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Abstract

We consider a general equilibrium model with a production externality (for example pollu-
tion), in which the regulator does not observe firm productivity shocks. We examine quantity
regulation in which price taking firms purchase permits issued by the regulator and price
regulation in which firms pay a tax per unit of the regulated input. The quantity of permits
issued by the regulator are independent of the productivity shock, since shocks are unob-
served. Price regulation implies use of the regulated input is an increasing function of the
productivity shock because firms take advantage of a good productivity shock by increasing
input use. Thus price regulation generates both higher average production (or lower average
costs) and more variable production (or more variable costs). Therefore, we show that in
general equilibrium the relative advantage of quantity versus price regulation depends not
only on the slopes of marginal benefits and costs, but on general equilibrium effects such
as risk aversion, the degree of substitution between consumption goods, and the correlation
of shocks among the consumption goods. The general equilibrium effects are often more
important that the slopes of the marginal benefits and cost curves. For example, in the
simplest model, a reasonable risk aversion coefficient implies quantity regulation generates

higher welfare regardless of the benefit function.



1 Introduction

What is the optimal way to regulate an externality? When regulators have perfect informa-
tion about the costs and benefits of regulation, economic theory implies both price (eg. tax)
and quantity (eg. permit) regulation can balance marginal costs and benefits and so achieve
the welfare maximizing quantity of the good with external costs or benefits. Yet most (but
not all) regulation applied to firms is quantity based, from sulfur dioxide permits to gov-
ernment sponsored medical research. For many externalities, general equilibrium effects are
likely to be important. For example, sulfur dioxide is a byproduct of electricity production,
which is an input to production of a wide variety of goods. Production spillovers affect not
just input choices of the firm, but also the return on capital and thus consumption/savings
decisions. This paper provides analytic results for the relative advantages of prices versus
quantity regulation in general equilibrium when regulators are uncertain about the firm’s
productivity shock. General equilibrium effects favor quantity regulation in the basic model
for reasonable parameters.

In an important paper, Weitzman (1974) argued that the equivalence of price and quan-
tity regulation does not hold when an information asymmetry exists between the firm and
the regulator over the firm’s costs. Consider an externality of pollution emissions by firms
resulting in lower quality of the environment. Suppose firm emissions are very sensitive
to the tax on emissions, and the marginal cost to firms of reducing emissions is uncertain.
Then a small miscalculation of the appropriate tax rate could result in most firms paying the
tax rather than reducing emissions. The quality of the environment then suffers, reducing
welfare. In this case, quantity regulation is more attractive. Conversely, if firm behavior
is not sensitive to the tax on emissions (for example if few low cost ways exist for the firm
to reduce pollution), then a small error in the quantity of permits issued could impose very
large costs on the firms, resulting in low production. In this case, a tax is more attractive.
Weitzman assumes cost and benefit functions are quadratic in the regulated input and linear
in the uncertainty, and a static, partial equilibrium environment.

Thus, many authors have extended Weitzman’s framework. With regard to the choice of

policy instruments, Roberts and Spence (1976), Weitzman (1978a), McKibbin and Wilcoxen



(1997), and Pizer (2001) consider hybrid polices which combine both price and quantity in-
struments. Laffont (1977) considers also price instruments applied to the consumer. In the
area of uncertainty, Yohe (1978) adds output uncertainty, while Laffont (1977) differentiates
between technological uncertainty and information differences. Hoel and Karp (2001) con-
siders multiplicative uncertainty and Costello and Karp (2001) and Karp and Zhang (2001)
allows for learning to reduce uncertainty about the costs. Stavins (1996) finds that the often
positive correlation of environmental cost and benefit shocks favor quantity regulation for
environmental externalities. Recently, Hoel and Karp (1998), Karp and Zhang (2001), and
Newell and Pizer (1998) derive results similar to Weitzman (again in a quadratic, partial
equilibrium setting) where environmental benefits accrue over time. Koenig (1985) considers
both private and external benefits.

Empirical estimates of slopes of marginal cost and benefits are mixed across externalities.
Koenig (1984) and Androkovich and Stollery (1991) find that taxes are generally preferred for
fisheries, while Kolstad (1986) finds in favor of quantity regulation for air pollutants. Watson
and Ridker (1984) allow for nonlinear marginal costs and benefits and obtain mixed results
for air and water pollutants with quantity regulation often preferred early when regulation
less strict, while price regulation did better later under more strict regulation. Hoel and
Karp (1998), Hoel and Karp (2001), Kolstad (1996), Nordhaus (1994), and Pizer (1999)
argue that the flatness of marginal benefits of climate change control favor price regulation.

Pizer (1999) and (2001) provides a computational analysis of price versus quantity regu-
lation in general equilibrium for the case of climate change.! However, we are not aware of
any theoretical paper which examines price and quantity regulation in general equilibrium,
which is the focus of this paper.

An important, but overlooked, aspect of price regulation is how shocks to marginal costs
generate stochastic variation in use of the regulated input and production, and therefore, risk
to the consumer. Such risk is present only in general equilibrium, where the consumer side
of the economy is modeled explicitly. Suppose a production externality in which use of an

input (hereafter the ‘regulated input’) has external costs or benefits. Assume the regulator

1 As we will note below, the Pizer model differs in most other respects from the model here, which makes
the results difficult to compare.



sets either a quantity of permits to use the regulated input or a tax on the regulated input,
prior to the firm productivity shock. Because the regulator does not know the realization
of the productivity shock, the quantity of permits is independent of the shock. The permit
price, however, depends on the stochastic productivity shock (when productivity is high,
demand for permits is high). With taxes, the randomness is reversed: prices are fixed by
the regulator, but the quantity of the regulated input is stochastic. We show variation in
the regulated input caused by price regulation causes variation in production, leading to
consumption risk. Perhaps surprisingly, variation in prices under quantity regulation does
not generate aggregate consumption risk in general equilibrium. Changes in prices move
wealth around the economy, but do not affect the wealth of the economy as a whole. Hence
in general equilibrium, the increase in risk associated with tax regulation lowers expected
welfare versus quantity regulation. Further, assuming separable utility, quantity regulation
has no risk to external benefits derived from variation in the quantity of the regulated input,
only risk derived from variation in the benefit function. The tax system adds risk to external
benefits since the quantity of the regulated input is stochastic. Price regulation allows more
use of the regulated input when productivity of the regulated input is high. Hence an income
effect exists which favors tax regulation.?

