
Training Expectations With

Least Squares Learning

in Non-linear Self-referential Models

David L. Kelly�

University of California

Santa Barbara, CA 93106

and

Carnegie Mellon University

Pittsburgh, PA 15213

dkelly@econ.ucsb.edu

phone: 805-893-7746

fax: 805-893-8830

First Version: November 9, 1992

Current Version: December 1, 1995

�The idea for this paper originated from a conversation with Stephen E. Spear. Thanks also to

Marvin H. Blachman, Wouter den Haan, Bennett T. McCallum, Albert Marcet, and Shyam Sunder

for comments and suggestions. The usual disclaimer applies.



Abstract

In this paper, we examine a general class of non linear self-referential economies in which

agents use least squares learning to forecast and update their beliefs, given an arbitrary vector

of past state variables and forecasts. We �nd conditions for which least squares learning

converges to stationary rational expectations equilibria. These conditions are similar to

conditions found by Grandmont (1985) and Guesnerie and Woodford (1989) for convergence

of models with adaptive forecasts to stationary equilibria. We further show these conditions

enable expectations to be \trained" in the sense of Marimon, Spear, and Sunder (1991). JEL

Classi�cation numbers D83, D84, E32.



1. Introduction

A broad class of models receiving extensive study in the literature are \self-referential"

models, in which agents' beliefs about future values of state variables determine the current

values of state variables. The Cagen hyperination model considered in Marcet and Sargent

(1989a), the partial equilibrium model of investment in Lucas and Prescott (1971), and

the overlapping generations (OG) model are examples of self-referential economies.1 Some

structure on the beliefs of the agents is necessary to complete self-referential models. The

standard assumption for agents beliefs is rational expectations.

Lucas (1986) and others postulate that rational expectations is the �nal product of some

unspeci�ed learning process. In the past, agents used some trial and error method of forecast-

ing until they learned to forecast rationally, without consistent errors. Rational expectations

has numerous advantages. If an agent is forecasting rationally, there is no incentive to

change how the agent forecasts, therefore rational expectations represents an equilibrium of

the learning process. Furthermore, rational expectations is designed so that there is no need

to address the learning process, where analysis is more di�cult and economic theory o�ers

little intuition on how an agent learns.

There is an extensive body of results on self-referential economies with rational expec-

tations. Spear (1985) and others have shown conditions for the existence of a continuum

of rational expectations equilibria in self-referential economies. Therefore, analysis focuses

around convergence to stationary rational expectations equilibria (REE). For example Cass,

Okuno, and Zilcha (1979) Grandmont (1985), and others give conditions for stability of sta-

tionary REE in OG models. Kehoe and Levine (1984) give conditions for stability of the

monetary steady state in an OG model. How agents are able to learn to be rational, however,

is not clear, especially in non-linear models. Furthermore, authors such as Azariadis (1981)

and Woodford (1990) �nd that self-referential economies often exhibit sunspot equilibria,

which are rational, but depend on extrinsic uncertainty. In particular, if the stationary state

is stable, then the stationary state is indeterminate, or not locally isolated. Conversely, the

stationary state can be determinate, or locally isolated, but the perfect foresight dynamics

1See Evans (1987) for other examples of self-referential economies.
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may be unstable around the stationary state. Such models have no predictive power unless

the model can \select" the sunspot or stationary REE that the economy converges to. In

this case, a learning rule may select a REE or sunspot equilibrium.

Authors such as Grandmont (1985) and Guesnerie and Woodford (1989) suppose that

agents believe future values of the state variables are determined by some function of past

values and past expectations. These adaptive rules are rational if the economy is at one or

more stationary points, but otherwise are not rational. Grandmont (1985) and Guesnerie

and Woodford (1989) show that stability of stationary REE in such cases often depends upon

the speci�cation of the adaptive forecasting rule. Speci�cally, a stationary REE is stable if

the backward perfect foresight dynamics are stable. Hence while a speci�c adaptive rule may

select a REE, the selection depends upon which adaptive forecasting rule is used.

Adaptive expectations imply agents are not fully rational, since the assumption that fu-

ture values of state variables depend linearly on past values is incorrect. Although such an

assumption may seem unsatisfactory, if agents are allowed to update the weights in a linear

model, the learning process can converge to stationary rational expectations equilibria, where

forecasts are rational. For example Marcet and Sargent (1989b), Bray and Savin (1986), and

others demonstrate that least squares learning converges to the rational expectations equi-

libria. Furthermore, Evans (1987) and Marcet and Sargent (1989b) show that learning can

select between REE. In a non-linear model, Woodford (1990) shows that if agents include

sunspot variables in the linear forecasting rule, the learning process can converge to a fore-

casting rule that uses sunspot variables and is rational at stationary sunspot REE using the

Robbins-Monroe learning algorithm.

On the other hand, adaptive expectations does not resolve indeterminacy of equilibria.

An adaptive forecasting rule implicitly speci�es what agents believe determines equilibrium

and how equilibrium is determined. To make equilibrium determinate requires knowledge of

agents beliefs.

Marimon, Spear, and Sunder (1991) show experimentally that agents attempt to forecast

by trying to recognize patterns in the past data in a non-linear OG model. In these experi-

ments, agents forecasted cyclic prices given a cyclic price history and forecasted stationary

state prices given a stationary state price history.
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In this paper, we show that stability of stationary REE under least squares learning is

determined by the stability of the backward perfect foresight dynamics. We �nd theoretical

conditions for which the results of Marimon, Spear, and Sunder (1991) are replicated using

least squares learning. To model pattern recognition we assume agents use a linear forecasting

rule, and update the weights to forecast either cycles or stationary points. The agents believe

that an element of some wide class of forecasting rules determines future state variables,

which include linear versions of the adaptive rules of Grandmont (1985) and the linear

adaptive rules of Guesnerie and Woodford (1989). We �nd the stability results of Grandmont

(1985) and Guesnerie and Woodford (1989) for adaptive expectations are enough to ensure

that agents recognize patterns in the past data.

