

− β (t) E [θt+1PCs (st+1, T
∗, ω)Gs (st)]

+ β (t) β (t + 1)E [Vs (G (st+1))Gs (st+1)Gs (st)] . (A.19)

Thus, the derivative of the constraint the planner faces in period t+1 is part of the derivative

of the value function in period t. Continuing to iterate forward implies that all future

constraints are present in the derivative of the value function at time t. Therefore, the

planner considers the impact of today’s decisions on future constraints.

Equation (A.19) holds for the derivative with respect to each of the state variables, but

is most useful when thinking about the envelope equation for temperature. Since PC is

increasing in temperature, if the constraint binds (θt > 0), the constraint reduces (makes

more negative) the marginal value of temperature. In turn, the first order condition implies

that reducing the marginal value of temperature increases optimal abatement today.

A.4 Derivation of Equation (3.27)

Rewriting the left hand side of (3.26) for i = 1 gives:

Pr (Tt+1 ≥ T ∗) = Pr
(

β2Ft+1 + β3 (O − T ) (t) + H̃t+1 ≥ T ∗

)

, (A.20)

= Pr
(

H̃t+1 ≥ T ∗ − β2Ft+1 − β3 (O − T ) (t)
)

, (A.21)

= 1− NCDF





T ∗ − β2Ft+1 − β3 (O − T ) (t)− µtTt
√

T 2
t

ηt
+ 1

ρ



 . (A.22)

Here NCDF is the cumulative distribution function of the standard normal distribution. Let:

Pt+1 ≡ β2Ft+1 + β3 (O − T ) (t) + µtTt (A.23)

be the expected (predicted) value of Tt+1, then using equation (3.13):

Pr (Tt+1 ≥ T ∗) = 1−NCDF

[

T ∗ − Pt+1

σH,t

]

. (A.24)
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Constraint (3.26) is therefore equivalent to:

NCDF

[

T ∗ − Pt+1

σH,t

]

≥ 1− ω, (A.25)

T ∗ − Pt+1

σH,t

≥ NCDF−1 [1− ω] , (A.26)

Ft+1 ≤
1

β2

(

T ∗ − β3 (O − T ) (t)− µtTt − σH,t · NCDF−1 [1− ω]
)

. (A.27)

Equations (3.20)-(3.22) then imply (A.27) reduces to:

xt ≥1 +
MB

σ (t)L (t)A (t)
1

1−γ kγt

(

1 + (1− δm (t)) (mt − 1) −

exp

{

log (2)

Ωβ2

[

T ∗ − β3 (O − T ) (t)− µtTt − σH,t · NCDF−1 [1− ω]

]})

, (A.28)

xt ≥ PC (st, T
∗, ω) . (A.29)

Here PC is the right hand side of (A.28).

We now calculate the highest possible probability for which Tt+1 ≥ T ∗, which occurs with

a zero abatement rate. In this case, we have from (3.21):

Emax
t = σ (t)A (t)

1

1−γ L (t) kγt +B (t) , (A.30)

mmax
t+1 − 1 = (1− δm (t)) (mt − 1) +

Emax
t

MB

, (A.31)

Fmax
t+1 = Ω log2

(

mmax
t+1

)

+ EF (t) . (A.32)

Next, from (3.19):

Tmax
t+1 = H̃t+1 + β2F

max
t+1 + β3 (O − T ) (t) , (A.33)

We can then calculate ωmax as:

ωmax
t+1 = Pr

(

Tmax
t+1 ≥ T ∗

)

, (A.34)

ωmax
t+1 = Pr

{

H̃t+1 ≥ T ∗ − β2F
max
t+1 − β3 (O − T ) (t)

}

, (A.35)

ωmax
t+1 = 1−NCDF

(

T ∗ − Pmax
t+1

σH,t

)

, where (A.36)

Pmax
t+1 ≡ µtTt + β2F

max
t+1 + β3 (O − T ) (t) . (A.37)

Since the difference between the target and the expected temperature in period t+ 1 under
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maximum emissions is not infinite, we have immediately from (A.36) that ωmax < 1.