For example, consider a coal fired electric plant which must either pay a tax on sulfur
emissions or must buy a permit to emit sulfur. Suppose a positive productivity shock allows
the firm to produce more electricity with the same inputs. Permits are in fixed supply, so
no additional sulfur is emitted with quantity regulation, but production of electricity rises
because the firm is more productive with the same inputs. Tax regulation implies firms
emit more sulfur in order to take advantage of the productivity shock. Hence electricity
production increases with both types of regulation, but electricity production rises more
with tax regulation. Similarly, during a low productivity shock, electricity production falls
more under tax regulation. On average, therefore, more electricity is produced with tax
regulation, but electricity production is more variable. If households are sufficiently risk

averse, desire for smooth consumption under quantity regulation outweighs higher average

2The last two considerations are equivalent to issues noted by Weitzman (1974). The first factor is what
is new and, we show, important.



production with tax regulation, irrespective of environmental benefits.

One would expect, then, that the risk associated with tax regulation tilts the results
in favor of quantity regulation. We provide sufficient conditions for which quantity regula-
tion generates higher welfare than price regulation. The sufficient conditions are generally
reasonable: if the coefficient of relative risk aversion is greater than or equal to one half,
quantity regulation results in higher welfare regardless of the benefit function. The previous
literature emerges as a special case when we assume (as in the previous literature) linear
uncertainty and risk neutrality.

Our proof technique is new. Most of the literature forms quadratic approximations of
the cost and benefit functions, then derives the optimal linear firm decisions, and finally
compares the quadratic indirect welfare functions. Instead, we approximate the indirect
welfare function (the indirect utility). Because we approximate the solution rather than
the problem, we obtain what is usually in practice a more accurate approximation (for
example, the approximation is exact given CRR utility and Cobb-Douglas production). A
disadvantage of our technique is that we obtain only sufficient conditions for which quantity
and price regulation provide higher welfare.

Our specification of the shock as a productivity shock implies price regulation is pro-
cyclical, amplifying the effects of shocks on production. We also relax this assumption and
consider arbitrary shocks. For the case where a shock simultaneously increases productivity
but decreases the productivity of the regulated input, price regulation implies that firms
decrease use of the regulated input when productivity is high. Under these conditions,
the risk argument favors price regulation. We also consider multiple consumption goods.
Assuming the aggregate productivity shock and the productivity shock to the production of
the good with the externality are correlated, our results go through essentially unchanged.
Independent shocks, however, are more favorable to price regulation. Regardless, general
equilibrium effects play a central role.

We also provide an example for which we compute the exact relative advantage as a
function of the risk aversion coefficient. In the example, quantity regulation dominates price
regulation for risk aversion coefficients greater than or equal to one half. The example also

assumes flat marginal benefits. Hence a partial equilibrium analysis would find in favor of
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price regulation.

The model is sufficiently general for analysis of a variety of production externalities for
which general equilibrium effects are important. For example the model could be applied
to subsidies for research and development versus direct financing of research or interest
rate targeting versus money growth rate targeting in a model where money is an input to

production, etc.

2 Model

The timing within the period is such that the regulator moves first, then the shocks are
realized, and finally households and firms move. Hence, households and firms know the
shock, but the regulator does not. The welfare differences in regulation stem from the
information asymmetry between the regulator and the firm subject to the regulation.

In general, we suppose a negative externality in which price regulation is a tax. Clearly,

the model applies equally well to a positive externality in which price regulation is a subsidy.

2.1 A Motivating Example

Here we show how to map a simple model of a pollution externality into the framework
we are considering. Suppose competitive firms have access to a production technology that
uses capital (k) and technology (Z) to produce consumption goods ZF (k). Firms rent the
capital from households at rental rate 7. Firms may convert n units of output into ¢ = s (n)
pollution control units, scrubbers. We assume ¢ € [0, 1] and that scrubber production is
increasing and concave: s, (n) > 0 and s, (n) < 0. Firm emissions (E) are proportional to

the fraction of production without scrubbers:

E=(1-s(n)ZF (k) (2.1)

We consider two types of regulation on the firm. Price regulation consists of firms paying
a tax 7 set by the regulator per unit of emissions. Because the market price of emissions
is zero, the price is equal to the tax on emissions. Under quantity (permit) regulation, the

regulator issues E permits per firm, which competitive firms purchase on a spot market



at price 7. Alternatively, the regulator could give each household E permits, which the
households sell on the spot market. Given either tax or permit regulation, the firm problem

1s:

max (1 —n) ZF (k) —rk —7(1 —s(n)) ZF (k) (2.2)

n,k

Alternatively, using the definition of emissions:

max (1—5—1 (1— Z]f(k)>>ZF(k)—rk—7-E (2.3)

Our assumption is that incentives to merge and/or spin off firms results in firms with constant
returns to scale production technology. Further, we assume that the production technology
is homogeneous of degree one in exp (z) = ¢ (Z). Let z ~ G,, a symmetric distribution
with mean zero and finite variance o2. Let e”f (k, E) denote the output net of output
converted to scrubbers. It is easy to see that f is strictly concave and strictly increasing
in each input. It is straightforward to generate a cost function s satisfying the concavity
assumptions which yields a Cobb-Douglas production function, for example.®> Thus we have

mapped a pollution externality problem into a production externality in which pollution is

an input to production.

2.2 Firm Behavior

Suppose competitive firms have access to a production technology that uses capital (k),
an input £ with an externality (the regulated input), and technology (z) to produce ¢ =
e f (k, E) consumption goods. We assume f is concave, increasing, C*, satisfies the Inada
conditions, and that f (0, E) = f(k,0) = 0.* Firms rent capital at rental rate r. Assume

without loss of generality that the market price of F in the absence of government regulation

3Yohe (1976) and Yohe (1977) also consider emissions as an input to production, but the analysis is
partial equilibrium. The use of emissions as an input to production is standard (see for example Copeland
and Taylor (2001)).

