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Abstract

We consider a two period model of optimal regulation of a firm subject to marginal compli-

ance cost shocks. The regulator faces an asymmetric information problem: the firm knows

current compliance costs, but the regulator does not. Both the regulator and the firm are un-

certain about future costs. In our basic framework, the regulator may not offer payments to

the firm; we show that the regulator can vary the strength of regulation over time to induce

the firm to reveal its costs and increase welfare. In the optimal mechanism, the regulator

offers stronger (weaker) regulation in the first period and weaker (stronger) regulation in the

second period if the firm reports low (high) compliance costs in the first period. Low cost

firms expect compliance costs to rise in the future, and thus prefer weaker regulation in the

second period. High cost firms expect costs to fall in the future and thus prefer regulation

which becomes more strict over time. Thus the regulator offers the low (high) cost firms

slightly weaker (stronger) regulation in the second period in exchange for much stronger

(weaker) regulation in the first period, thereby “timing” the regulation. If the regulator can

make payments, then the optimal mechanism to some degree times the regulation as long as

a positive cost of funds exists. If the cost of funds is high enough, then under the optimal

mechanism the regulator will not use payments and use our timing mechanism exclusively.



1 Introduction

We consider a two period model of optimal regulation of a firm subject to marginal compli-

ance cost shocks. The regulator faces an asymmetric information problem: the firm knows

the current compliance cost, but the regulator does not. Both the regulator and the firm

are uncertain about future compliance costs. Standard economic theory suggests making

payments or rebates conditional on the benefits or costs of regulation. Frequently, however,

regulators are prohibited or otherwise unable to make monetary payments to firms. Regula-

tors do typically have considerable latitude on how regulations are implemented: regulators

may interpret vague statutes weakly or strictly, grant waivers to delay implementation of

the regulation, shape future legislation so that regulations become more strict or weak,

and/or vary enforcement. We show that the regulator can vary the strength of regulation

so as to induce the firm to reveal the cost of compliance and increase welfare, by explicitly

characterizing the optimal regulatory policy.

In particular, in the optimal mechanism the regulator offers stronger regulation in the

current period and weaker regulation in the future if a firm reports low compliance costs in

the current period. Conversely, firms reporting high costs receive regulation that becomes

more strict over time. We refer to our mechanism as “timing” the regulation. At first

glance, timing the regulation may seem counterintuitive. Since compliance costs are convex,

a policy that strengthens regulation in the current period and weakens regulation in the

next period by an equal amount is more costly than an average level of regulation in both

periods. However, the regulator need only offer firms reporting low costs today slightly

weaker regulation in the future in exchange for much stronger regulation today to induce

the low cost firms to reveal their type. This is because a firm that receives a below average

compliance cost shock in the current period expects higher costs in the future. Thus, low

cost firms prefer to be regulated lightly in the future, and so the regulator need only offer

slightly weaker future regulation to induce low cost firms to reveal their type. Similarly,

firms receiving a higher than average cost shock expect costs to fall over time, and thus

prefer regulation that is initially weaker. As will be clear in the paper, timing the regulation

not only improves welfare by making regulation stronger when compliance costs are low, but

also improves welfare by inducing firms to reveal cost shocks.

A large literature exists which develops mechanisms that induce firms to reveal compli-

ance cost shocks and raise welfare. Standard economic theory (see for example, Roberts

and Spence 1976, Kwerel 1977) suggests the first best (full information) level of regulation

may be achieved in competitive environments via hybrid tax/subsidy or permit/subsidy
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mechanisms. For example, Kwerel (1977) suggests a permit/subsidy mechanism whereby

competitive firms first purchase permits whose total supply is determined by firms’ reported

compliance costs. Competitive firms can only exaggerate marginal costs by buying permits

at a price above their marginal costs. The government then offers to buy back unused per-

mits at the sale price. If firms exaggerate marginal costs, they will sell back enough permits

so that the remaining supply of permits is less than the first best optimum. Firms are there-

fore better off reporting truthfully, as exaggerating costs leads to fewer permits and higher

marginal compliance costs. Kwerel’s mechanism, however, requires firms to be competitive

price takers and to anticipate that other firms will truthfully reveal their costs.