Analogously, the minimum probability of exceeding the constraint occurs when the abate-

ment rate is one.

Emin
t = B (t) , (A.38)

mmin
t+1 − 1 = (1− δm (t)) (mt − 1) +

Emin
t

MB

, (A.39)

Fmin
t+1 = Ω log2

(

mmin
t+1

)

+ EF (t) , (A.40)

Tmin
t+1 = H̃t+1 + β2F

min
t+1 + β3 (O − T ) (t) , (A.41)

ωmin
t+1 = 1− NCDF

(

T ∗ − Pmin
t+1

σH,t

)

, where (A.42)

Pmin
t+1 ≡ µtTt + β2F

min
t+1 + β3 (O − T ) (t) . (A.43)

A.5 Tables
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Parameter Description Value
L0 Initial population 6514
L̄ Steady state population 8600
gL decline rate in population growth 0.035
A0 Initial TFP 0.0058
gA0 Initial TFP growth rate 0.0131
δA Decline rate in TFP growth rate 0.001
γ Capital share 0.3
δk Depreciation rate of capital 0.1
φ Coefficient of risk aversion 2
δu Pure rate of time preference 0.015
gΨ Backstop cost growth rate -0.005
a0 Initial backstop cost 1.17
a1 Backstop cost parameter 2
a2 Cost convexity 2
b1 Damage function parameter 0.00284
b2 Damage function convexity 2
σ0 Initial emissions intensity 0.1342
gσ,0 Initial growth rate in σ -0.0073
δσ Decline rate in emissions intensity growth 0.003
B0 Initial exogenous emissions 1.1
δB decay rate in exogenous emissions 0.0105
MB Pre-industrial GHG stock (gigatons) 590
δ∗m decay rate in GHG decay rate 0.0083
δ̄m steady state GHG decay rate 0.01
δm,0 initial decay rate 0.014
EF0 Initial exogenous forcing -0.06
EF100 Exogenous forcing at t = 100 0.3
Ω Forcing coefficient 3.8
α Ocean heat uptake 0.2837−1

ξ Heat transfer coefficient from the ocean 0.07
∆T1 Ocean Temperature Parameter 0.7
∆T2 Ocean Temperature Parameter 0.02
∆T3 Ocean Temperature Parameter -0.00007
k0 Initial capital per TFP adjusted person 3.6261
T0 Current air warming above pre-industrial 0.76
m0 Current GHG stock, relative to pre-industrial 1.371
µ0 Mean of climate feedback prior distribution 0.65
η0 Precision of climate feedback prior distribution 0.13−2

ρ Precision of weather shock 0.11−2

Table 1: Description and values of model parameters.
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Year Auto-

2005 2050 2075 correlation

0.2 0 25.3 34.8 0.67

0.25 0 30.4 37.3 0.67

0.3 0 32.6 41.4 0.66

0.5 0 35.5 50.6 0.67

ω 0.75 0 49.5 62.7 0.70

0.85 0 51.8 69.1 0.73

0.9 0 52.7 71.0 0.74

0.95 0 53.8 72.8 0.76

0.975 0 54.9 74.5 0.77

1 0 72.1 93.6 0.88

Table 2: Columns 2-4: percent simulations for which Tt > T ∗, 10,000 simulations, each with
a draw of the feedback parameter from the prior distribution and a weather shock draw for
each period in the simulation. Let qit = 1 if and only if Tit > T ∗ for time t and simulation
i. Last column: correlation between qit and qi,t−1.