4Like most of the price and quantity literature (a notable exception is Costello and Karp, 2001), we
assume an interior solution for the technical reason that the proofs use Taylor series expansions to compute
expected welfare. However, John and Pecchenino (1994) and Stokey (1998) point out that for the case of
pollution externalities, if income is low, using the dirtiest possible technology may be optimal.



is zero, but firms pay either a tax 7 per unit of £ or buy government issued permits to use

E on a spot market at price 7. Firms maximize profits:
1= max {e*f(k,E) —rk —TFE} (2.4)
Let subscripts on functions denote derivatives. The first order conditions are:

r= ¢ fi (k, E) (2.5)

T=¢é"f, (ka E) (26)

Given our assumption that f, is continuous and monotonic, a unique inverse exists f, ! (e *7).
We assume that the inverse function has finite mean for all 0 < 7 < oo.

Equation (2.5) determines the rental rate of capital, r. Equation (2.6) implies purchases

Efe(k,E)
f(k,E)

implies 7 is set by the regulator and F is determined from Equation (2.6). Conversely, under

of the regulated input E account for s(k, E) = share of output. Tax regulation
quantity regulation E is set by the regulator and 7 is determined by Equation (2.6). The
regulator does not observe the productivity shock, and hence the policy is set independent,
of z. Hence, under quantity regulation, 7 varies with the productivity shock and E does not,
while in the case of price regulation E varies with the productivity shock while 7 does not.
Note that applying the implicit function theorem to Equation (2.6) implies that, given tax

regulation, F is an increasing function of z.

2.3 Households

Under our framework, input decisions are made at the firm level. Households make a con-
sumption decision which is completely determined from the budget constraint. In the ex-
ample section, we discuss how the results might change if the model was a consumption
externality where the government regulation directly affects household decisions.

The household budget constraint sets capital rental income plus government transfers,



TR, equal to spending on consumption.
c=rk+TR (2.7)

Households have preferences for consumption and receive disutility from FE, represented by

a separable utility function:
U=u(c)-B(y,E) (2.8)

Here B is the damage caused by E (—B is the benefit function or the benefit of regulating
E). We assume y is an iid shock to damages, with symmetric distribution G,. We assume
B is increasing, strictly convex, and twice differentiable.

Notice that the household sector differentiates our model from previous work on prices
versus quantities. In our model, costs associated with producing environmental benefits are
translated into reductions in consumption, for which the household has concave preferences.
In addition, all government revenue eventually ends up as consumption, and is thus accounted
for in utility terms. Another interpretation is that in previous work, the firm bears the entire
marginal cost of producing environmental quality (here in terms of lost consumption), while
in our work the cost is split between the consumer and firm. If we specify u (¢) = ¢, then the
consumer side of the economy vanishes and the problem reduces to the previous literature
with f as the negative of the cost function and B as the negative of the benefit function
(although we do not assume these functions are quadratic).

The household maximizes utility subject to the budget constraint.

max {u(c) — B(y,E)} subject to:

c=rk+TR (2.9)



2.4 Government Behavior

The government returns all revenue as lump sum transfers. Under either system:
TR=71FE (2.10)

Optimal policy may depend on currently available information (e.g. k). Let F denote the
quantity regulation policy. For simplicity, we model the case where the regulator observes
the shocks (ie where no information asymmetry exists) as quantity regulation, F*. The price

regulation policy 7 implies firms choose E (z,7) = f, ' (e %7, k). We assume the regulator

e
chooses a policy and then households and firms choose allocations. Because the regulator
needs to predict optimal household and firm behavior in order to set the policy, household
and firm behavior are first described by rules which depend on the policy.

Three classes of regulation exist. If no information asymmetry exists, the regulator
chooses from a class of functions E* € £* = {E (k,z,y) : §Ri — §R+}. When the regulator
does not observe the productivity shock (ie when the information asymmetry is present),
then quantity regulation implies the regulator chooses from a class of functions: Eecé=

{E (k) : R, — R, }. Similarly, tax regulation given asymmetric information implies the

regulator chooses from a class:
Ecé= {E cE=f1 (6_Z’7’,/€) ,T7=1(k): Ry — |0, 1]} (2.11)

The difference between price and quantity regulation is described by the class of functions
the regulator may choose from. If the regulator observes the shocks (if no informational
asymmetries exist), the class of functions available include functions which depend on y and
z. If the regulator uses quantity regulation and the regulator does not observe the shocks,
the class of functions is independent of y and z. If the regulator selects a tax and does
not observe the shocks, the resulting class of emissions functions is independent of y and

increasing in z.



3 Equilibrium

As is common in the literature, we require households to act optimally for all regulation
functions in the class. The requirement is analogous to subgame perfection and rules out
some of the equilibria (for example, households could consume zero for all policies except one,
and act optimally given the remaining policy. The regulator would then optimally choose
the one remaining policy).

Equilibrium in our model varies with the type of regulation. Quantity regulation implies
an equilibrium price of permits that is consistent with optimal firm behavior. Conversely,
tax regulation equilibrium is an E that is consistent with optimal firm behavior. Regardless
of the type of regulation, the competitive equilibrium is characterized by the same set of

equations.

Definition 1 A competitive equilibrium C E* (CAE, CE, respectively) given shocks y and z,
policy E* € £* (E € c‘f, E ¢ 5~) , and capital k 1s a set of a price r, transfer TR, allocation c,
and price T (price T, allocation E) which satisfy: the household budget constraint (2.7), the
government budget constraint (2.10), firm mazimization (Equations (2.5) and (2.6)), and
consumer mazimization (2.9) for all E* € £ (E €&, E€é).

The definition of competitive equilibrium implies the existence of planning problems

which are consistent with competitive equilibrium.

PROPOSITION 1 Suppose that, given y, z and k:

c=ef(k,F) (3.1)

r = e f, (k, E) (3.2)

Then prices and policies r and T R exist which, together with the allocations that satisfy (3.1)
and (8.2), constitute competitive equilibria CE*, C’AE, and CE. Conversely, the allocations
given by competitive equilibria CE*, CE, or CE satisfy (3.1) and (3.2).

