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Abstract

A “fire sale” occurs when the owner of a good offers it for sale at a price
strictly below the price that some buyers would willingly pay for the good.
He does so because the advantage of the quick sale made possible by the lower
price outweighs the higher price that other potential buyers would pay, given
the likely delay in locating these buyers in the latter case. Fire sales can occur
only in illiquid markets. This paper generalizes earlier treatments of illiquid
markets by assuming that the asset can be offered for sale at any time, rather
than only after its owner loses his capacity to operate it profitably. Also, it
specifies that profitability follows a random walk.

In a common usage, a “fire sale” occurs when the owner of a capital (or consumer)
good offers it for sale at a price strictly below the price that some buyers would
willingly pay for the good. He does so because the advantage of the quick sale made
possible by the lower price outweighs the higher price that other potential buyers
would pay, given the likely delay in locating these buyers in the latter case. As
this description makes clear, fire sales can occur only in illiquid markets. In liquid
markets, by definition, a seller can count on locating buyers with the highest valuation
virtually immediately, so he or she has no motivation to sell at a price lower than
such buyers would pay.
Two earlier papers (John Krainer and Stephen F. LeRoy (2002) and David L.

Kelly and LeRoy (2003)) analyzed the valuation of illiquid assets in a search-and-
matching setting. In these models potential buyers with different valuations of the
asset that is offered for sale arrive one per period. The seller must either sell to the
current buyer or incur the costly delay of waiting for a buyer with a higher valuation.
These models produce equilibria in which capital assets are sold at fire sale prices as
defined above.
However, the authors of the cited papers imposed a highly stylized and unrealistic

characterization of the environment. First, it was assumed in both papers that

∗We have received helpful comments from our discussant, Anil Kashyap.
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owners of capital assets have a “match” that governs the operating profit from the
asset (when a match is broken, the owner permenantly loses the ability to operate
the factory profitably). The realization of a Markov chain determines whether the
buyer’s match continues to the next period. The seller was assumed to be able to
offer the asset for sale after losing his match, and only then. This assumption is the
analogue of the corresponding specification in models of labor markets that workers
can search for new jobs only when they are unemployed. The assumption is acceptable
in a job search setting since searching for a new job can plausibly be assumed to
take more time than is available to an already-employed worker. However, the
corresponding assumption in the context of capital markets is unacceptable, except
as a crude approximation: it is hardly reasonable to require that a corporation cannot
simultaneously operate a capital asset and search for a buyer for that asset.
Second, the cited papers assumed that the operating profit generated by a capital

asset is constant as long as the owner’s match continues. As a consequence of this
specification the models miss the important point that the extent of fire sale pricing
depends on operating profit: the lower the profit, the deeper the price discount.
The model presented below remedies both of these defects: first, owners of the

capital asset can offer the asset for sale at all dates, not just after losing their match.
In equilibrium they do so whenever the probability of successful sale is nonzero (which
is the case only when at least some potential new owners can operate the asset more
profitably than the current owner). Second, operating profit is assumed to follow
a random walk, rather than being constant as long as the match continues. This
specification makes it possible to show how the fire sale discount depends on operating
profit and the chance of recovery. The analysis consists of examining an extended
example: generalization is obviously possible, but little additional insight would be
gained by moving to a more abstract setting.
We begin with introductory discussion of liquidity.

1 Liquidity: An Introduction

Liquidity is one of those terms that is extremely widely used despite (or perhaps
because of) the fact that it does not have a single clear meaning. Until recently it
would have been fair to say that the term has no clear meaning. However, in the
last several years a number of papers have appeared that use the term in a way that
is precise, but is still related to earlier and less formal discussions.
It is becoming increasingly clear that no single formal model can capture all of the