Dasgupta, Hammond, and Maskin (1980), Kim and Chang (1993), Montero (2008), and

Spulber (1988) achieve the first best full information level of regulation with potentially

non-competitive firms via tax/subsidy or permit/subsidy mechanisms where the subsidy

is linked to the residual marginal benefit of regulating each firm.1 For example, Montero

(2008) proposes an elegant mechanism whereby firms first bid for permits via a uniform-price

sealed-bid auction. The regulator then rebates a fraction of the auction revenue to the firm

conditional on the residual marginal benefit of regulating each firm. In this way, the benefits

of regulation are transferred to the firm, and the firm’s problem becomes identical to the

regulator’s. Firms then optimally choose the first best (full information) level of regulation.

Montero’s rebate depends only on the marginal damages, therefore firms choose the first

best level of regulation as a dominant strategy.2

The degree to which each of these mechanisms are used, or could be used, in practice

varies. Mechanisms that rely on perfect competition rule out a host of highly regulated

industries, such as electricity. Similarly, firms are not typically asked to report each other’s

costs since cost information is likely private (Wiggins and Libecap 1985). However, Montero’s

mechanism is consistent with some regulations.3

Nearly all mechanisms require that the regulator extract payments from the firm and then

credibly commit to make rebates back to the firm.4 If the regulator has access to a revenue

1In Spulber (1988), the regulator cannot always achieve first best since the firm’s total tax payments
constrain subsidies in the form of tax credits.

2Other mechanisms (Varian 1994, Duggan and Roberts 2002) rely on the assumption that firms know
each other’s marginal costs. Given this unlikely assumption, however, the regulator can simply require firm’s
to report all other firm’s costs, and punish firms if the results do not agree (Cremer and McLean 1988).

3NOx permit allocations in Sweden have a rebate based on market share (Gersbach and Requae 2004).
In the US, the EPA holds back 2.8% of grandfathered SO2 allowances from firms, and then auctions them,
rebating the revenue back to the firms (Joskow and Schmalensee 1998).

4The exception are those mechanisms requiring firms to know and report each other’s costs. Kwerel’s
mechanism does not use payments to the firm in equilibrium.
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stream and legal authority to make payments from that revenue stream, then payments are

plausible. For example, sulfur dioxide permit auction revenue provides a plausible funding

source and the EPA has the authority to design the auction with a rebate. Mason and

Plantinga (2010) also proposes a plausible mechanism whereby payments for carbon offsets

are subject to the regulator taking back some payments via a clawback.5

Most regulatory environments, however, do not feature payments from the firm to the

regulator, nor a legal framework whereby regulators subsidize firms that report low com-

pliance costs. All command-and-control regulation, for example, by definition involves no

payments or subsidies. Similarly, permit based regulation in which permits are grandfathered

or otherwise freely allocated do not result in truthful information revelation under most of

the above mechanisms.6 Even if freely allocated permits are interpreted as the end result

of a payment and a rebate, then initial allocations of permits based on historical pollution

emissions is inconsistent with the idea of rewarding firms that report low compliance costs

with lower net payments.

In contrast, regulators typically have considerable discretion over the interpretation of

vague statutes, the degree to which existing regulations are enforced, granting waivers,7 the

ability to shape future legislation through cost studies, and other decisions affecting the

strength of regulation. For example, “New Source Review” regulation requires that modifi-

cations to a plant which causes a “significant increase” in a regulated pollutant receive an

EPA review that typically forces the plant to adopt the best available pollution control tech-

nology (“routine maintenance” is excepted). Both “routine maintenance” and “significant

increase” are terms that are not precisely defined, and indeed interpretations of this statute

by the EPA has varied over time (Stavins 2006, footnote 90).