Proof: See Appendix.
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4 Optimal Policy

Proposition 1 indicates that for a competitive equilibrium, we need only satisfy the resource
constraint. Then a planner may either choose E and let 7 be determined from (3.2), or

substitute out for F using (3.2) and choose 7. Therefore the planning problem is:
I%aXE [u(e*f(k,E)) — B(y, F)|] subject to: 7 =¢€*f,(k,E) (4.1)

In what follows, we suppress the dependence of the production and value functions on k&

where no confusion is possible. Welfare v under each system is:

U= mng [u (ezf (E)) - B (y, E)] (4.2)
0 = maxE [u (ezf (E’ (Z,T))) - B (y, E (Z,T))] (4.3)

The expected welfare gain of quantity regulation over price regulation is then:
A=0—-17 (4.4)

The next result is a sufficient condition for which quantity regulation results in higher
welfare. Because shocks are unobserved, quantity regulation is a constant function E. Tax
regulation implies F is an increasing function of the productivity shock, E (z, 7). Optimality
implies that the optimal constant function is at least as good as the mean of the optimal tax
policy, E = E [E (2, 7')] If households are sufficiently risk averse, the mean of the optimal
tax policy is preferred to tax regulation which varies positively over the productivity shock.

Let R* denote the relative risk aversion at the mean of the optimal tax policy:

Re(g) = —ee® iy (E) (4.5)

e (€)

Similarly, let R/ denote the curvature of the production function:

R/ (E) = ]j:f(E()E) (4.6)
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Finally, let 02 - and 0% denote the covariance between E (2,7) and z and the variance of

E (z,7), respectively. Then:
PROPOSITION 2 Let:

B, y,E)E Uf;
uc (é) f. (B 0%

R (E)+ R"(¢)s (E) +

Then A > 0.

Proof: let v (y, z, E) denote the welfare given shocks y and z and policy E. Optimality

implies:

E [ (. E)] >E [ (1.2 E)] (18)

Hence it is sufficient to show that the mean of the optimal tax policy yields higher welfare

than the actual tax policy:

A:E[v(y,z,E)]—Elv(y,z,E) >0=A>0 (4.9)
A second order approximation yields:
E :U (y, 2, E) Ry (y, O,E) + %gvzz (y, 0, E’) (4.10)

E—“(y’Z’E)- ~ U(y,O,E)Jr%zvzz(y,O,E)Jr

%O’%’Uee (y’ 07 E) + Ji]_?jvze (y; O; E) (411)

A= % (—0‘%’06@ (y, 0, E) — 2cov (z, E) Vse (y, 0, E)) (4.12)

Hence it is sufficient to show:

—Vee (y, 0, E) — fo Ve (y, 0, E) >0 (4.13)
E
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Direct calculation of the derivatives implies:

vee (4,0, F) = uc (£ (B)) fue (E) +uee (f (E)) £ (B)” — Bc (4, B) (4.14)

v (0,0, E) = fo (B) ue (7 (E)) + vec (1 (£)) fe (E)  (E) (415)

Substituting (4.14) and (4.15) into (4.13) results in:

= ue( (F)) fee (B) = wee (£ (B)) £ (B) "+ Bec (4 F) -

2

2 () e 5 (B) e (1 (£)) 1 () | > 0 (1.16)
e (B) | gy (E) ¢ D W F) %8y 417
RORESNIONAGITE l o) 4

Substituting in for R and s and simplifying then yields the desired result. O

Equation (4.7) shows how risk aversion determines the relative advantage of prices versus
quantities. The first two terms of the left hand side of Equation (4.7) is simply the relative
risk aversion, but in terms of the input rather than consumption. As the utility and/or
production function becomes more concave, households (at the time government policy is
set) desire more smooth input usage, so the left hand side rises and quantity regulation
becomes more attractive, since quantity regulation implies E is constant.

The third term represents the convexity of damages. Because damages are convex, house-
holds prefer constant damages versus damages which vary with the productivity shock.
Hence, the more convex the damages, the more attractive quantity regulation is.

On the right hand side, the covariance between E (z, 7) and z is positive with price regula-
tion as firms take advantage of good productivity shocks by using more inputs. If preferences
are such that the income effect dominates the risk effect (R* < 1), then households prefer
regulation that allows firms to take advantage of the good productivity shock and increase
production even though consumption risk increases. Then, as the covariance rises, inputs

become more productive with a positive productivity shock, so price regulation is more at-
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tractive, because price regulation allows firms to increase use of the more productive input
E. However, if the risk effect dominates (R* > 1), households prefer regulation that forces
firms to smooth input use and thus production to reduce consumption risk. Thus households
prefer quantity regulation.

Part of Equation (4.7) reflects the convexity of damages, which is often difficult to mea-
sure. However, even in the worst case (for quantity regulation) of linear damages, quantity

regulation still dominates under reasonable assumptions, as seen by the following corollary.

COROLLARY 3 Let either:

RS (E)

L 10 2 Eymm ey

or

2. u(c) =c and fe, (E) + B, (y,E) > 0.

Then A > 0.

Proof See Appendix.

Corollary 3 indicates the coefficient of relative risk aversion does not have to be very high
for quantity regulation to be optimal: a coefficient of relative risk aversion greater than one
half is sufficient, and most studies find the coefficient of relative risk aversion between one
and three.> The concavity of the production function is generally straightforward to check.
For example, suppose a Cobb-Douglas production function f (k,E) = k'~7E”. Then the
first condition requires simply R* (¢) > ;:—z Finally, any convexity in the damage function
further tilts the result toward quantity regulation.

Our prediction that quantities dominate for reasonable risk aversion coefficients is at odds
with Pizer (1999), which finds for price regulation in a computational general equilibrium
model of climate change. However, it is important to note that the Pizer model differs from

ours in most other respects. The Pizer model does not exhibit constant returns to scale, is

SHurd (1989) estimates a value of 1.12. Mehra and Prescott (1980) also conclude that a reasonable
number is not too far from one for models that do not explicitly account for leisure. See Kocherlakota (1996)
for a thorough discussion.
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dynamic, has a non-separable utility function, and has several shocks, most of which are not
factor neutral productivity shocks.®

Prices wash out of the equilibrium describing consumer welfare under each system. There-
fore, the difference between quantity and price regulation is essentially that £ are an increas-
ing function of the productivity shock under tax regulation and independent of the produc-
tivity shock under quantity regulation. The relative advantage therefore can be summarized
by asking if the full information FE' is sufficiently increasing in the productivity shock. If
E* is constant, decreasing, or slightly increasing in the productivity shock then quantity
regulation is preferred. If, however, E* is sufficiently increasing in the productivity shock,
then price regulation comes closer to achieving the full information welfare. In turn, whether
or not E* is increasing in the productivity shock depends on risk aversion. Suppose first
that households are very risk averse. With a positive productivity shock, the return to £ in-
creases. However, increasing F results in unusually high consumption. Therefore, the social
planner prefers to lower E' with a positive productivity shock, reducing damages. Consump-
tion remains smooth because the production increase from the productivity shock more than
offsets the loss of production due to reduced input usage. If households are not very risk
averse, then the planner takes advantage of the higher return given a positive productivity
shock and increases input usage. Figure 1 illustrates the idea.