various meanings of the term “liquidity”. For example, a firm or financial institution
may have access to positive net present value investments, but may be unable to
obtain financial backing to implement these projects. Such a firm is said to be solvent,
because of the availability of profitable investment projects, but illiquid, because it
cannot finance them. Most such discussions do not provide a clear explanation
of why financing is not forthcoming despite the availability of profitable investment
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projects. However, Bengt Holmstrom and Jean Tirole (1998) provided a model that
has exactly this property. In their model firms have access to an investment project
that is risky, but has positive net present value. Their firms have cash, but they
also borrow from outside investors so as to implement their investment projects on a
larger scale. After the investment decision has been made the firm will face a random
liquidity shock, resulting in abandonment of the project unless new cash is supplied.
Further, firm management has the option to manage diligently, resulting in a high
probability of success, or shirk, resulting in a low probability of success. Shirking
generates a side payment (perks) to management. The assumed parameter values
are such that in equilibrium firms manage efficiently, and the equilibrium financial
contract involves payments to managers to induce them not to shirk.
Combining liquidity shocks with the possibility of shirking on the part of man-

agement results in a surprisingly complex equilibrium. Ex ante, the fact that man-
agement cannot precommit to managing diligently results in misallocation of capital
(positive net present value projects are rejected), reducing the surplus that manage-
ment would otherwise be able to appropriate. Ex post, under intermediate values of
the liquidity shock, firms would like to continue the investment project, because it
has positive net present value, but they are cash-constrained. They have exhausted
their cash, and cannot raise cash from outside investors because the side payment re-
quired to induce diligent management renders the project unprofitable to the outside
investors. Therefore the firm abandons the project. Holmstrom-Tirole’s model is
seen to imply a fully explicit account of why firms might be solvent but illiquid.
As Holmstrom-Tirole noted, their model does not give a complete account of

the term “liquidity”: the term has other connotations that take the analysis in a
different direction. In some discussions a market is said to be liquid to the extent
that sellers can count on quickly locating buyers who can pay a high price. This
was the sense in which the term was used in the introduction. This consideration
points toward the literature on search and matching. The paper of Krainer-LeRoy
cited above contains a model in which endogenous variables widely associated with
liquidity, such as equilibrium expected time to sale and the size of the equilibrium
discount for immediate sale, are related to parameters representing search costs. The
effects were as expected: the higher the liquidity of the market, the shorter the
expected time to sale and the lower the equilibrium discount for immediate sale. In
Kelly-LeRoy an equilibrium is derived in which investors purchase illiquid assets using
defaultable debt. It turns out that the availability of the default option implies that
preexisting debt is not a sunk cost, as it would be if the debt were nondefaultable. The
equilibrium strategy for selling the illiquid asset depends on the level of preexisting
debt: the higher the debt, the more valuable is the option to default, and therefore
the higher is the selling price.
These papers, although also dealing with liquidity, are unrelated to Holmstrom-

Tirole; for example, they do not address the possibility of the joint occurrence of
solvency and illiquidity in the sense discussed above. The conclusion is that expecting
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any single model of liquidity to address all the meanings that the term has acquired
is unrealistic. The model to be presented in this paper views liquidity in the same
manner as its predecessors; it does not broaden the field to include considerations
such as those analyzed by Holmstrom-Tirole.

2 Perfect Liquidity

The best way to begin developing the connection between illiquidity and fire sale
pricing is to analyze a version of our model in which the market for the capital good
is perfectly liquid, meaning that the seller of the capital good can immediately locate
a buyer with the highest possible valuation.
We assume that there exists a single capital good, a factory, and that the profit

accruing to the owner of the factory is a random walk with binomial innovations:

xt+1 = xt +eεt+1, (1)

where eεt+1 = ±ε with equal probability. At each date t the owner of the capital
good will offer it for sale to one potential buyer. The seller sets the price p(xt),
reflecting the presumption that the current owner’s profit rate will affect the optimal
sale price. Each potential buyer of the factory can generate initial operating profit
y that is uniformly distributed between 0 and 1. Potential buyers for whom initial
profit equals 1 obviously have the highest valuation of the factory, and in liquid
markets sellers assume that they have immediate access to buyers with this valuation.
Therefore potential buyers with lower initial profit are irrelevant to the equilibrium
(contrary to the case of illiquid markets, as we will see below). If the profit xt
accruing to the current owner equals or exceeds 1, the value of the factory to the
current owner equals or exceeds its value to any potential buyer, so the current owner
will not offer it for sale (or, equivalently, will offer it for sale at such a high price that
the probability of sale is zero). Accordingly, in that case the valuation function q(x)
obeys the difference equation

q(x) = β

µ
x+

q(x+ ε) + q(x− ε)