Total No weather shocks

ω Loss (%) Loss (%) Difference (%)

0.20 5.20 4.86 6.49

0.25 4.99 4.57 8.29

0.30 4.82 4.42 8.16

(baseline case) 0.33 4.73 4.34 8.23

0.50 4.33 3.95 8.84

0.75 3.69 3.39 8.12

0.85 3.39 3.07 9.47

0.90 3.23 2.92 9.73

0.95 3.02 2.73 9.49

0.97 2.85 2.60 8.78

1.00 0 0 NA

Certainty

0 2.84

Table 3: Decomposition of the welfare loss, mean of 10,000 simulations, each with a draw
of the feedback parameter from the prior distribution and a weather shock draw for each
period in the simulation. The second and third columns report 1 − V (s0;ω) /V (s0; 1). In
the third column, only the evolution of the mean and variance of the prior are affected by
the weather shocks. That is, s′ = [k′, m′, T ′ (ν = 0) , t′, µ′ (ν) , η′ (ν)].
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A.6 Solution

A.6.1 Solution Outline

We solve the model by forming a grid of values for the state space, and then assume v

takes the form of a cubic spline with continuous first and second derivatives. The model can

then be solved by choosing an initial spline, optimizing at each grid point, and then using

the solution to update the parameters of the spline. Kelly and Tan (2015) give a detailed

explanation of this solution method. The solution method requires specifying a maximum

climate sensitivity, which is discussed in Section A.6.2. The constraint, x ≥ PC (s), is

linear in the controls and is therefore straightforward to add to the optimization routine in

the solution method (e.g. Matlab’s optimization routines automatically generate the Kuhn-

Tucker conditions). Potential points of non-differentiability in the value function caused by

the constraint are discussed in Section A.6.3.

Table 4 gives the grid points used in the solution algorithm. Grid points are selected by

a trial and error procedure starting with a relatively sparse grid and then adding grid points

where the value function has significant curvature. Other important considerations include

choosing grid points near the initial condition and including a zero-variance grid point for

analysis of the certainty case.

State Grid Points

k 0.53, 0.75, 1.18, 1.81, 2.62, 3.59, 4.69, 5.87,

7.12, 8.38, 9.63, 10.81, 12.30, 13.69, 14.97

T 0.07, 0.59, 1.48, 2.52, 3.41, 3.93, 6.00, 7.00

m 0.97, 1.29, 1.84, 2.48, 3.03, 3.35

t̂ 0.01, 0.05, 0.15, 0.27, 0.45, 0.55, 0.65, 0.75,

0.85, 0.90, 0.95, 0.98, 0.99

µ 0.40, 0.55, 0.65, 0.75, 0.80, 0.96
1
η

0, 0.0050, 0.0100, 0.0169

Total grid points/spline basis functions: 224,640

Table 4: Grid points. k: normalized capital stock per productivity adjusted person, in thou-
sands of dollars per productivity adjusted person. T : temperature in ◦C above preindustrial,
m: greenhouse gas concentrations as a fraction of preindustrial levels. t̂: equal to exp (0.02t),
where t is years after 2005. µ: mean of the prior distribution of the feedback parameter (unit
free). 1/η: variance of the prior distribution of the feedback parameter (unit free).

Once the model converges, we obtain the optimal decision rules, x (s) and k′ (s). We then

simulate the model using the decision rules and the transition equations (3.18)-(3.25). The

algorithm is:
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1. Draw a true value of the climate feedback parameter β∗

1 from N [µ0,
1
η0
].

2. Given s0 compute x(s0) = x0.

3. Given x0, s0, β
∗

1 , and a randomly drawn weather shock ν0, compute s1 from transition

equations.

4. Repeat steps (2)-(3) for np years.

5. Repeat steps (1)-(4) ns times with different draws for ν and β1.

6. Compute means over all simulations to get the expected value of each variable in each

time period.

The above algorithm gives the expected value of each variable conditional on the prior

information for β1. In some cases, we fix a value for β1 and vary only ν across simulations.

In this case, we obtain the expected value of each variable conditional on β1.