If agents forecast by detecting patterns in the past data, then the REE that is selected

depends on what the agents were \trained" to believe in according to Marimon, Spear, and

Sunder (1991). We �nd that agents can be trained to believe in cyclic or steady state pat-

terns. In our model, training is represented by the initial conditions or priors of the least

squares learning algorithm. Least squares learning also has initial conditions corresponding

to the con�dence the agent places in the prior beliefs. We �nd that if the agent is not su�-

ciently con�dent in the priors, then beliefs are updated such that no pattern is immediately

recognized. Hence the training period must be su�ciently long.

Section 2 introduces a general self-referential model and the least squares learning speci-

�cation. Section 3 gives theoretical conditions on for training expectations with least squares

learning. In section 4 we show more general su�cient conditions, which enable expectations

to be trained in the model. In section 5, we show that expectations can be trained using two

examples from the literature. Section 6 has some concluding remarks.

2. Model

Consider an economic model that can be reduced to a �rst order, one dimensional dynamical

system. Let Pt be the state variable of the system, and let the economy evolve according to:

Pt = �(P e
t+1) (2.1)
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Equation (2.1) is the law of motion for an economy. The value of Pt today depends on the

believed value of the state variable in the future. Economic models, such as the overlapping

generations model, can often be reduced to such a system, with P typically representing

prices or labor (see section 4). Hereafter, for convenience, we refer to Pt as the \price."

There is one regularity assumption on the law of motion:

ASSUMPTION A1 The function � is C2 and invertible locally around the stationary

state.

Often � is generated by �nding an implicit function, so local invertibility is necessary to

reduce the problem to (2.1) regardless. Note that there is no linearity restriction so that in

this sense we extend the work of Marcet and Sargent (1989b) to a non-linear model. Pt is

a scaler, however, which is more restrictive than Marcet and Sargent (1989b). Furthermore,

the law of motion is deterministic, which is an additional simpli�cation of Marcet and Sargent

(1989b).2

The standard analysis of the law of motion (2.1) begins with the perfect foresight as-

sumption. Since there is no inherent uncertainty in the model, agents can deduce the next

period price and forecast without error. Thus:

P e
t+1 = Pt+1 (2.2)

Perfect foresight gives rise to the following de�nitions. Let �k (P ) denote the kth composition

function � (� (: : : � (P ))). Then we have:

De�nition 1 A perfect foresight equilibrium sequence is a sequence fPig such that:

Pi = � (Pi+1) 8 i (2.3)

De�nition 2 A k-state cycle is a vector P k = [P1 : : : Pk]
0
such that:

2We make the law of motion deterministic in order to better compare the results with Marimon, Spear,

and Sunder (1991).
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Pi = �k (Pi) 8 i = 1 : : : k and Pi 6= Pj 8 i 6= j i; j 2 1 : : : k (2.4)

ASSUMPTION A2 Consider any k-state cycle P k. Then P k >> 0.

We believe assumption (A2) is not restrictive since typically the state variable P is positive.

In section 5 we give more general conditions about the existence of strictly positive cycles. In

the overlapping generations model with money, we restrict analysis to monetary equilibria.

Local neighborhoods around the cyclic points are also restricted to be positive.

Let P 1 = P � be the stationary state. Equation (1) implies there exists a continuum of

perfect foresight equilibria. Therefore analysis focuses on local behavior around the k-state

cycle. Grandmont (1985) and others have shown that the condition for stability of a cycle

under perfect foresight is that the forward dynamics are stable:

�����
kY

i=1

��10
�
P k
i

������ < 1 (2.5)

Grandmont (1985) also demonstrates that a su�cient condition for stability of a k-state

cycle under a general adaptive forecasting scheme is that the backward perfect foresight

dynamics are stable:

�����
kY

i=1

�0
�
P k
i

������ < 1 (2.6)

Suppose now agents do not possess perfect foresight, but are in the process of learn-

ing how to forecast. Marimon, Spear, and Sunder (1991) show that, in an experimental

setting, agents attempt to forecast by trying to recognize patterns in the previous data.

One way to model pattern recognition is through a least squares learning algorithm. Let

dt �

�
Pt : : : Pt�r P e

t : : : P e
t�r

�0
and suppose agents forecast according to:

P e
t+1 = � 0t�1dt (2.7)

Here, �t�1 is a vector of weights determined by:

�t�1 =

 
t�2X
s=1

dsd
0
s

!�1  t�2X
s=1

Ps+1ds

!
(2.8)
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Thus agents forecast adaptively using equation (2.7), but update the parameter � each period

with a least squares regression, equation (2.8). Note that since the law of motion (2.1) is

usually non-linear, least squares learning cannot converge to (learn) the true law of motion

as in Marcet and Sargent (1989b) and others. However, the learning algorithm can learn

cyclic patterns in the past data.

Using equation (2.1) to substitute out for the expectations variables gives:

dt =

�
Pt : : : Pt�r ��10 (Pt�1) : : : ��10 (Pt�r�1)

�0
(2.9)

That agents forecast by equation (2.7) causes the actual law of motion to be determined by:

Pt = �
�
� 0t�1dt

�
(2.10)

The next assumption insures that the agent does not rule out the possibility of a cycle a

priori.

ASSUMPTION A3 Suppose equation (2.1) possesses a k-state cycle under perfect fore-

sight. Then r � k.