2

¶
(2)

for x = 1 + ε, 1 + 2ε, ..., where all agents are risk neutral and have discount rate β.
When x = 1 the owner of the factory knows that if the realization of eε equals −ε
he will attach a lower valuation to the factory than a potential buyer would, since
he would generate profit of 1 − ε, compared with 1 for potential buyers. In that
case he will sell the factory for price p(1). Since immediate sale is assumed, we have
q(1) = p(1). Thus the boundary condition for the difference equation (2) is

q(1) = β

µ
1 +

q(1 + ε) + q(1)

2

¶
. (3)
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The difference equation (2) with boundary condition (3) has solution

q(x) =
βx

1− β
+

µ
β

1− β

¶Ã
βε

1− β +
p
1− β2

!
b
x−1
ε

1 , (4)

where

b1 =
1−

p
1− β2

β
(5)

(see Appendix A). Since 0 < b1 < 1, the value q(x) of the factory converges to
βx/(1 − β) as x → ∞. Figure 1 graphs the value of the factory for β = 0.9 and
ε = 0.1. The vertical distance between q(x) and βx/(1 − β) measures the value to
the owner of the factory of the option to sell it for price q(1). This option, of course,
will be exercised when x = 1 and eε = −ε, and only then.
The value of the option is highest for low values of x, as the diagram indicates.

The convergence of q(x) to βx/(1− β) reflects the fact that the value of the option
to sell for price p(1) when x = 1 − ε has negligible value when x is high. This
is so because even though x will eventually drop to 1 − ε with probability 1, this
event is likely to occur only in the very distant future. It contributes little to the
current value of the factory, due to discounting. Profitability x cannot fall below
1− ε because the realization eε = −ε results in immediate sale when x = 1.
There also exists a continuum of solution paths that do not converge to βx/(1−β)

(these paths occur when the second root b2 of a characteristic equation has nonzero
coefficient; see Appendix A). Along the nonconvergent paths the factory has a posi-
tive or negative bubble. Following precedent, we exclude these bubble paths.
This example makes clear that in liquid markets there are no fire sales: for x > 1

no price exists that is mutually agreeable both to the current owner and any potential
owner, while in the case x = 1 − ε the owner will sell for price q(1), the maximum
price that buyers are willing to pay.

3 Illiquid Markets

In illiquid markets the owner of the factory cannot count on locating a buyer with
maximal operating profit immediately. Therefore potential buyers with initial profit
less than 1 are relevant to the equilibrium, in contrast to the case of perfect liquidity.
Following Krainer and LeRoy (2002) and Kelly and LeRoy (2003), we assume that
each period one and only one potential buyer is available. Buyers know the realization
of their initial profit rates, whereas the seller knows only the distribution of initial
profit rates. If the potential buyer purchases the factory, the profit rate will evolve
from the buyer’s initial profit level according to (1), with y replacing xt, while if he
does not, the would-be seller will continue to operate the factory, with profit evolving
from xt according to (1).
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The seller posts a take-it-or-leave-it offer, which the buyer will accept if the profit
he can generate operating the factory is high enough to justify purchase. The seller
will only offer the factory for sale at a price strictly higher than the valuation justified
by his own profit rate, since there would be no point in selling otherwise. Conse-
quently, as before, when x > 1 no potential buyer can generate as much profit as the
current owner of the factory, so the factory will not be sold. When x < 1 there exist
potential buyers whose initial profit exceeds that of the current owner, implying the
possibility of sale. The owner will offer the factory for sale at a price that balances
the probability of sale, which depends on the sale price, against the potential capital
gain generated as the difference between the price and the seller’s valuation. One
expects that the lower the value of xt, the greater the fire sale discount, and this
turns out to be the case in equilibrium.
A set of values of x, bounded above by 1, exists such that for those values of x the