In New Source Review and similar command and control legislation, the regulator has

no discretion to set up a permit or tax/subsidy mechanism. Our results show that the

regulator can improve welfare by timing the regulation: offering firms a choice of regulation

that becomes either stronger or weaker over time.

Although our paper is primarily normative, in practice regulators sometimes offer firms

a choice of regulation that either becomes stronger or weaker over time. Joskow and

Schmalensee (1998) provide a detailed examination of the rules of sulfur dioxide permit

trading system created by the 1990 Clean Air Act. One provision gives utilities that install

5A legislator may have the freedom to design a bill with a payment of an initial allocation of permits.
The allocation would have to be tied to the residual marginal benefits of regulating each firm, however.

6See Montero (2008) for a formal argument. Montero’s mechanism is an exception.
7The provision of the Patient Protection and Affordable Care Act phasing out annual payment limits has

been temporarily waived for 729 companies (Department of Health and Human Services 2011).
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scrubbers future “bonus” permit allocations. Firms that install scrubbers clearly face more

costly regulation up front, and weaker regulation in the future, since at a minimum their

allocation of permits rises over time. Conversely, by declining the option, firms save the

up front cost of scrubbers, but do not gain bonus permits later. Thus declining the option

results in regulation which becomes stronger over time.8

Even if the regulation is such that payments to and from the firm are possible, the

absence of lump sum taxes means that payments to the firm could instead be used to reduce

labor or other distortionary taxes (Bovenberg and Goulder 1996). As shown by Montero

(2008), the regulator using payments then faces a tradeoff between information revelation

and the distortionary cost of government funds. Therefore, with a distortionary cost of funds,

payment-based mechanisms no longer achieve the first best. Our mechanism, which trades

off current and future distortions, also does not achieve the first best. Nonetheless, we show

that with any positive cost of funds, the optimal regulation involves some degree of timing,

even when payments are available. Further, we derive a cutoff cost of funds such that, if the

cost of funds is higher than the cutoff, the optimal regulation policy does not use payments

at all and instead uses our timing mechanism exclusively.9

The timing mechanism takes advantage of firm uncertainty over future cost shocks. Many

authors consider time varying compliance cost shocks which fit naturally into our framework.

Newell and Pizer (2003) and Karp and Zhang (2005) evaluate tax and permit based regulation

with time-varying cost shocks. Kelly (2005) evaluates tax and permit based regulation when

firms receive productivity shocks. Heutel (2009) and Fischer and Springborn (2011) evaluate

tax and permit based regulation for climate change when firms are subject to productivity

shocks which follow an autoregressive process. Productivity shocks fit naturally into our

framework since firms know current, but not future, shocks. Our paper extends this literature

by deriving the optimal dynamic regulation with dependent cost shocks. A number of other

natural interpretations of time varying costs shocks exist. For example, input prices vary

randomly over time and future cost saving innovations are uncertain. In section 4, we show

that our mechanism extends to general cost shock processes, including correlated shocks,

8The Clean Air Act allows pollution permit “banking” (Ellerman and Montero 2007), which also gives
firms some control over the strength of regulation over time. However, we show in section 2.2 that our timing
mechanism yields higher welfare than permit banking, since the timing mechanism induces firms to reveal
cost shocks, while banking does not.

9Our result should not be confused with the dynamic moral hazard literature, in which it is optimal
for the principal to use both payments and continuation values to reward agents. Here, the gains to the
principal from using the continuation value as compensation are not driven by “payment smoothing.” In our
mechanism, payments in the form of weaker regulation are not perfect substitutes across time to the agent,
which the principal exploits to gain information.
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such as productivity shocks.