Thus the space of cyclic patterns that the agent believes possible initially is at least as large

as the actual number of cycles. Of course r must be �nite for a least squares regression to

make sense. Assumption (A3) admits a wide class of adaptive rules common in the literature

that the least squares algorithm can learn.3 We also de�ne dk to be the k-state cycle with

Pt = P1; Pt�1 = P2 and so on.

Assumption (A3) leads to the following de�nitions:

De�nition 3 An associated �xed point of a k-state cycle is a vector �k satisfying:

mX
i=1

�
�k
i�k + �k

(r+1)+i�k

�
= 1 (2.11)

�k
j = 0 8 j 6= ik; r + 1 + ik

3Similar to Evans (1987), we perturb an adaptive rule by adding an arbitrary number of extra lags. In

fact, assumption (A3) is equivalent to assuming that \strong expectational stability" in the sense of Evans

(1987) is considered here, except that we consider only price and expectation lags and not sunspot variables.
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Here m is the largest multiple of k less than or equal to r. The associated �xed point is

simply any vector �k that \detects" the cycle.

De�nition 4 An associated invariant set of an k-state cycle is the set, Dk
c , of all associated

�xed points of the k-state cycle:

Dk
c =

(
�k :

mX
i=1

�
�k
i�k + �k

(r+1)+i�k

�
= 1 and �k

j = 0 8 j 6= ik; r + 1 + ik

)
(2.12)

The invariant set forms a subspace of <2r+2. In the proofs of convergence, we typically speak

of convergence to the invariant set, because all elements of Dk
c are associated with the same

cycle.

We impose one restriction on the associated invariant set:

ASSUMPTION A4 Suppose k = 1. Then �0 (P �) < 1
1+��

1

.

Assumption (A4) arises from the presence of the current price in the forecasting function.

The next two assumptions make the forecasting function of the type studied by Grand-

mont (1985) or Guesnerie and Woodford (1989), respectively, when � = �k. Let � be the

local implicit function found by solving (2.7) for Pt.

ASSUMPTION A5 The expectation formula satis�es the following condition:

@�

@Pt�i

�����
d=dk;�=�k

�

@
@Pt�i

�
�
� 0t�1dt

�
@
@Pt

(Pt � � (� 0t�1dt))

������
d=dk;�=�k

� 0 8i (2.13)

Assumption (A5) is assumption (3.h) of Grandmont (1985). Assumption (A5) implies the

forecasting function is of the type studied by Grandmont (1985) when � = �k.

ASSUMPTION A6 The associated invariant set, Dk
c , satis�es m = 1 and 0 �� �k �� 1.

Assumption (A6) is an alternative to assumption (A5). Assumption (A6) implies when

� = �k the forecasting function is of the type examined by Guesnerie and Woodford (1989).

This assumption is more reasonable in cases where �0 (P �) is negative, since assumption (A5)

often severely restricts the associated invariant set in this case.
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3. Training Expectations

Marimon, Spear, and Sunder (1991) found that, given a law of motion with a two-state cycle

and a �xed point, agents examined past data for either of these patterns and then forecasted

the next point in either the cycle or the �xed point. Furthermore, agents could be \trained"

to believe in either the cycle or the �xed point by giving the agents a data set that had either

of these patterns. In this model, the training period corresponds to the initial conditions of

least squares learning. Thus for example, if �0 is in a neighborhood of �k, the agent priors

are that a k-state cycle is the pattern in the past data, or that the agent has been trained

to believe in the period k pattern. Hence the following de�nition:

De�nition 5 The following are equivalent statements:

� Agents can be trained to believe in an k-state cycle.

� A k-state cycle is locally stable under least squares learning.

� �t ! �k and dt ! dk as t!1 for �0 su�ciently close to �k and d0 su�ciently close

to dk.

The interesting case is when, as in Marimon, Spear, and Sunder (1991), there are multiple

cycles which the agents can be trained to believe in.

We use the \di�erential equation approach" developed by Ljung (1975) and used by

Marcet and Sargent (1989b) and others to establish conditions on convergence. Speci�cally,

we use the results for non-linear dynamics given in Ljung (1975). Proofs are given in the

appendix unless otherwise stated.

First we rewrite equations (2.8) and (2.10) recursively, which is somewhat more intuitive.

LEMMA A Equation (2.8) can be written in the following form:

xt = xt�1 +  (t)Q (t; xt�1;'t) (3.1)
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Here 't is the observation vector and xt is a vector of estimated parameters. The recursive

form of the parameter vector is:

�t = �t�1 +
1

t
(Rt�1)

�1
dt�1

0
@ 1

1 + 1
t

�
d0t�1R

�1
t�1dt�1 � 1

�
1
A hPt � d0t�1�t�1

i
(3.2)

col(Rt) = col(Rt�1) +
1

t

h
col(dt�1d

0
t�1)� col(Rt�1)

i
(3.3)

The system is in the form of (3.1), with Q de�ned from equations (3.2) and (3.3), and:

xt =

2
64 �t

col(Rt)

3
75 (3.4)

 (t) =
1

t
(3.5)

't =

�
Pt Pt�1 : : : Pt�r�1

�0
(3.6)

Here col is the column operator.