factory will be offered for sale at a price such that the probability of sale is strictly
between 0 and 1. Any of these values of x can occur in equilibrium if earlier attempts
to sell fail because of the low initial profits of potential buyers, and if the seller’s profit
innovations are negative. However, if profitability is negative and sufficiently high in
absolute value–denote this level x–the owner will set a price such that the factory
sells with probability 1 at that level of profitability. The critical level of profitability
x satisfies

q(0) = p(x), (6)

so that even a buyer with y = 0 will break even if he purchases the factory. Since po-
tential buyers’ initial profitability is bounded by 0 and 1, it follows that x constitutes
a lower bound on the profit rates that can occur in equilibrium.
In an illiquid market the seller’s problem, to determine the price at which to offer

the factory for sale, is nontrivial. To solve it, let q(x) be the value to the seller of
the factory when profit equals x. Because the seller chooses sale prices to maximize
the value of the factory, q(x) obeys

q(x) = βx+ max
p(x+ε),p(x−ε)

β

2
(λ(x+ ε) + λ(x− ε)) , (7)

where λ(x+ ε) and λ(x− ε) are the values of the factory conditional on the high and
low profit innovations, respectively, given by

λ(x) = µ(p(x))p(x) + (1− µ(p(x)))q(x). (8)

As in the case of liquid markets, the convention on notation presumes that the seller
learns the realization of eε before setting the sale price. The sale price is p(x+ ε) or
p(x − ε) and the probability of sale as a function of the seller’s price is µ(p(x + ε))
or µ(p(x− ε)). The function µ(p) is determined by the solving the buyer’s problem,
and is taken as given by the seller.
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The probability of sale is determined by the sale price and the distribution of the
random variable ey denoting the buyer’s initial profit. The probability of sale equals
the probability that the buyer’s initial profit exceeds a reservation profit rate y∗ which
is such that the value of the factory to the buyer just equals its sale price. If ey is
distributed uniformly on [0, 1], we have:

µ(p(x)) = 1− y∗(p(x)), (9)

where y∗ satisfies

p(x) = q(y∗). (10)

We computed the equilbrium, again taking β = 0.9 and ε = 0.1. An outline
of the solution algorithm is provided in Appendix B. Figure 2 shows equilibrium
values of q(x) plotted against the upper asymptote βx/(1 − β) and the lower limit
β(x + q(0)), which is reached when x = x. Figure 3 plots q(x) against p(x) and
µ(x). As expected, the value of the factory is an increasing function of profitability.
For very high values of x we have that q(x) approaches βx/(1− β), again reflecting
the facts that the option to sell has negligible value for high values of x, and that
the solution algorithm excluded equilibria with bubbles. For values of x slightly
above 1, q(x) exceeds βx/(1 − β) by nonnegligible amounts; the reason here is the
same as in the preceding section. For x < 1, sale of the factory becomes possible.
The seller offers it for sale at a price approximately halfway between q(x) and q(1)
(when x is near 1), since doing so maximizes the expected profits from sale (a similar
phenomenon was noted by Krainer-LeRoy (Krainer and LeRoy, 2002)).
When profitability declines below 1, the sale price is reduced below q(1) = p(1) =

9.503. The difference between p(1) and p(x) represents a fire sale discount. For
x = 0 the seller is aware that all potential buyers can earn higher profit than he can.
However, as a monopolistic seller he sets a sale price that will prevent sale to buyers
with low (but positive) y so as to exploit potential buyers with high y. Also, the
seller makes appropriate allowance for the fact that potential buyers are aware that
they too will have the option to offer the factory for sale at a higher price, so even a
buyer with zero profitability would assign positive value to the factory based on the
fact that he could offer it for sale in the next period.
When profitability declines to x= −1.340 the seller prices the factory to sell with