Our mechanism relies on commitment: the ability of the regulator to commit to weak

(strong) regulation in the future for firms that reports low (high) costs today.10 A number of

papers (e.g. Freixas, Guesnerie, and Tirole 1985, Yao 1988) study models in which marginal

costs are fixed and not subject to shocks. In this case, the regulator who learns a firm

has permanently low costs has an incentive to renege on a commitment to weak regulation

and instead impose the optimal regulation given the known low compliance costs in the

second period (the “ratchet effect”). In contrast, the incentive to renege is relatively minor

in our mechanism. If cost shocks are iid, then the regulator who learns the firm has low

costs in period one has only prior information about the firm’s costs in period two. The

regulator thus does not desire to ratchet up the regulation to the optimal level given known

low compliance costs in period two, but instead only desires to strengthen the regulation to

the optimal level given the prior.

One way to solve the commitment problem is through contracts. Baron and Besanko

(1987) argue that relationships between regulators and public utilities are in practice char-

acterized by contracts whereby the regulator agrees to give the firm a minimum (“fair”)

profit, and the firm agrees not to withdraw from the relationship as long as the regulator

maintains the minimum profit.11 In addition, if the discount factor is sufficiently high and

the regulator and firm have repeated interactions, then commitment is possible (Yao 1988).

For this reason, we have in mind repeated interactions between a career regulator and firm,

rather than a more temporary political appointee.12

Many regulations involve repeated long run interactions between the firm and regulator

(Baron and Besanko 1987). Indeed, many studies of such long run relationships argue the

result is regulatory capture: because the regulator and the firm have repeated interactions,

the regulator is more responsive to the firm’s needs and regulation tends to be weak (Besley

and Coate 2003).13 Our model provides an alternative explanation to regulatory capture.

10All permit-subsidy schemes require commitment at some level, since otherwise the regulator would renege
on the subsidy.

11Conversely, Hahn (1989) notes that some permit regulations are written specifically so that the regu-
lator may devalue existing permits without compensation. For example, the sulfur dioxide permit system
legislation states that the EPA may abandon the permit system without compensation at any time. How-
ever, Joskow and Schmalensee (1998, footnote 4) note that the EPA issued permits several years ahead as a
commitment device, making it politically difficult to renege (indeed, the sulfur permit system has now been
in place for 20 years and the EPA has not reneged).

12Guasch, Laffont, and Straub (2008) show the probability of contract renegotiation between regulators
and firms in Latin America decreases significantly when a regulatory agency negotiates the original contract.
Besley and Coate (2003) show firms extract more rents from elected than appointed regulators.

13Laffont and Tirole (1991) shows that politicians may weaken the power of regulators if regulatory capture
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What looks like lax regulation may simply be the regulator following through on a com-

mitment. These two hypothesis can be resolved empirically, due to the model’s testable

predicted relationship between past and future regulation for different types of firms.

Although the regulator offers weaker regulation in the second period to low cost firms,

our mechanism maximizes welfare and is thus preferred by households. Furthermore, we

show in section 2.4 that both high and low cost firms weakly prefer our mechanism to the

benchmark level of regulation imposed when the regulator has only prior information about

firm costs. In addition, we describe in section 7 how our mechanism may be implemented

using waivers or credits, which are commonly used in environmental regulation. Therefore,

our mechanism is relatively straightforward to implement in practice.14

Our basic framework assumes the firm has access only to a static method of regulatory

compliance. Suppose the firm can make a dynamic capital investment that complies with the

regulation (e.g. install scrubbers) at lower cost than the static method (e.g. switching from

high to low sulfur coal). A natural concern is that our timing mechanism may cause firms

to under invest in cost-saving capital. We show in section 6 that in fact firms undertake the

socially optimal level of investment, and our mechanism is unchanged except that firms are

now either above and then below a baseline increasing trend in regulatory stringency or the

reverse, depending on the cost shock.15

Section 2 solves for the optimal mechanism in the basic model with one firm and de-

termines the properties of the mechanism. Section 3 does the same when the government

has a cost of funds. Section 4 characterizes the optimal regulatory policy for more general

marginal cost processes, including correlated cost shocks. Section 5 extends the mechanism

to n firms and section 6 considers dynamic investment and declining costs.