Lemma (A) divides the system into input variables, which are parameters to be estimated,

and output variables, which are the state variables of the system. Rt is the \precision

matrix," which roughly corresponds to how con�dent the agent is in the weights. Equations

(3.2) and (3.3) form a recursive system that is �rst order in xt. However, the presence t in the

functions causes di�culties in the analysis. Additionally a \forgetting factor" could also be

introduced, as in Marcet and Sargent (1989b), which would modify the the  function. The

forgetting factor is omitted here to avoid complications, but the proofs go through as long

as the forgetting factor satis�es the conditions given in the appendix. Equations (3.2) and

(3.3) also show that there are two initial conditions for the input variables: �0 and R0. �0

corresponds to the agent's priors or what the agent was trained to believe. R0 is equivalent

to the length of the training period in Marimon, Spear, and Sunder (1991). The proofs of

convergence implicitly depend on R0 being su�ciently large.
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An important aspect of the problem is the behavior of the precision matrix Rt and the

inverse of Rt. First, Rt approaches singularity in the limit by assumption (A2). If the

inverse of the precision matrix approaches singularity, the coe�cients of the least squares

regression become unstable from period to period, since di�erent coe�cient vectors predict

with approximately the same accuracy. Hence the coe�cient vector does not converge in

this case. However, Ljung (1975) shows that a small perturbation insures that Rt�1 does not

approach a singular matrix. In particular, let:

col(Rt) = col(Rt�1) +
1

t

h
col(dt�1d

0
t�1) + col (�I)� col(Rt�1)

i
(3.7)

Here � is a small number and I is the identity matrix.

LEMMA B The observation vector, 't, can be written recursively as a function:

't = g (xt�1;'t�1) (3.8)

The output takes the following form:

't =

2
666666664

Pt

Pt�1

...

Pt�r�1

3
777777775
=

2
666666664

� (xt�1; 't�1)

Pt�1

...

Pt�r�1

3
777777775
= g (xt�1;'t�1) (3.9)

Notice that the vector of state variables includes the current price (forecasts are determined

simultaneously with prices). If the forecast function consists of strictly past prices, then:

� (xt�1; 't�1) = �
�
� 0t�1dt

�
(3.10)

The following is an outline of the idea of the convergence proofs. We �x �t�1 at ��

in a neighborhood of the associated cycle, �k. With � �xed, Ljung (1975) shows that Q

converges to a �rst order di�erential equation in which the troublesome presence of  (t) is

eliminated. Ljung (1975) also shows that the di�erence between the evolution of Q at �� and
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the evolution of Q at �t�1 goes to zero in the limit. Thus convergence of the di�erential

equation implies convergence of the input variables. The eigenvalues of the Jacobian of the

output of the system must have modulus less than one at �� to establish that the di�erence

goes to zero. But with � �xed, the problem is similar to that of the adaptive system examined

by Grandmont (1985) or Guesnerie and Woodford (1989) under assumptions (A5) and (A6),

respectively. In particular, the problem is the same except that �� 6= �k. The following

lemma shows that the conditions given by Grandmont (1985) or Guesnerie and Woodford

(1989) are enough to get convergence for �� 2 N
�
�k
�
as well.

LEMMA C Suppose there exists a k-state cycle under perfect foresight. Suppose assump-

tions (A1) ... (A4). Suppose further that:

�k �
kY

i=1

�0 (P )

�����
P=P k

i

2 (�1; 1) if k > 1 (3.11)

Finally, suppose that either:

1. assumption (A5) holds and condition(3.11) holds when k = 1 or

2. assumption (A6) holds and �1 < 1 when k = 1.

Then there exists a set Dk
s � xk such that for �x 2 Dk

s :

@gk
�
'k
i ; �x

�
@'t�1

i = 1 : : : k (3.12)

has all eigenvalues of modulus less than one.

We are now in a position to prove the main theorems. Theorem (1) shows that the condi-

tions of Grandmont (1985) or Guesnerie and Woodford (1989) are enough to get convergence

of least squares learning. Let Dk
r � Dk

s be an open set around the associated invariant set

of the k-state cycle, which has all positive elements.

THEOREM 1 Suppose that the perfect foresight law of motion � possesses a k-state cycle

(k = 1 is the stationary state). Suppose that either set of assumptions for lemma (C) hold.

Then the least squares parameters converge to the �xed point or cycle. In particular, there

exists a neighborhood Dz such that for '0 2 Dz and x0 2 D1, a closed subset of Dr:
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�t ! �k
2 Dk

c as t!1 (3.13)

Hence the least squares forecasting function converges to the adaptive forecasting function

of Grandmont (1985) or Guesnerie and Woodford (1989).

The following corollaries establish conditions for training expectations.

COROLLARY 1 Suppose the conditions of lemma (C) are satis�ed. Then the stationary

state or cycle is locally stable. In particular, there exists a neighborhood Dz such that for

'0 2 Dz and x0 2 D1, a closed subset of Dr:

't ! 'k as t!1 (3.14)

Lemma (C) implies that if the input is converging to the associated �xed point, then the

output must converge to the corresponding cycle.

Now suppose � has multiple cycles or stationary states. That is suppose there are k-state

cycles indexed k1 : : : kn. Then, if each cycle satis�es the conditions of lemma (C), convergence

depends on the initial conditions. In particular there exists local neighborhoods around

each of the cycles such that if the initial condition is inside any of these neighborhoods,

convergence to the corresponding cycle occurs. Hence expectations can be trained. We

summarize this in the following lemma.

COROLLARY 2 Suppose there exists k-state cycles k1 : : : kn such that ki 6= kj 8 i 6= j

and that either set of conditions for lemma (C) are satis�ed for each k. Then there exists

neighborhoods Dki
z and Dki

r such that for '0 2 Dki
z and x0 2 Dki

1 , a closed subset of Dki
r :

't ! 'ki 8 i (3.15)

In particular, if there exists two or more cycles that are backward stable, then the cycles are

all locally stable under least squares learning. Therefore expectations can be trained. Note

that as � converges to �k the problem approaches a model with adaptive forecasting. Thus

the condition for convergence is intuitively appealing.
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4. Existence of Economic Models With Training

The existence of multiple cycles in the perfect foresight dynamics has been extensively stud-

ied. For example Benhabib and Day (1982), Cass, Okuno, and Zilcha (1979), Grandmont

(1985), and Marcet and Sargent (1989a) have all given examples of self-referential models

that exhibit multiple stationary equilibria. These authors note that the existence of a k-state

cycle implies that k0-state cycles also exist, for all k0 < k. Further, the existence of a 3-state

cycle implies cycles of all periods and chaotic trajectories also exist. Finally a su�cient

condition for the existence of a 2-state cycle for the law of motion � is that the stationary

state is unstable in the backward perfect foresight dynamics, or �0 (P �) < �1.