probability 1. This event, the ultimate fire sale, occurs at a sale price of 5.790. The
seller is aware that at sale prices higher than 5.790, potential buyers with zero or very
low profitability will be deterred from purchasing the factory, implying that the high
rate of losses may continue. Correspondingly, there is no reason to offer the factory
for sale for a price lower than 5.790 because even buyers with initial profitability of
zero will purchase it at that price.
One advantage of modeling profitability as a random walk is that it allows an easy

analysis of the effect of the variability of profits on the value of the factory. Figure
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4 displays q(x) for various values of ε. As is clear, for fixed x, q(x) increases with ε.
This occurs as a consequence of the convexity of q(x): when ε is high the option to
sell is more valuable than when ε is low. The same phenomenon–that the price of an
option increases with the variance of the price changes in the underlying security–is
familiar from options theory.

4 Parametrizing Illiquidity

The next exercise is to investigate the effect of specifying more or less illiquidity on
the equilibrium pricing strategy. Since we are maintaining the assumption that one
and only one prospective buyer arrives per period, the natural way to alter liquidity
is to vary the length of the period (here we follow Krainer and LeRoy (2002)). We
expect that when the period is short, so that buyers arrive rapidly, the seller will set
a high price. In that case sale in any period occurs with low probability. This is
acceptable to the seller because if the current buyer declines to buy, a new prospective
buyer will be along shortly. Krainer-LeRoy’s finding that the expected time to sale
will be low in highly liquid markets also occurs here. In contrast, in illiquid markets
sellers who operate the factory unprofitably will set a lower price than they would if
liquidity were higher, since failure to sell to the current buyer implies that the current
low rate of profit will persist for a relatively long time.
To parametrize illiquidity, we refer to the unit length of time as the year. In the

preceding section one buyer arrived per year. Now we assume instead that n buyers
arrive per year, so that the next buyer will arrive 1/n years after the current buyer.
This necessitates several changes in (7). First, the innovations in profitability are
±εp1/n rather than ±ε, since that assumption preserves the variance of the annual
innovation in profitability at ε2. Second, we replace the discount factor β by β1/n

so that the annual discount factor remains equal to β. Third, since we continue to
measure profit x at annual rates, it is necessary to divide x by n. Thus if we define
q(x, n) as the value of a factory with annual profitability x when the length of the
period is n, we have

q(x, n) = β1/n
x

n
+

β1/n

2
max

n
λ(x+ ε

p
1/n), n) + λ(x− ε

p
1/n), n)

o
, (11)

where λ(x, n) is given by

λ(x, n) = µ(p(x, n))p(x, n) + (1− µ(p(x, n)))q(x, n). (12)

Here the maximum is taken over all possible values of p(x+ε
p
1/n) and p(x−εp1/n).

Figure 5 shows q(x, n) for various values of n. The plots are as expected: for any
value of x the factory is worth more in liquid markets than illiquid markets. This
makes sense: the factory can be sold more quickly and for a higher price in liquid
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markets, so for fixed x it is worth more in liquid markets. For any x the value of the
factory less the value of the sale option is β1/nx/[n(1− β1/n)]. This value increases
with n, approaching an upper asymptote of x/ ln(1/β), as is readily verified using
L’Hôpital’s rule. This expression is just the value of a perpetuity with flow dividend
x, as is evident from the observation that the discount rate ρ is related to the discount
factor β by β = e−ρ.
The level of profitability at which sale occurs with probability 1, x(n), approaches

1 as n goes to infinity. The reason is that in highly liquid markets even sellers
who can operate the factory with fairly high profit (but below 1) are able to sell it
quickly to prospective buyers with still higher profitability. In the limit equilibrium
profitability will therefore decline below 1 with probability zero. Finally, we derive in
Appendix C the value of the factory in a perfectly liquid market, q(x,∞), for general
x. The result is analogous to Section 2, in that the value of the factory is composed
of a term representing profitability and a term representing the value of the option
to sell.1

A fire sale occurs when the factory is sold at a price strictly lower than a prospec-
tive buyer who can operate the factory with maximal profitability would be will-
ing to pay. Expressed as a fraction, the discount would be defined by (p(1, n) −
p(x, n))/p(1, n). Alternatively, the discount could be defined relative to the price
that a buyer with profitability 1 would be willing to pay if markets were perfectly
liquid: (p(1,∞)− p(x, n))/p(1,∞). There does not seem to be any reason to prefer
one of these definitions to the other.
Note that under either definition, the fire sale discount is zero in the case of perfect

liquidity.