A.6.2 Maximum climate sensitivity

The solution algorithm requires a maximum value of the climate sensitivity. As discussed in

Kelly and Tan (2015) appendix B.2, if climate sensitivity is unbounded, then the temperature

can always exceed the largest temperature grid point. Interpolation of the value function

outside the grid is likely to be inaccurate. We therefore set the largest value of the climate

sensitivity equal to 15°C. Values greater than 15°C are collected into a mass point at 15°C.31

The results, however, are not sensitive to the maximum allowable climate sensitivity.

First, the simulations aggregate probability mass greater than the maximum climate sen-

sitivity into a mass point at the maximum climate sensitivity. Therefore, reducing the

maximum ∆T2× essentially makes a small range of low probability events less harmful.

Further, unconstrained abatement is increasing in the climate sensitivity. Therefore,

beyond a certain critical climate sensitivity, the 2°C target is almost certainly exceeded, so

constrained emissions quickly fall to zero and remain at zero for a relatively long period of

time. But unconstrained emissions also drop to near zero. The peak temperature increases

for both the constrained and unconstrained models. Therefore, beyond a certain climate

sensitivity, the only welfare difference between high and very high values of the climate

sensitivity is in the far future, where the constrained model still has zero emissions in an

31The literature provides some expert opinion the upper bound of the climate sensitivity. Weitzman (2009)
aggregates the densities of 22 studies and estimates the probability that ∆T2× > 10°C is approximately 1%.
However, he also suggests that because of feedback uncertainty, the probability that ∆T2× > 20 is 1%. Roe
and Baker (2007) plot the densities of several studies, none of which have any mass above 10°C. Similarly,
Intergovernmental Panel on Climate Change (2007) normalize a number of papers so that the probability
that ∆T2× > 10° is zero. Our calibration matches the fitted distribution of Roe and Baker (2007), for which
the probability of ∆T2× > 15 is 1.8%. Therefore, a mass point exists at ∆T2× = 15 of 1.8%.
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attempt to return to 2°, while the unconstrained model remains at an optimal temperature

which is increasing in the climate sensitivity, with more emissions.

For example, if all weather shocks are zero and emissions are zero, the target is exceeded

for any ∆T2× ≥ 5.36. Therefore, the distribution can be truncated anywhere between 8-15°C

with little change in the near term emissions path. Differences in the far future exist, but

the low probability of such events and discounting combine to limit the effect on welfare.

Table 5 shows how the welfare loss changes with the maximum value of ∆T2×. The

maximum difference in the table is about 12%. Note that welfare losses are lower as a

percentage of the unconstrained welfare when the maximum ∆T2× is higher. This occurs

because both constrained and unconstrained welfare fall as the maximum ∆T2× increases, but

the unconstrained welfare falls more. Total welfare (not as a percentage of unconstrained)

is monotonically decreasing as a function of the maximum ∆T2× for all cases.

Maximum ∆T2× (°C)

8 10 15

0.20 5.54 5.35 5.20

0.25 5.32 5.14 4.99

0.30 5.16 4.97 4.82

0.50 4.67 4.49 4.33

ω 0.75 4.04 3.85 3.69

0.85 3.73 3.55 3.39

0.90 3.58 3.39 3.23

0.95 3.37 3.19 3.02

0.98 3.19 3.01 2.85

1 0 0 0

Minimum

Feasible ω
0.152 0.152 0.152

Table 5: Welfare loss as a function of the maximum ∆T2×, mean of 10,000 simulations,
each with a draw of the feedback parameter from the prior distribution and a weather shock
draw for each period in the simulation. The baseline maximum is 15°C above preindustrial
(column 3). The last row gives the probability that the temperature exceeds the target at
some time in the future with zero emissions (the peak in Figure 1).

A.6.3 Non-differentiability of the value function

The presence of the min operator in the constraint implies the value function is continuous,

but not differentiable (kinked), along a particular hyperplane. Therefore, error will exist at

each kink point as the spline has continuous first and second derivatives. Here we examine

the error in the kink point.
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The first step is to calculate the kink hyperplane. Below is a heuristic argument, for a

more formal treatment, see Rincón-Zapatero and Santos (2009). Problem (4.3) has poten-

tially three regions: (1) the constraint does not bind (θ = 0), (2) the constraint binds and

PC (s) < 1, and (3) the constraint binds with PC (s) ≥ 1.