The cycles given must also be shown to be consistent with the economic assumptions of

the model, such as positive prices. This we assume in assumption (A2). However, in many

economic models, this occurs naturally from a strictly increasing utility function.

Authors such as Grandmont (1985) have also examined stability of the perfect foresight

dynamics. Grandmont (1985) uses a result by Singer (1978) to show conditions for there

to be at most one backward stable k-state cycle. To use the result of Singer (1978), we

introduce the following assumption:

ASSUMPTION A7 Let � be C3 and let � : X ! X where X = [a; b] � <.

De�nition 6 The Schwarzian derivative, S�, of � is:

S� =
�000

�0
�

3

2

 
�00

�0

!2

�0 6= 0 (4.1)

As shown in the last section, if there exists at least two backward stable cycles in the

perfect foresight dynamics, then expectations can be trained. Su�cient conditions for this

are found using a modi�ed version of the Singer (1978) theorem.

THEOREM 2 Suppose assumption (A7). Suppose � has perfect foresight k-state cycles

k1 : : : kn with n � 2 in the interior of X. Suppose that S��1 (P ) < 0 for all P 2 X. Finally,

suppose ��1 has c < n � 2 critical points. Then there exists k-state cycles k1 : : : kn0 with

n0 � 2 such that j�kij < 1 8i 2 n0.
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Theorem (2) shows that, given the learning assumptions (A3), (A4), and (A5) or (A6), a

negative Schwarzian derivative and a restriction on the number of critical points is su�cient

to show that expectations can be trained.

The proof of the theorem relies on Singer's result that every stable k-state cycle has a

critical point attracted to it. Hence, the number of critical points is greater than or equal

to the number of stable k-state cycles. Hence restricting the number of critical points in

the forward perfect foresight dynamics restricts the number of forward stable k-state cycles.

Hence the restriction puts a lower bound on the number of backward stable k-state cycles.

The conditions are not necessary since two critical points may be attracted to the same cycle.

Generally, the only assumption of the theorem that is di�cult to verify is that the Schwarzian

derivative is everywhere negative. In the next section we present two examples, the �rst of

which has a negative Schwarzian derivative in the forward perfect foresight dynamics. The

second example does not have an everywhere negative Schwarzian derivative, but still has

two backward stable cycles.

5. Examples

5.1. A model from Benhabib and Day (1982)

Consider a pure exchange, overlapping generations model. Agents live for two periods and

value a non-perishable good, consumption, over their lifetime. Agents are assumed to possess

the following utility function:

U (Ct; Ct+1) = aCt �
1

2
bC2

t + Ct+1 a; b > 0 Ct �
a

b
(5.1.1)

Additionally, agents receive an endowment in each period of their lifetime, but there is no

production. Let w1 denote the �rst period endowment, and w2 the second period endowment.

Furthermore, there exists a central authority which extends \credit." The young agents buy

goods from the old with checks, and the old deposit checks to settle debts incurred when

young. The young, for instance, may wish to borrow to �nance a mortgage. Let mt denote

the amount of debt incurred when young. Letmt = mt+1 = �m be the total checks available in
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any period, which the old agents present in the �rst period inherit. Hence the representative

consumer faces a budget constraint when young and when old:

Ct = w1 +mtPt (5.1.2)

Ct+1 = w2 �mtP
e
t+1 (5.1.3)

Substituting the budget constraints directly into the utility function, maximizing with

respect to mt, and substituting in the general equilibrium requirement that the total check

supply equals the demand for checks, gives:

P e
t+1 = ��1 (Pt) = (a� bw1)Pt � b �mP 2

t (5.1.4)

Equation (5.1.4) is the inverse law of motion in this example.

Benhabib and Day (1982) show that for the case where a � bw1 = b �m 2 (3:5; 4); the

law of motion has cycles of all periods as well as chaotic trajectories. Given the formulation

(5.1.4), the law of motion has a monetary stationary state:

P � =
a� bw1 � 1

b �m
(5.1.5)

The model also has a two state cycle:

P 2
1 =

1 + a� bw1 + (a� bw1 � 3)
1=2

(a� bw1 + 1)
1=2

2b �m
(5.1.6)

P 2
2 =

1 + a� bw1 � (a� bw1 � 3)
1=2

(a� bw1 + 1)
1=2

2b �m

The law of motion speci�ed here may also possess cycles of greater order, depending on the

values of a, b, and w1. However, even the two cycles given by equations (5.1.5) and (5.1.6)

are enough to show that expectations can be trained.

THEOREM 3 The following condition is necessary and su�cient to show that the station-

ary state (5.1.5) and the two-state cycle (5.1.6) for the law of motion (5.1.4) satisfy the �rst
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set of conditions of lemma (C).

a� bw1 > 3:45 (5.1.7)

Equation (5.1.7) implies that the stationary state is positive, backward stable, and does not

satiate the utility function. Equation (5.1.7) also implies that each element of the two state

cycle is positive, real, and does not satiate utility, and that the cycle is backward stable.

Thus expectations can be trained if the condition (5.1.7) is satis�ed.