5 Empirical Evidence

The model just presented generates several empirical implications. First, the prices
at which illiquid assets are sold depend on how profitably these assets are operated
by their current owners. This is so because the owners of these assets are aware
that they may not succeed in selling these assets immediately due to their illiquid
nature. Therefore their pricing strategies balance prospective sale proceeds against
the operating profit the current owners can expect if they fail to sell. In contrast,
if, contrary to the assumption of the present model, the seller knew that there exist

1The exact representation of perfectly liquid markets in the model of this section differs from
that of Section 2. Here perfect liquidity occurs only in the limit, when time is continuous and
profitability follows a Wiener process. In Section 2 we maintained the discrete time setting and
assumed perfect liquidity directly. The model of Section 2 has the advantage that it is easier to
understand, whereas the model of this section has a more explicit justification as a limit of the model
for illiquid markets.
Most properties of the equilibrium are the same in the two cases. For example, both specifications

imply that in equilibrium profitability falls below 1 with zero probability.
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many potential buyers with higher valuations than he has, as in liquid markets, he
could sell the assets using an auction with no reservation price. In that case the sale
price would not depend on the seller’s valuation. Second, an easy extension of the
model presented here would show that if the seller has information about different
buyers’ valuations, the model predicts that that information will be reflected in sale
prices. This is so because the seller’s guess about the buyer’s valuation affects the
probability of sale.
Todd C. Pulvino’s recent study (Pulvino, 1998) of sales of used aircraft by airline

gave strong support to these predictions, although Pulvino interpreted his results
differently than we will here. Pulvino defined fire sales as liquidations at prices be-
low fundamental value. The presumption apparently was that fundamental value is
the same for all agents.2 Such sales occur because of the “financial distress” of the
selling firm, a concept that we did not make use of in the present paper. Pulvino
adopted the analysis of liquidation developed by Andrei Shleifer and Robert Vishny
(1992). Shleifer-Vishny proposed that fire sales will occur when most firms in an
industry are cash-constrained, and therefore are willing to sell industry-specific assets
to outsiders for less than their fundamental value. Pulvino found that variables pur-
portedly measuring the extent to which airlines were cash-constrained (such as debt
ratios) were correlated with the prices of used aircraft: financially constrained airlines
received lower prices than those which were not financially constrained. Further,
during recessions airlines are more likely to sell aircraft to outsiders, such as financial
institutions than during periods of prosperity, and when they do so they receive lower
prices.
Pulvino interpreted these findings as supporting the Shleifer-Vishny account of

fire sales. However, his results can also be interpreted from the vantage of the model
developed here, in which firms are never financially distressed in the sense of Shleifer
and Vishny. Variables that Pulvino interpreted as measuring financial distress are
surely highly correlated with profitability: why would an airline’s balance sheet
deteriorate if it is able to operate its aircraft profitably? If balance sheet variables
are interpreted as measuring profitability, the model of this paper predicts exactly
the negative correlation between indebtedness and sale prices that Pulvino found.
Pulvino’s finding that sales of aircraft to financial institutions occurred at low

prices is also as expected. When the buyer of used aircraft is an airline, the seller
reasonably presumes that the buyer can make profitable use of the aircraft being
sold, and sets their prices accordingly. On the other hand, when the buyer is a
financial institution which is planning on mothballing the aircraft until the market
turns around, the seller knows that the buyer’s decision is based entirely on projected
future resale value, resulting in lower prices. The model of this paper could readily be
extended to cover this case by specifying that some prospective buyers can credibly
precommit to some fixed profitability rate, such as zero, that is below the average of

2In contrast, in the model of this paper successful sale occurs at a price that is below the
fundamental value of the buyer but above that of the seller, so that both parties gain from the sale.
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other buyers’ profitability. Depending on the sellers’ profitability, sellers might be
willing to sell to such buyers at lower prices.