The second part of Corollary 3 compares our results with Weitzman (1974). The essen-
tial difference is that in general equilibrium, we model the consumer side of the economy.
Corollary 3 makes a linear approximation of the variance and covariance in the correla-
tion coefficient, a key assumption of Weitzman and the subsequent literature. If u (¢) = ¢,
then the consumer side of the economy vanishes and a sufficient condition for quantities to

dominate prices is:

Jee + Bee > 0 (4.18)

Equation (4.18) is the negative of Equation (20) in Weitzman (1974). Thus moving from

60Qur model is less complicated, which allows us to get analytical results. But mainly the differences arise
since Pizer extends the climate change literature, while our model extends the price and quantity literature.
These two literatures generally differ in their assumptions.
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Figure 1: Price versus quantity regulation, varying risk aversion.
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partial equilibrium to general equilibrium adds two terms both of which favor quantity
regulation.

A converse of Proposition 2 is available. We can choose a tax policy 7 which results in
average input usage equal to E’, the optimal quantity regulation. Optimality implies the
optimal tax policy yields at least the expected welfare of such a policy. Hence if risk aversion
is sufficiently low, the tax policy 7 results in higher expected welfare than the policy E. Let
c=f (E), then:

PROPOSITION 4 Let:

- .
R/ (E)+R"(¢)s (E) + Bee (. E) < 22’2“2’*) [1 — R (e)] E (4.19)

Then A < 0.

Proof: See Appendix.

5 Generalized Shocks

In the next two sections, we examine two extensions to check for robustness of the results and

provide insights into the relationship between general equilibrium and price versus quantity
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regulation. The two most important assumptions for our results are that the shock is factor
neutral and that only one consumption good exists. Because productivity shocks are factor
neutral, price regulation amplifies the ‘business cycle,” in that an increase in the productivity
of inputs directly increases production and also gives an incentive to use additional inputs,
which further increases production. In this section, we generalize the model to consider
arbitrary production shocks.

Suppose we modify the production technology to f (2, E). We adopt the convention that
z is a positive shock, ie that f, (z, E) > 0. We assume that f is strictly concave and C®
in E and z, and satisfies the Inada conditions in E. We also assume again that the inverse
function f! (2, 7) has finite mean for all 0 < 7 < co.

The firm first order condition is:
7= f.(2E) (5.20)

The implicit function theorem implies immediately that E is an increasing function of z if
and only if an increase in z increases the marginal product of E. Specifically, if and only if
fze (z, E) > 0. Hence if technology and E are substitutes, input usage under price regulation
is countercyclical. For example, one could imagine two types of capital, a clean and dirty
technology. If the productivity shock is factor-specific to the clean capital, emissions are
counter-cyclical.

Welfare given price and quantity regulation are:

U= mng [u (f (z, E)) - B (y, E’)] (5.21)
U= mTaxE [u (f (z, E (2,7))) — B (y, E(z, 7'))] (5.22)

Reinterpret £ = FE (z,7) as the input usage given price regulation at the mean shock
and optimal policy 7. Reinterpret ¢ = f (Z, E (Z, T)) as consumption given price regulation

at the mean shock and optimal policy 7. Then:
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PROPOSITION 5 Let v, ( ) Z, E_’) E,, (Z,7) be sufficiently small and:

sty (250

(5.23)

Then A > 0.

Proof: See Appendix.

Notice that the results reduce to Corollary 3 for the factor neutral productivity shock
f(z,E)=¢*f(E)and Zz=0o0r f(z,F) = zf (E) and Z = 1. The theorem also reduces to
the familiar Weitzman condition for the case u (¢) = ¢. If f,. < 0, the advantage of quantities
over prices is drastically reduced, as the second term on the right hand side becomes positive.

Propositions 2 and 4 require the production function to have factor neutral shocks (which
implies f,e > 0), but allow the production function to be such that E,, is arbitrary, since
the approximation is around E, rather than zZ. On the other hand, Proposition 5 allows the
production function to have possibly factor specific shocks (f,. is arbitrary), but requires
the production function to be such that E,, is small. Both improve upon previous literature
with quadratic costs and linear shocks, which imply both E,, =0 and fre > 0.

A converse is also available for Proposition 5. Reinterpret ¢ = f (2, E), then:

PROPOSITION 6 Let v, (y, z, E’) E,. (Z,7) be sufficiently small and:

B, ( E)§ 1(B) |- 2re 0 (W) (5.24)

R"(¢)s (E) - YAG

Then A <0.

Proof: See Appendix.

6 Multiple Goods

A second extension involves adding additional consumption goods. One criticism of our
basic result might be that the consumption good associated with the externality is a small

share of a composite consumption good. If so, then the additional risk to total consumption
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under price regulation might be small. Here we show that the risk effect of price regulation
in an environment with multiple goods depends not only on the consumption share, but
also the correlation between shocks across sectors and the elasticity of substitution between
consumption goods.

We consider two cases, which vary the correlation of shocks across sectors. First, suppose
an aggregate consumption good x exists which is a perfect substitute for the consumption
good associated with the externality. We assume consumption of x is exogenous for simplic-

ity. Therefore, equilibrium consumption of a composite commodity c is given by:

c=z+ef(F) (6.1)
All other assumptions do not change. Let s¢ (E) = % denote the share of the consumption

good at average use of the regulated input. Corollary 3 then becomes:

PROPOSITION 7 Suppose a perfect substitute consumption good x exists, and let:

1 RI(P)
) s (B) + 2R/ (E)

(6.2)

|
@
o
VS
es]]

Then A > 0.

Proof: Analogous to Corollary 3.0

Hence if the consumption good associated with the externality is a small share of the
composite consumption good, the shock affects only the consumption good associated with
the externality, and the consumption goods are perfect substitutes then price regulation
likely dominates.