5.2. The Marimon, Spear, and Sunder (1991) Model

Consider the pure exchange OG model with �at money studied by Marimon, Spear, and

Sunder (1991):

U (Ct; Ct+1) = 2

�
Ct

5

� 1

2

�
1

2

�
Ct+1

5

��2
+ 4 (5.2.1)

Ct = 10�
Mt

Pt

(5.2.2)

Ct+1 =
Mt

P e
t+1

(5.2.3)

�M = 25 per person (5.2.4)

Marimon, Spear, and Sunder (1991) show that the inverse law of motion is the following:

P e
t+1 = ��1 (Pt) = 5

3

2P
�1

4

t (2Pt � 5)
�1

4 (5.2.5)

Equation (5.2.5) is sixth order of non-linearity. However, equation (5.2.5) is locally invertible

and C2 and therefore satis�es assumption (A1). Note that the Schwarzian derivative of the

forward perfect foresight dynamics is not everywhere negative (for example over the interval

(0; :5]). However, Marimon, Spear, and Sunder (1991) show that the law of motion has a
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stationary state and a 2-state cycle.

P � = 5 P 2 =

2
64 2:56

14:75

3
75

Furthermore, the values that determine the perfect foresight dynamics are:

��10
���
P=P �

= �:75 ��10
���
P=14:75

= �:096 ��10
���
P=2:56

= �64:04

Here �1 = �4
3
and �2 = :16, hence the stationary state and the two-state cycle satisfy

the second set of conditions of lemma (C), if we assume that the agent only looks back to the

t� 1 period in his expectations function (m = 1). Hence theorem (1) holds in this example

for both the stationary state and the two-state cycle. Hence corollaries (1) and (2) hold as

well, which replicates the results of Marimon, Spear, and Sunder (1991) on human subjects.

Agents can be trained to believe in either a �xed point or 2-state cyclic pattern given the

least squares learning speci�cation (2.8).

6. Conclusion

We suggest that a plausible way to model agents beliefs is to suppose that agents start

with very general priors, that the economy is linear, but a number of lags may inuence the

current price. Then agents look at the data and try to extrapolate trends. Such \pattern

recognition" learning is advantageous since all information is used, unless there is strong

evidence from the data that the information is of no help. Simple adaptive forecasting

schemes and many sophisticated learning schemes in e�ect suppose agents with probability

one con�dence assume almost all information is of no use, before agents even see a single data

point in the information set. Hence a problem with using simple adaptive forecasting or, for

example, least squares learning, with a small number of lags is possible outcomes of learning

and therefore of the economy as a whole are ruled out a priori. Furthermore, adaptive and

simple learning schemes cannot fully model other elements of the learning process, such as

changes in the structure of agents' beliefs.

The experimental results of Marimon, Spear, and Sunder (1991) suggest that agents use
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sunspot variables to forecast, but only if there is a pattern in the data that suggests that

the sunspot matters. This also suggests that agents start with no strong beliefs about what

information to use.

One important problem with pattern learning is that perfect foresight forecasting rule

cannot be attained with least squares learning if the law of motion is non linear. We plan to

examine non linear learning rules capable of learning either patterns or the perfect foresight

forecasting rule. We hope to see under what conditions does the agent learn to be rational

and under what conditions does the agent learn patterns in the past data.

7. Appendix: proofs of main theorems

7.1. Proof of lemma (1.1)

�t�1 =

 
t�2X
s=1

dsd
0
s

!�1  t�2X
s=1

Ps+1ds

!
(7.1.1)

=

 
t�2X
s=1

dsd
0
s

!�1  t�2X
s=1

dsd
0
s � dt�2d

0
t�2

!
�t�2 +

 
t�2X
s=1

dsd
0
s

!�1
Pt�1dt�2 (7.1.2)

) �t = �t�1 +

 
t�1X
s=1

dsd
0
s

!�1
dt�1

h
Pt � d0t�1�t�1

i
(7.1.3)

Notice that the equation includes the prediction error, but only using one period old

regression parameter, and not the most current information. This is due to the time period

in which the parameter vector was de�ned. �t is parameter vector generated using data in

period t, not the parameter vector used in the forecast at period t. Next the precision matrix

is also de�ned recursively.

Rt �
1

t

 
t�1X
s=1

dsd
0
s

!
(7.1.4)
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=
1

t
(t� 1)

"
1

t� 1

 
t�2X
s=1

dsd
0
s

!#
+
1

t
dt�1d

0
t�1 (7.1.5)

= Rt�1 +
1

t

h
dt�1d

0
t�1 � Rt�1

i
(7.1.6)

Substituting equation (7.1.4) into (7.1.3) gives:

�t = �t�1 +
1

t
(Rt)

�1
dt�1

h
Pt � d0t�1�t�1

i
(7.1.7)

In order to make the right hand side of (7.1.7) contain only past values of R, a recursive

substitution is made. The matrix inversion lemma is then applied. Finally, to conform the

precision matrix R to the dimension of the parameter vector, the column operator is used.

The resulting system is:

�t = �t�1 +
1

t
(Rt�1)

�1
dt�1

0
@ 1

1 + 1
t

�
d0t�1R

�1
t�1dt�1 � 1

�
1
A hPt � d0t�1�t�1

i
(7.1.8)

col(Rt) = col(Rt�1) +
1

t

h
col(dt�1d

0
t�1)� col(Rt�1)

i
(7.1.9)

This system is now in the form of (3.1), with Q de�ned from equations (3.2) and (3.3), and:

xt =

2
64 �t

col(Rt)

3
75 (7.1.10)

 (t) =
1

t
(7.1.11)

't =

�
Pt Pt�1 : : : Pt�r�1

�0
(7.1.12)

Q.E.D.
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7.2. Proof of lemma (1.2)

The �rst step is to determine the recursive relationship of the output variable Pt. Substituting

equation (2.7) into the the law of motion (2.1) to gives:

Pt = �
�
� 0t�1dt

�
(7.2.1)

However, since the observation vector at time t is a function of the current periods price, an

implicit function must be generated from equation (7.2.1). Let � be this function.