6 Conclusion

The results of this paper show that fire sale discounts occur in illiquid markets because
the seller, who is unable to operate the factory as profitably as other owners could,
wishes to locate a buyer more quickly than would be likely to occur in the absence of
a discount. In illiquid markets fire sales may involve a sizeable discount, whereas in
liquid markets they involve only a small discount, since a small discount is sufficient
to ensure quick sale.

Appendix A: Solution to Model of Section 2

The evolution of the value of the factory under perfect liquidity is described by

q(x) = βx+
β

2
q(x+ ε) +

β

2
q(x− ε). (A.1)

Let t = x/ε. Then (A.1) becomes

q(εt) = βεt+
β

2
q(ε(t+ 1)) +

β

2
q(ε(t− 1)). (A.2)

Defining q(εt) as qt, it is seen that (A.2) is equivalent to the difference equation

0 = 2εt+ qt+1 − 2
β
qt + qt−1. (A.3)

We can write the boundary condition (3) for x = 1 (or t = 1/ε):

q1/ε = β

µ
1 +

q1/ε+1 + q1/ε
2

¶
, (A.4)

or
q1/ε+1 = (

2

β
− 1)q1/ε − 2. (A.5)

Equation (A.3) has complementary function

qct = A1b
t
1 +A2b

t
2, (A.6)

where b1 = (1 −
p
1− β2)/β and b2 = (1 +

p
1− β2)/β, are the roots of the

polynomial

0 = b2 − 2
β
b+ 1. (A.7)
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Equation (A.3) has particular solution

qpt =
β

1− β
εt. (A.8)

The general solution is

qt = qpt + qct =
β

1− β
εt+A1b

t
1 +A2b

t
2. (A.9)

Assuming that bubbles can be excluded, we are interested in the solution for which
qt converges to βεt/(1− β). Since b2 > 1, this can only occur if A2 = 0.
By setting t = 1/ε and t+ 1 = 1/ε+ 1 in (A.9), we have

q1/ε =
β

1− β
+A1b

1/ε
1 (A.10)

and

q1/ε+1 =
β(1 + ε)

1− β
+A1b

1/ε+1
1 , (A.11)

respectively. Solving (A.10) for A1 results in

A1 =

µ
q1/ε − β

1− β

¶
b
−1/ε
1 . (A.12)

Equating the right-hand sides of (A.5) and (A.11), using (A.12) and solving for
q1/ε gives

q1/ε =

µ
β

1− β

¶Ã
1− β(1− ε) +

p
1− β2

1− β +
p
1− β2

!
. (A.13)

We then have:

A1 =

µ
β

1− β

¶Ã
βε

1− β +
p
1− β2

!
b
−1/ε
1 . (A.14)

Thus the solution evolves according to

qt =
β

1− β
εt+A1b

t
1, (A.15)

=
β

1− β
εt+

µ
β

1− β

¶Ã
βε

1− β +
p
1− β2

!
b
t−1/ε
1 . (A.16)

Setting t = x/ε and qt = q(x) results in

q(x) =
βx

1− β
+

µ
β

1− β

¶Ã
βε

1− β +
p
1− β2

!
b
x−1
ε

1 (A.17)
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which converges to

q(x) =
βx

1− β
(A.18)

as x increases since b1 < 1.

Appendix B: Solution Algorithm

We first transformed the seller’s decision from setting a sales price to an equivalent
choice of the minimum valuation buyer who will buy the factory. Given a sales price
of ph, the buyer with the lowest valuation who will buy the factory has valuation xh,
where q(xh) = ph, and the probability of sale is 1−xh. Rewriting the seller’s problem
(7) gives:

q(x) = βx+
β

2
max
xh,xl

©
(1− xh)q(xh) + xhq(x+ ε) + (1− xl)q(xl) + xlq(x− ε)

ª
.