If the goods are not perfect substitutes, then the risk to consumption is not as easily
eliminated by substitution. An extension to the above setup with a CES utility function
implies a complicated non-linear relationship between the relative advantage of quantities
versus prices and the elasticity of substitution. However, one can show that if the elasticity
of substitution is small enough (if the goods are not very good substitutes), then quantity

regulation dominates regardless of s¢ (E)
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We also consider the case where the shock is an aggregate shock which affects all sectors.
Consumption of the composite commodity is thus ¢ = e* (z + f (E)). Here Corollary 3 goes

through almost unchanged.

PROPOSITION 8 Suppose a perfect substitute consumption good x exists, let shocks be
perfectly correlated across sectors, and let:
k! (E)

O B (@) 200 (B)

(6.3)

Then A > 0.

Proof: Analogous to Corollary 3.0

Thus if the shock is an aggregate shock, then quantity regulation still dominates for a
coefficient of relative risk aversion greater than or equal to one half even when the consump-
tion goods are perfect substitutes and the consumption good is a small part of the composite
consumption good. An extension with a CES utility function also implies a complicated rela-
tionship between the elasticity of substitution and the relative advantage of quantities versus
prices. For a sufficiently small elasticity of substitution, quantities again dominate.

The multiple good cases are kept simple to fit into the overall framework. The multiple

good cases do however illustrate the importance of general equilibrium effects.

7 Example 1: Pollution Externality

Suppose pollution emissions increase the probability of incurring some environmental dam-
age. The probability of incurring damage given emissions F is 1 = % If emissions reach U,
damage occurs with probability one, however, we assume WV is sufficiently large so that ¥ < 1
for all feasible emissions. If damage occurs, households suffer a utility loss of u. An example
might be greenhouse gas emissions and hurricanes. As temperatures rise from emissions, the
probability of a hurricane rises, although a hurricane need not occur.

Household expected utility is thus:
EU = lu (c) — ,u] + (1 -1) lu (c) — O] (7.1)
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=u(c) —Yu=u(c) — bE (7.2)
Here b = £. The production technology f is:

Zf(k,E) = Zk* " E" (7.3)
Here 0 < v < 1 and 7 is iid log-normal, with:

log Z ~ N (0,02) (7.4)

Finally, let utility be of the constant relative risk aversion class:

u(c) = (7.5)

Here § > 0 is the coefficient of relative risk aversion and the limiting case of § = 1 is log
utility. Finally, without loss of generality set k£ = 1.

Let y denote a stochastic shock to benefits, with symmetric distribution G. One can
think of y as an absorption shock, so that a random fraction of emissions is absorbed. We
assume y ~ G, a symmetric distribution, with y normalized so that E (y) = 1.

The problem when no information asymmetry exists is:

(ZEN)° —1

v (y,Z) = mgx{ T3

by E} (7.6)

Let n=1—7(1—-4) and let yﬁZ = 27. Then we have:

E)'7"—
v (y,2) = m}jz:;mx{(z)f7 - byE} (7.7)
The first order condition is:
ZTTETT = by (7.8)
Let: a = 1—;” and 0 = ﬁ Then:
—1_ -1
E* =z2%7 b7 (7.9)
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Hence:
* . Q. —Q 7
v* (y,2) = 02°%y % — —— (7.10)
L—mn
The optimal emissions depends on on both z and y for n # 1, (which is the log utility case).
Notice that the combination of risk neutrality over environmental damage and log utility
(in which the income and substitution effects cancel), implies optimal absorbed emissions is

constant (see Figure 1).

7.1 Quantity Regulation

We assume households and firms anticipate a constant emissions policy. Because the capital
stock is fixed and the shock is unobserved, no state variables exist for the regulator to condi-
tion on. Hence the constant emissions policy is the unique rational expectations equilibrium.
Given households anticipate a constant number of emissions permits, the regulator’s problem

1s:

() -
maxE{ 2 — byE (7.11)
B 1—n

The first order condition implies a constant emissions policy:

E=b%2% 2=E (zl_")% (7.12)

b(y,2) = b [777 _ 7 (7.13)

It is straightforward to show that welfare loss of quantity regulation under uncertainty versus

perfect information is a positive, quadratic function of y and z.
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7.2 Tax Regulation

As with quantity regulation, there are no observable states to condition on, so the optimal
constant tax is the unique rational expectations equilibrium. Given households and firms

expect a constant tax, the regulator’s problem is:

(ZE (2, T))lin -
L=n

max E
T

The first order condition for the firm implies:

~ -1

B (2,7) = 2Ty Td@m 15 (7.15)

Substituting (7.15) into (7.14) and simplifying gives:

T

__1
max { 1T ’ VIIZ;WE [zi—_z] — byﬁqﬁE [21_17] T%} (7.16)
The first order condition for the optimal tax is:

1=y 1l=n—v —=(01-=9)

= b S, 5= F [zT] B[] (7.17)

Hence we have a rational expectations equilibrium. Welfare is:

1-9
zZ 1=

1—n

B (y,2) =b" [ 5 yzﬁzﬁ] -7 (7.18)

It is straightforward to show that the welfare loss of price regulation under uncertainty versus
perfect information is a positive, quadratic function of y and z.
7.3 Welfare Loss From Taxes Versus Quantities

The primary results for the example are as follows:

PROPOSITION 9 The welfare gain from quantity versus price requlation is:

2zt 21 - 1
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Further, expected welfare gain is:

E(A) :0[2—515

Z—” (7.20)

and E(A) > 0 if and only if § > =—2.

2
Proof: The first two parts are a matter of combining Equations (7.18) and (7.13) and
simplifying. The proof of the last claim is in the Appendix.

Notice that the condition is identical, given the functional forms, as Corollary 3, except
that the proof requires no approximations. For § > %, quantity regulation is preferred
regardless of y. However, there exists an open set of v around zero and ¢ around zero such
that tax regulation is preferred.

Let § = 0, then Example 1 falls into the framework of Weitzman (1974). In this case,

price regulation is preferred for all v < 1, because marginal benefits are perfectly flat.”

8 Example 2: Production Spillovers

Suppose use of capital k£ enhances productivity, and that a production externality of perfect
spillovers exist so that the productivity of each firm is enhanced by observing other firm’s
production techniques. Specifically, let productivity A (E) = kS be a function of the economy
wide capital use per firm k. Production @ is a function of capital, hours (h), and the

productivity shock, z:
Q=A(k) ek (8.21)

Note that the model has constant returns in the private inputs, and thus the number of firms
is indeterminate, hence we assume without loss of generality a large number of firms with

mass equal to one and an identical number of households. Hours worked are inelastically

“One can also try to use the Weitzman formula with correlated shocks by deriving linear approximations of
a marginal benefit function in terms of dollars: M B = —m and a marginal cost function MC = —Zf,.
However, since the shock in general is not a pure shift of the marginal cost and benefit functions, the results
are not generally accurate.
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supplied and normalized to one. We assume 6 = ( + v < 1, with the equality case being the
well-known AK-model framework.