Pt = � (�t�1; Pt�1; : : : ; Pt�r�1) = � (�t�1; 't�1) = � (xt�1; 't�1) (7.2.2)

Now we de�ne the recursive relationship of the observation vector using the standard trick.

't =

2
666666664

Pt

Pt�1

...

Pt�r�1

3
777777775
=

2
666666664

� (xt�1; 't�1)

Pt�1

...

Pt�r�1

3
777777775
= g (xt�1;'t�1) (7.2.3)

Q.E.D.

7.3. Proof of lemma (1.3)

First suppose that � = �k. Then we claim that the lemma satis�es the assumptions and

requirements in Grandmont (1985), under assumption set (1), or Guesnerie and Woodford

(1989), under assumption set (2), for stability with learning. These assumptions are straight-

forward to verify. Hence, according to the theorems in these papers, the eigenvalues of the

Jacobian have modulus less than one.

���Jk (�t�1)j�t�1=�k � �I
��� � ch

�
�; �k

�
= 0 (7.3.1)

Hence the set of all solutions to equation (7.3.1) satisfy j�j < 1. Furthermore, since the

Jacobian is continuous in �, the characteristic equation is continuous in � and �. Hence

20



there exists some neighborhood, N , around �k such that:

�t�1 2 N
�
�k
�
) j�0j < 1 (7.3.2)

for all solutions to:

ch (�0; �t�1) (7.3.3)

Let this neighborhood be Dk
s . Q.E.D.

7.4. Proof of theorem (1.1)

We �rst prove two lemmas, the �rst to ensure asymptotic stability of Q in time and the

second to ensure that ' does not increase to much for small changes in x.

LEMMA D The functions @Q
@'t�1

and @Q
@xt�1

are bounded in t for x 2 Dr.

We �rst show:

lim
t!1

@Q

@xt�1
= lim

t!1

2
64 @Q1

@�t�1

@Q1

@ col(Rt�1)

0 I

3
75 <1 (7.4.1)

Equation (7.4.1) holds if and only if both elements of the top row have �nite limits since the

other elements are independent of t. Therefore the problem reduces to �rst showing:

lim
t!1

@Q1

@�t�1
= � (Rt�1)

�1
dt�1d

0
t�1 <1 (7.4.2)

Thus equation (7.4.2) is �nite for x 2 Dr. For the second element:

lim
t!1

@Q1

@ col (Rt�1)
(7.4.3)

= lim
t!1

�1

t

�
1 +

1

t

�
d0t�1R

�1
t�1dt�1 � 1

���2 @

@ col (Rt�1)

�
d0t�1R

�1
t�1dt�1

�
= 0 <1 (7.4.4)

Thus @Q
@xt�1

<1.
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For the derivative of Q with respect to 't�1, we have that:

lim
t!1

@Q

@'t�1

= lim
t!1

2
64 @Q1

@Pt

@Q1

@dt�1

0 @Q2

@dt�1

3
75 (7.4.5)

Again only the top two elements of equation (7.4.5) are a function of time. Consider �rst:

lim
t!1

@Q1

@Pt

= lim
t!1

R�1
t�1dt�1

�
1 +

1

t

�
d0t�1R

�1
t�1dt�1 � 1

���1
= R�1

t�1dt�1 (7.4.6)

Equation (7.4.6) is �nite for x 2 Dr. Second, consider limt!1
@Q1

@dt�1

, which is �nite if and

only if:

lim
t!1

�1

t

�
Pt � d0t�1�t�1

�
R�1

t�1dt�1

�
1 +

1

t

�
d0t�1R

�1
t�1dt�1 � 1

���2 @

@dt�1

�
d0t�1R

�1
t�1dt�1

�

= 0 <1 (7.4.7)

Thus the derivative of Q with respect to 't�1 is bounded in t. Q.E.D.

LEMMA E Suppose assumption (A1). Suppose further that 'n = �'n (�x). Then there exists

a constant C such that for t > n:

jj't � �'t (�x)jj < C max
n�k�t

jj�x� xkjj (7.4.8)

Consider �rst the n + 1 term.

jj �'n+1 (�x)� 'n+1jj = jjg ( �'n (�x) ; �x)� g ('n; xn)jj

= j� ('n; �x)� � ('n; xn)j

From the mean value theorem we know that:

j� ('n; �x)� � ('n; xn)j �

�����
����� @�dx

�����
x̂

�����
����� jj�x� xnjj (7.4.9)
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�

�����
����� @�dx

�����
x̂

�����
����� max
n�k�n+1

jj�x� xkjj (7.4.10)

for some x̂ 2 [�x; xn]. Therefore choose:

C =

�����
����� @�dx

�����
x̂

�����
�����+ � (7.4.11)

Thus the lemma holds in the n + 1 case since � is C2 on the interval [�x; xn]. For the t > n

case we can repeat the above procedure and choose the constant:

C = (t� 1� n) max
n�k�t�1

������
������
@H

dxk

�����
x̂k

������
������+ � (7.4.12)

Where x̂i 2 [�x; xi]8i and H is the composite function � (gi (:)). The constant C is �nite

valued since x̂ 2 Dr is �nite valued and 'n is �nite valued and continuity is preserved under

composite continuous functions. Q.E.D.

Proof of theorem 1.1 This is a direct application of theorem 8 of Ljung (1975). The

theorem is restated for convenience. For the proof, the above lemmas are used to show that

the conditions of Ljung's theorem are satis�ed.