(B.1)
This change makes possible an analytic solution to the buyer’s problem, in contrast
to the formulation of Equation (7), which requires a numerical solution.
Our solution algorithm begins with the initial valuation function q0(x), given by

q0(x) = max

½
βx

1− β
, βx

¾
. (B.2)

Here q0(x) is a lower bound for q(x) (see Fig. 2). Given q0(x), we computed the
optimal offers xh and xl for a grid of possible values of x and substituted the solutions
into the objective function to obtain q1(x):

q1(x) = βx+
β

2
max
xh,xl

©
(1− xh)q0(x

h) + xhq0(x+ ε) + (1− xl)q0(x
l) + xlq0(x− ε)

ª
.

(B.3)
We then approximated q1(x) with a function bq1(x) that is differentiable and that
converges to βx plus a constant for low values of x and to βx/(1− β) for high values
of x. The following function works:

bqi(x) =
βx

1− β
g(x) + (βx+Ai) (1− g(x)) + g(x) (1− g(x))h(x;Bi) (B.4)

g(x) =
1

1 + exp(−x) (B.5)

h(x;Bi) =
nX

j=0

Bijx
j (B.6)

Here Ai is a scalar and Bi is a vector of parameters which are estimated from qi(x).
We then computed

13



qi(x) = βx+ max
p(x+ε),p(x−ε)

β (λ(x; bqi−1) + ν(x; bqi−1)) , (B.7)

and repeated until kqi(x)− qi−1(x)kx < 0.0001 under the sup norm.

Appendix C: Solution to Model of Section 4

We consider two cases, x < 1 and x ≥ 1. For the former case, note that as n
increases, the number of buyers seen by the seller in any positive period of time
approaches infinity. Thus the probability of finding in any positive period of time a
buyer with profitability greater than any fixed y < 1 approaches 1. Therefore the
seller will optimally choose strategies xh(n) and xl(n) that are arbitrarily close to 1 as
n→∞, and the probability of finding a buyer in any finite period of time approaches
1. In the limit for x < 1 the factory can be sold in neglible time to a buyer with
valuation equal to one. Hence we have

q(x,∞) = q(1,∞), x < 1. (C.1)

For x ≥ 1, the factory will not be sold. Therefore q(x, n) obeys

q(x, n) = β1/n
x

n
+

β1/n

2

³
q
³
x+ ε

p
1/n, n

´
+ q

³
x− ε

p
1/n, n

´´
, x > 1 (C.2)

and

q(1, n) ≈ β1/n
1

n
+

β1/n

2

³
q
³
x+ ε

p
1/n, n

´
+ q (1, n)

´
for n large. (C.3)

Notice that these equations take the same form as in the perfect liquidity case of
Section 2, and are identical in the special case n = 1. Therefore we can follow the
same steps as in Appendix A to get

q(x, n) =
β1/nx

n(1− β1/n)
+

β1/nx

n(1− β1/n)

 β1/nε
p
1/n

1− β1/n +

q
1− β2/n

 b
x−1

ε
√
1/n

1 , (C.4)

where b1 is defined by

b1 =
1−

q
1− β2/n

β1/n
. (C.5)

Both of these expressions agree with their counterparts in Appendix A for n = 1.
The limit is

lim
n→∞

q(x, n) = x (log(1/β))−1 + 2−1/2 (log(1/β))−3/2 ε ·

exp

½
−21/2 (log(1/β))−1

µ
x− 1
ε

¶¾
, x ≥ 1. (C.6)
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Appendix D: Figures
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Figure 1: Equilibrium Price; Perfect Liquidity

15



-1 -0.5 0 0.5 1 1.5

4

6

8

10

12

14

Fit = x

V
al

ue

Value of the Factory and Limiting Functions, Illiquid Case, β=0.9, ε=0.1

q(x)
β x/(1- β)
β x + β q(0)

Figure 2: Equilibrium Value; Illiquidity
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Figure 4: Equilibrium Value; Variance of Profit Innovations
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Figure 5: Equilibrium Value, varying liquidity
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