To apply our static theory, we use a two-period framework (the conclusions of the example
generalize readily to the infinite horizon case). The government moves prior to the first
period, then the shock is realized, then the households and firms move. Price regulation
corresponds to a subsidy ¢ per unit of capital rented by the firm, while quantity regulation
corresponds to a quota on capital usage.

The problem of the representative firm is thus:
max T = A (k) ek"h'™ — vk — wh + t (8.22)

The first order conditions for the firm evaluated at the equilibrium where £ = k and h = 1

are:

r—t=R=evk'! (8.23)

w=e*(1—7)k’ (8.24)

Hence R is the rental price of capital net of subsidies.
Let ¢; correspond to consumption in each period. The household problem is to maximize

utility subject to two budget constraints.
maxu = loge; + Blogco (8.25)
Let w be the fixed endowment in the first period, then the budget constraints are:

c=w—k (8.26)

co=rk+w—-TR (8.27)

Here TR are the lump sum taxes used to finance the subsidies. The government budget
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constraint is thus:
TR =tk = (r—R)k (8.28)

It is easy to see that the optimal policy under certainty is to set a subsidy equal to the

marginal social product of knowledge, t = (e?k?~!, or simply specify a quota equal to the

5

solution to the planner’s problem: k£ = Tr AW

Our solution given uncertainty requires first characterizing the equilibrium as a set of
constraints on the planning problem. A competitive equilibrium given a policy R (price
regulation) or k£ (quantity regulation) is a set of prices r, w, policies T R, allocations ¢; and
¢2, and either an aggregate per capita capital stock & (price regulation) or a price R (quantity
regulation), such that firms maximize (Equations (8.23) and (8.24)) for all possible policies,
households maximize (8.25) subject to budget constraints (8.26) and (8.27) for all possible

policies, and the government budget constraint (8.28) holds.

PROPOSITION 10 Suppose that:

a=w—k (8.29)
cp = ek’ (8.30)
R = ek’ ! (8.31)

Then prices and policies constituting a competitive equilibrium satisfy (8.29)-(8.31). Con-
versely, given (8.29)-(8.31), prices and policies exist which constitute a competitive equilib-

rIUm.

Proof: Analogous to Proposition 1.0

Hence we can write the problem under uncertainty as:

nga}m{xE {log (w—Fk)+ Blog (ezko)} subject to R = ye*k? ! (8.32)

’
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The problem is now in the framework of the model with 7 = HTR, E =k f(E) = E°
u(c) = loge, B(y,E) = —Blog(w — E). Thus, since the utility function is logarithmic
(06 = 1), Corollary 3 applies and quantity regulation is optimal. The optimal quantity with
perfect information is independent of the productivity shock. Thus asymmetric information
causes no welfare loss with quantity regulation. Conversely, the optimal tax cannot depend
on the productivity shock, as is the case with perfect information, and thus the tax system

yields lower welfare.®

9 Conclusions

Our main result is that the relative advantage of quantities versus prices depends on risk
aversion. Tax regulation implies firms increase inputs in response to a good productivity
shock, generating more variance in output relative to quantity regulation, where the regulated
input is constant in the productivity shock. Hence if households are very risk averse, quantity
regulation is preferred. If households prefer regulation which allows firms to take advantage
of the high return to increasing the regulated input, then price regulation has higher welfare.

Risk aversion is an important consideration in addition to the slopes of the marginal
benefit and cost curves. Even when marginal benefits are flat, a situation which favors price
regulation, quantity regulation is preferred if the coefficient of relative risk aversion is greater
than one half.

Our results are relatively free of strong parameter assumptions, such as the slopes of
marginal benefit and cost curves, but the nature of the uncertainty and the number of
consumption goods play an important role. Extensions allowing multiple goods show that a
positive correlation of shocks across consumption sectors favors quantity regulation. If the
good associated with the externality is a large component of a composite consumption good,
then the results also favor quantity regulation. On the other hand if consumption goods
are good substitutes, or if the shock reduces the productivity of the regulated input, then

general equilibrium considerations favor price regulation. Regardless, general equilibrium

81f the regulation were instead on households, then an optimal interest subsidy of t = $ also results in the
full information optimum. This illustrates that an important assumption of our framewo& is that regulation
is applied to producers.
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considerations play an important role.

Our framework and techniques may be extended a variety of ways and to a number of new
applications. The techniques could be applied to consumption externalities and other price
versus quantity issues such as tariffs versus quotas in international trade. The model could
be extended to dynamic problems, the presence of other distortionary taxes, and hybrid

instruments.

10 Appendix: Proofs

10.1 Proof of Proposition 1
Substituting (2.10) into (2.7) gives:

rk+7E =c (10.1)

Substituting (2.5) and (2.6) into the above equation and using constant returns to scale
implies (3.1). Equation (2.6) implies Equation (3.2). Thus (3.1) and (3.2) are necessary for
competitive equilibrium of any type.

Conversely, let:

r=éfy (k, E) (10.2)

TR =¢*f, (k,E)E (10.3)

Then (3.2) and (10.2) imply (2.6) and (2.5) hold. Further, substituting (3.2) into (10.3)
implies (2.10). Finally, constant returns to scale implies we can write the resource constraint
(3.1) as:

efe(k,E)k+ e f.(k,E)E =c (10.4)
Substituting in (10.3) gives:
efr(k,E)k+TR=c (10.5)

Substituting in equation (10.2) then yields (2.7). Hence the prices, policies, and allocations
constitute a competitive equilibrium of type CE*, CE, or CE. O

10.2 Proof of Corollary 3

The Generalized Mean Value Theorem implies there exists a Z such that:

E:/E(Z)G(z)dz:E‘(Z)/G(z)dz:E(Z) (10.6)
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Approximating the variance and covariance around Z gives:

var (E (2)) ~ E. (2)’ o? (10.7)
cov (E (2) ,z) ~ E, (%) 02 (10.8)
Using the implicit function theorem on the firm first order condition implies:
E,(3) = Je <E~(2)~) _ I @ (10.9)
_fee (E (Z)) _fee (E)
Substituting (10.7) and (10.8) into (4.7) and using (10.9) implies that (4.7) holds if:
R/ (E)+R"(¢)s(E) > 2|1 - R" (a)] L(E) (10.10)
I (E)
Or:
R/ (E)+R"(¢)s(E) > 2|1 - R" (5)] R/ (E) (10.11)

The first result follows by solving the above equation for R*. O

2 ~ —
For the second result, note that the above approximation implies Rf ~ U;f;,_EE. Substi-
E

tuting R/ for the correlation in Equation (4.7) implies:

B..E
RN+ R's +2RTR* + =%~ >0 (10.12)
euc

Letting u (¢) = ¢ implies R* = 0 and u, = 1. Substituting the utility function into (10.12)
and simplifying gives the second result. O

10.3 Proof of Proposition 4

The Inada conditions and the continuity of the production function imply there exists a 7
such that given price regulation:

E[E(z%)] =E[f" (Fe7)| = E (10.13)
Further, the optimal tax generates at least the expected welfare of 7:

E [v (y, 2, E (2, 7'))] >E [v (y, 2, E (2, %))] (10.14)

Hence it is sufficient to show that the tax policy with mean E generates higher expected

29



welfare than the optimal quantity:

E [v (y, 2, F (z, ?))] >E [v (y, z, E)] (10.15)

A second order approximation yields:

E —v (y, Z, E)] =% (y, O,E) + %zvzz (y, 0, E) (10.16)
E —’U (y, 2, E (2, ?))] S (y, 0, E) + %‘zvzz (y, 0, E) + %0?;(“)%@ (y, 0, E) +
| 02 i) (5 B (2,7)) vae (4,0, E) (10.17)
Hence we need only show:
2 ~
Yo% (—vee (v,0,E) - 22?‘3’*) vee (1,0, E)) <0 (10.18)
E(z,7)

Notice the derivatives are identical to the proof of Proposition 2, except for the function
arguments. Hence calculation of the derivatives and the resulting simplification are identical
to the proof of Proposition 2, except for the function arguments, yielding the desired result.O

10.4 Proof of Proposition 5
Recall that E = E (%, 7). Optimality implies:

F [ (1,2, E)] >F [ (1.2, E)] (10.19)

Hence it is sufficient to show that the tax policy at the mean shock yields higher welfare
than the actual tax policy:

AzE[v(y,z,E)]—E[u(y,z,E) >0=A>0 (10.20)
A second order approximation yields:

E :’U (y, Z, E) RV (y, zZ, E) + %‘zvzz (y, zZ, E) (10.21)
o

E —U (y,z,E)- ~ v(y,Z,E)+

2. (y,2,E) E. (E) +v. (v.% E) E.. (E)] (10.22)
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If the last term of (10.22) is small, then it is sufficient to show:

~ve. (4,2, ) = 2v.. (4,2, E) (E. (E)) " 20 (10.23)

The relevant derivatives are:

vee (1.5 E) = e ( (2,E)) fue (2. E) + uee (f (£, E)) f. (2. E)” — Buc (v, E) (10.24)

Vee (4,2, E) = foe (2. E) e (f (2.E)) + vee (£ (2. E)) 1. (2, E) 1. (2, E) (10.25)

From the implicit function theorem:

- fee (2 E
E,(z,7)=— (_ ) (10.26)
fee (2, E)
Substituting (10.24), (10.25), and (10.26) into (10.23) results in:

= ue(f (5B)) fee (5. B) = e (1 (5. B)) fe (2. B) + Bee (4. F) 2

fe (2, E)
— uee (£ (2.E)) £ (5 E) +Be. (4, B) >
— 2u.(f (2 E)) ACLIL. ZiE_) feo 5. E) —uc(f (2 E)) fee (2, E)  (10.28)
fee (% E)
Substituting in the definitions of s, R*, and R’ yields:
B (1, E) B L (B)

R"(¢)s (E) + > R (E) —2R" (&) R! (E) s (E) =

ue (?) fe (E)
Simplifying then gives the desired result.O

10.5 Proof of Proposition 6

Consider the tax policy 7 = f. (2, E) The first order condition of the firm implies:

t=f(2E)=f (2 F) (10.30)

Hence since f, is continuous and monotonic:

E(z,7)=F (10.31)
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Further, the optimal tax generates at least the expected welfare of 7:

E [v (y, z, F (z, T))] >E [v (y, 2, B (z,%))] (10.32)

Hence it is sufficient to show:
E [v (y, 2, E (2, %))] >E lv (y, z, EA’)] (10.33)

A second order approximation yields:

E —v (y, z, E)] U (y, zZ, E) + %zvzz (y, z, E) (10.34)

E —v (y, z, E (2, %))] A (y, Z, E) + %3 [’Uzz (y, z, E) + Vee (y, z, E’) E? (E) +
' 2., (3.7 E) B. (B) + v (3.7 E) E.. ()] (10.35)
Hence if the last term of (10.35) is sufficiently small, it is sufficient to show:

—Vge (y, z, E’) — 20, (y, Z, E) (Ez (E))il <0 (10.36)

Notice the derivatives are identical to Proposition 5, except for the function arguments.
Hence calculation of the derivatives and the resulting simplification are identical to Propo-
sition 5, except for the function arguments, yielding the desired result.O

10.6 Proof of the third claim in Proposition 9

Recall that b > 0 and n > 0, but @ may be negative. Given the log-normal distribution of
Z, we have:

2,2

From Equation (7.20), we then have E (A) > 0 if and only if:

2(1 — 2 2 1— 2 2(1—
o exp loz ( 277) > o lexp lg < (2 n) 2_ 72( 77)2)] (10.38)
21y 2 \m?1-7" m*1-1)
Because the exponential is a strictly increasing function, E (A) > 0 if and only if:
2 1— 2 2 1— 2 2 1—
2y 2 \m*(1=9)°" m*(1—7)
Simplifying and using the definition of o and 7 gives:
y(1-6)*
— (1 —-(1-9)(2— >0 10.40
2t 0-0-9e-9) (10.40)
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d2—-—79)>1-7n (10.41)

Solving for § then gives the desired result. O
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