THEOREM 4 Suppose a dynamical system of the form:

xt = xt�1 +  (t)Q (t; xt�1;'t) (7.4.13)

't = g (xt�1;'t�1; et) (7.4.14)

Suppose further that the following assumptions hold:

L1. jjg ('; x; e)jj < C 8 x 2 Dr; '; e

L2. The functions Q and g are continuously di�erentiable with respect to x and '.

L3. The scaler gain sequence,  (t) satis�es the following properties.

lim
t!1

 (t) = 0 (7.4.15)
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lim
t!1

tX
s=1

 (s) =1 (7.4.16)

lim
t!1

tX
s=1

 (s)
P
<1 for some P > 0 (7.4.17)

lim
t!1

sup
�
�1 (t)� �1 (t� 1)

�
<1 (7.4.18)

 (t) is a decreasing sequence (7.4.19)

L4. Let: �'t (�x) = g ( �'t�1 (�x) ; �x; et) �'0 = '0 Then lemma (D) holds.

L5. There exists a set Dk
s � xk such that:

jj �'1t (�x)� �'2t (�x)jj < C ( �'1s (�x) ; �'2s (�x))�
t�s (�x) where t > s and � (�x) < 1

L6. The following limit exists for �x 2 Dr (the expectation is over et):

f (�x) � lim
t!1

EQ (t; �x; �'t (�x))

L7. et is a sequence of independent random variables.

L8. The di�erential equation:

dx

dt
= f (x)

has an invariant set Dk
c with domain of attraction Dk

A � Dk
c .

Then xt ! Dk
c as t!1.
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First note that the dynamical system is equivalent to the one used in theorem (4) when

perturbed by an independent, mean zero, variance zero random variable et, according to

lemmas (A) and (B). Thus we need only verify the assumptions of Ljung's theorem.

The assumption (L1) holds trivially for et. Since the closure of Dr is compact and g

is continuous, the �rst assumption holds for �x as well. Lemma (C) implies that, for '0

su�ciently close to 'k, there exists a �nite set Dz such that 't 2 Dz 8t.
4 Thus the �rst

assumption holds for ' as well.

Given assumption (A1) � is locally continuously di�erentiable and invertible, the implicit

function theorem implies that � and therefore g is locally continuously di�erentiable with

respect to 't�1. The implicit function theorem also implies that g is continuously di�eren-

tiable with respect to � and therefore x. By inspection, Q is continuously di�erentiable for

P � 0 and R0 > 0.

Given the assumptions of the theorem (A1)...(A6), lemma (D) holds.

Clearly  (t) = 1=t is a geometric sequence which satis�es the properties required for

the theorem. Note that one might assume that the agent discounts very old observations in

which case these assumptions might not be trivial.

The set Dk
s is the region of asymptotic stability of g and exists by lemma (C).

The limit f (�x) can be calculated:

f (�x) � lim
t!1

EQ (t; �x; �'t (�x)) = lim
t!1

Q (t; �x; �'t (�x))

=

2
64 �R�1 �d

�
�P � �d0 ��

�
col

�
�d �d0
�
� col

�
�R
�
3
75 (7.4.20)

Here �P and �d are the corresponding elements of:

lim
t!1

�'t (�x) (7.4.21)

4The analysis is the same as in Woodford (1990).
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Note that as in Grandmont (1985) and Guesnerie and Woodford (1989), for '0 su�ciently

close to 'k, we have that:

lim
t!1

�'t

�
xk
�
= 'k (7.4.22)

Equation (7.4.20) is �nite by lemma (C), assuming R is non-singular. Ljung (1975)

discusses problems that arise when R is converging to a singular matrix, as must be the

case here. He shows that with a small perturbation, R�1 is bounded and the theory applies.

The last assumption is trivially satis�ed in the et perturbation. Thus Ljung's theorem holds

and convergence occurs if the di�erential equation (L8) is stable. Ljung (1975) shows that

the stability of the di�erential equation is determined by the stability of the �rst element of

equation (7.4.20):

d�

dt
� f1 (�) = �R�1 �d

�
�P (�)� �d0�

�
(7.4.23)

To evaluate the stability of equation (7.4.23), the standard technique is used. Linearizing f1

around the cyclic point gives:

df1

d�

�����
�=�k

= �R�1dk
 
dP

d�
� dk

0

!
(7.4.24)

dP

d�

�����
�=�k

= �kd
k0 k > 1 (7.4.25)

dP

d�

�����
�=��

=
�1

1� �1�
�
1

d�
0

k = 1 (7.4.26)

Here we have used equation (7.4.22), the implicit function theorem, and that �1k = 0 for

k > 1. Simplifying equation (7.4.24) gives:

df1

d�

�����
�=�k

= (�k � 1) I (7.4.27)
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And similarly for the stationary state. Thus the di�erential equation is stable if (7.4.27) has

eigenvalues of modulus less than zero. Since (7.4.27) is a multiple of the identity matrix, all

eigenvalues are equal to �k � 1. Thus we have stability if �k < 1. but this is assumed to be

the case. For the stationary state we have stability for:

�1 <
1

1 + ��1
(7.4.28)

Equation (7.4.28) holds by assumption. Thus the di�erential equation is stable. Thus

�t ! �k by Ljung's theorem. Q.E.D.

7.5. Proof of theorem 1.2

Given the assumptions of the theorem, following the steps of Singer's theorem, we �nd that

every stable cycle of ��1 has a critical point attracted to it. Given that there are at most

n�2 critical points of ��1, there are at most n�2 forward stable k-state cycles. Let k1 : : : kn0

index the unstable cycles. Then n0 � 2 and:

�����1ki

��� > 1 8i 2 n0 (7.5.1)

Since:

��10 (x) =
1

�0 (� (x))
(7.5.2)

Combining these two and using de�nition (2) gives:

j�kij < 1 8i 2 n0 (7.5.3)

Q.E.D.
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