If the value function is differentiable at s0, the envelope theorem implies the derivative

is:

Vs(s) = uc

[

c (x∗ (s0) , s0)

]

cs (x
∗ (s0) , s0)− θ (s0)

∂

∂s
min {PC (s0) , 1}+

β (t) E

[

Vs [s
′ (s0, x

∗ (s0))] s
′

s (s0, x
∗ (s0))

]

. (A.44)

In the non-binding region (1), θ = 0 and so the value function is differentiable via standard

arguments. In region (2),

θ (s0)
∂

∂s
min {PC (s0) , 1} = θ (s0)PCs (s0) . (A.45)

Therefore, one can again apply standard arguments since the constraint is continuously

differentiable in this region. At any s0 such that the constraint just binds, θ = 0 and

x∗ (s0) = PC (s0). Further, V is differentiable at s0 if the left and right derivatives are

equal. Since from the binding region θ → 0 as s → s0 and from the non-binding region

θ = 0, the left and right derivatives are equal.

Next, in the binding region where PC (s0) > 1:

θ (s0)
∂

∂s
min {PC (s0) , 1} = 0. (A.46)

Therefore, the value function is differentiable in region (3). Finally, consider any point s0

such that PC (s0) = 1 and the constraint binds. In this case, the left and right derivatives

differ. Let V L
s denote the derivative in the region where PC < 1, then:

V L
s (s) = uc

[

c (x∗ (s) , s)

]

cs (x
∗ (s) , s)− θ (s)PCs (s) +

β (t) E

[

Vs [s
′ (s, x∗ (s))] s′s (s, x

∗ (s))

]

. (A.47)

The limit as s→ s0 from the left is thus:

V L
s (s0) = uc (c (1, s0)) cs (1, s0)− θ (s0)PCs (s0) + β (t) E

[

Vs [s
′ (s0, 1)] s

′

s (s0)

]

. (A.48)
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Let V R
s denote the derivative where PC > 1. As s→ s0 from the right:

V R
s (s0) = uc (c (1, s0)) cs (1, s0) + β (t) E

[

Vs [s
′ (s0, 1)] s

′

s (s0)

]

. (A.49)

Hence any kink point s0 in the value function is on a hyperplane which satisfies PC (s0) = 1.

Further, the left derivative is smaller than the right derivative. For states such that the

derivative of V is negative (increases in T , m, and µ reduces lifetime utility), then the left

slope is steeper than the right slope.

Figure 9 graphs a sample kink point.32 The value function switches from concave to

almost linear at the kink point, and the right slope is flatter than the left slope at the kink

point, as expected. The green line is the (differentiable) spline approximation, which smooths

the kink point. The magenta line is composed of two spline approximations, one on either

side of the kink point. Hence, the magenta line need not be differentiable at the kink point.

From the graph, the error associated with assuming the value function is differentiable is

small.33

T
0 0.5 1 1.5 2 2.5 3 3.5 4

v

8.16

8.18

8.2

8.22

8.24

8.26

8.28

min {PC(T ), 1} < 1 min {PC(T ), 1} = 1

kink point

Value function kink point

Differentiable
Approximation
grid points
kink point
Potentially non-differentiable
Approximation

Figure 9: Sample kink point in the temperature dimension. At state s0 =
[10.810, 2.524, 1.292, 0.146, 0.550, 0.0169], PC (s0) = 1.

32A kink point was chosen which almost exactly equals a grid point. Between the grid points, it is not
possible to separate interpolation error from error associated with using a continuous approximation of a
function with a kink.

33We do not have a proof which bounds the approximation error. Nonetheless, a check of kink points in
many areas of the state space revealed very small errors.
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