2 Model: Two period problem with a single firm

Consider a regulator imposing a level of regulation q on a firm whose compliance costs are

unknown. The strength of regulation is increasing in q; q = 0 represents an unregulated

firm. The function B (q) specifies the benefits of regulation, which we assume are increasing

and concave. The regulator seeks to maximize expected welfare w over two periods, t = 1, 2.

is likely.
14Our mechanism, however, does require prior cost information, whereas Montero’s requires only the

marginal damages.
15Yao (1988) points out that firms may under invest in cost saving R&D if the regulator cannot commit

to strict regulation in the future.
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Let δ be the discount factor, then:

W = E [w (q1, π1)] + δE [w (q2, π2)] , where (2.1)

w (q, π) = B (q)− C (q, π) . (2.2)

Here the compliance cost of the regulation to the firm is C (q, π), which is increasing and

weakly convex in q and increasing in the cost shock π. Throughout the paper, subscripts

on functions denote partial derivatives. We assume π is unknown to the regulator in both

periods. The firm knows the cost shock in the first period, and learns π2 at the beginning of

period two. The cost shock follows an iid Bernoulli process: πt = πL with probability γ and

πH otherwise, for t = 1, 2. Let πL < πH , so πL indicates low compliance costs.16 We assume

Cq (0, πH) < Bq (0), so that some regulation is optimal even if compliance costs are high.

The firm incurs the costs, but not the benefits of regulation. Firm profits are nega-

tively affected by compliance costs, and the expected change in firm profits arising from the

regulation is:

wf (q1, q2, π1) = −C (q1, π1)− δE [C (q2, π)] . (2.3)

An example is environmental regulation. If E is emissions, with uncontrolled emissions

equal to E0, then q = E0 − E can be interpreted as regulation implementing an emissions

standard of E or a supply of E emissions permits. Similarly, C (E0 −E, π) is the cost of

reducing emissions and D = D0 − B (E0 − E) are the convex damages from emissions.

2.1 Two Period Contract

The regulator requires the firm to report π̂ in the first period. The firm may report either

low (π̂ = πL) or high (π̂ = πH) compliance costs. The regulator commits to a set of policies

q (π̂), based on the firm’s report. If the firm reports low compliance costs, then the regulator

implements q1L in the first period and q2L in the second period, whereas if the firm reports

high compliance costs, the regulator implements {q1H , q2H}. The regulator cannot condition

regulation in period two on the firm’s report in period two, because the firm would always

report the type with the smallest regulation costs. Clearly a firm with low compliance costs

has an incentive to report high compliance costs to induce the regulator to implement weaker

regulation. We assume that if the firm is indifferent between reporting truthfully or not, the

16We relax the iid assumption in section 4.
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firm reports truthfully.

Incentive compatibility requires that truthful reporting maximizes profits for both types

of firms.

wf (q1L, q2L, πL) ≥ wf (q1H , q2H , πL) , (2.4)

wf (q1H , q2H , πH) ≥ wf (q1L, q2L, πH) . (2.5)

Our strategy is to compute the regulations which maximizes welfare subject to the constraint

that the low cost firm not misrepresent itself as a high cost firm. We will then verify that,

under mild conditions, the solution implies a high cost firm will not wish to claim costs

are low. That is, constraint (2.5) is not binding at the solution of the relaxed problem of

maximizing (2.1) subject to (2.4). Therefore, the Lagrangian for the relaxed problem is:

L = γ ·

[

w (q1L, πL) + δE [w (q2L, π)]

]

+ (1− γ) ·

[

w (q1H , πH) + δE [w (q2H , π)]

]

+

λ ·

[

wf (q1L, q2L, πL)− wf (q1H , q2H , πL)

]

(2.6)

Because the mechanism is incentive compatible, the objective function is formulated antici-

pating truth telling on the part of the firm.

The first order conditions are:

1

1 + λ
γ

Bq (q1L) = Cq (q1L, πL) (2.7)

1

1− λ
1−γ

Cq(q1H ,πL)
Cq(q1H ,πH)

Bq (q1H) = Cq (q1H , πH) (2.8)

1

1 + λ
γ

Bq (q2L) = E [Cq (q2L, π)] (2.9)

1

1− λ
1−γ

Bq (q2H) = E [Cq (q2H , π)] (2.10)

C (q1H , πL)− C (q1L, πL) + δ (E [C (q2H , π)]− E [C (q2L, π)]) = 0 (2.11)
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Equations (2.7)-(2.11) define the optimal regulatory structure. Since λ > 0, the regulator is

forced to move marginal benefits away from marginal costs in order to induce truth telling.

To complete the solution we must show constraint (2.5) is satisfied:

PROPOSITION 1 Suppose C is super-modular in [q, π]. Then the solution to problem

(2.6) satisfies condition (2.5).

All proofs are in the appendix. A twice differentiable function is super modular if and only if

the cross partial derivative is positive. Thus we are assuming Cqπ > 0, or that π is a positive

shock to the firm’s marginal costs, which is a standard assumption.

2.2 Properties of the Timing Mechanism

We first derive some properties of the solution, and then use these properties to develop an

intuition of the results. Let

R (q, πH , πL) ≡
Cq (q, πH)

Cq (q, πL)
, (2.12)

define the spread between high and low marginal costs. Two natural benchmarks are the

full information (first best) and prior information regulation policies. The full information

regulations, {q∗L, q
∗

H}, equate the marginal benefits of regulation with the realized marginal

costs:

Bq (q
∗

i ) = Cq (q
∗

i , πi) , i = L,H. (2.13)

The prior information regulation policy, q̄, equates the marginal benefits of regulation with

the expected marginal cost:

Bq (q̄) = E [Cq (q̄, π)] . (2.14)

Clearly, q∗H < q̄ < q∗L. Proposition 2 describes the relationship between the optimal dynamic

mechanism and these benchmarks.

PROPOSITION 2 The solution to the two period problem has the following properties:

2.1. q∗H < q1H < q̄ and q1L < q∗L, and if R is constant in q, then q̄ < q1L.

2.2. q2L < q̄ < q2H .

2.3. 0 ≤ λ ≤ 1− γ.

9



Proposition 2 indicates that the optimal second best period one regulation levels lie

between the no information regulation levels and their full information counterparts. Thus,

first period welfare is higher in the mechanism than under no information regardless of firm

type. Proposition 2.2 specifies the incentive cost of the first period welfare gains. In the

second period, the ex ante optimal level of regulation for both types is q̄, but the low type

receives q2L < q̄ and the high type receives q2H > q̄. These distortions provide the low

cost firm with incentives to accept stronger regulation in the first period. However, the low

cost firm expects higher costs in period two, and therefore values weaker regulation more in

period two. Therefore, the welfare cost of the optimal second period distortions is smaller

than the first period gains. Section 2.3 gives a more detailed intuition.

In period two, the regulator has only prior information about costs and prefers q̄, regard-

less of what the firm reported in the first period. The incentive to renege is therefore more

moderate here than the typical ratchet effect. If able to renege, the regulator would prefer

to set q = q̄ rather than the stronger q = q∗L, as in a model with a fixed type.

2.3 Graphical Intuition

Figure 1 illustrates the intuition when δ = 1 for clarity.17

17A low discount factor means the low cost firm requires more compensation in the form of weaker regula-
tion in the second period. However, the regulator now discounts the welfare loss of weaker regulation for the
low cost type in the second period more relative to the gains in the first period. So the qualitative properties
of the mechanism do not depend on δ.
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q1L

$

qq̄

Cq(q,πH)

Cq(q,πL)

E[Cq(q,π)]

Cq(q,πH)−Cq(q,πL) ·λ/(1− γ)

Cq(q,πL) · (1+λ/γ)

q1H

$

q

Cq(q,πH)

Cq(q,πL)

E[Cq(q,π)]

E[Cq(q,π)] · (1−λ/(1− γ))

E[Cq(q,π)] · (1+λ/γ)

q2H
q̄

Gain of profits when
reporting true costs
(low cost type)

Welfare gain
Welfare loss

q2L

Period 1 Period 2

Bq(q)

Loss of profits when

Bq(q)

reporting true costs
(low cost type)

Figure 1: Intuition for the regulator’s problem.

The typical welfare loss (e.g. the loss with an emissions standard or tradeable emissions

permits) when the regulator has only prior information about firm costs in period one equals

the average (weighted by γ) of the red and blue areas. Suppose the regulator sets the level

of regulation at q̄, which sets marginal benefits equal to expected marginal costs. With

probability γ, the firm has low marginal costs, and thus marginal benefits exceed marginal

costs, creating a welfare loss equal to the area of the bottom blue and red areas. With

probability 1 − γ, marginal costs exceed marginal benefits, and welfare loss is the area of

the top blue and red areas. Now suppose the regulator imposes q1L or q1H depending on the

firm’s report. Given truthful reporting, expected welfare loss falls to the weighted average

of the area of the two red triangles. However, a firm with low costs now gets higher profits

by claiming to be the high cost type. The gain in profits for a low cost firm claiming to be

the high cost type in the first period is the green polygon. Thus the regulator must increase

the return to reporting low costs in the second period to offset the loss in profits in the first

period. Further, the marginal loss to the low cost firm from a marginal increase in q1L is

Cq (q1L, πL).

Looking forward to the second period, all firms expect marginal costs equal to E [Cq (q, π)],

since the actual period two cost shock is unknown in period one. Thus the low cost firm
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expects costs to rise in period two. But then the low cost firm values lenient regulation more

in the second period more than in the first period (the opposite is true for the high cost

firm, which is why the high cost firm is not motivated to report low costs). Conversely, the

regulator has no knowledge of firm costs in either period and is thus indifferent as to which

period has the stronger regulation. By setting q2L < q2H , the low cost firm expects to gain

profits in the second period equal to the area of the green polygon by reporting truthfully.

Thus the regulator must set the area of the two green polygons in Figure 1 to be equal in

order to induce truthful reporting. A marginal decrease in q2L raises expected profits in the

second period by E [Cq (q2L, π)], whereas a marginal decrease in q1L raises expected profits by

only cq (q1L, πL). Therefore, the firm is willing to report truthfully even though the difference

in period one regulation, q1L − q1H , is larger than the difference in period 2. The regulator

can therefore achieve welfare gains in period one at a smaller cost of welfare loss in period

two (the red triangles). The regulator continues to raise q1L − q1H and q2H − q2L until the

weighted average of the areas of the red triangles in period one equal the weighted average

of the red triangles in period two. At this point, welfare gains in period one are small and

welfare losses in period two are high enough to offset the fact that the regulator need only

decrease q2L by δρ in order to achieve a marginal increase in q1L.

2.4 Quadratic Example

To further illustrate the mechanism, consider the following quadratic example:

B (q) = θq −
1

2
q2, (2.15)

C (q) = πq. (2.16)
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Solving equations (2.7)-(2.11) given the functions (2.15)-(2.16) results in:

q1L = q̄ + (1− γ)∆π
δρ2

1 + δρ2
, (2.17)

q1H = q̄ − γ∆π
δρ2

1 + δρ2
, (2.18)

q2L = q̄ − (1− γ)∆π
ρ

1 + δρ2
, (2.19)

q2H = q̄ + γ∆π
ρ

1 + δρ2
, (2.20)

λ =
γ (ρ− 1)

1 + δρ2
, (2.21)

∆π ≡ πH − πL, ρ ≡
π̄

πL

, q̄ = θ − π̄. (2.22)

The degree to which the regulations differ from the no-information benchmark, q̄, depends

critically on the variability of π in two different ways. First, an increase in the cost difference

∆π moves all four optimal regulations away from q̄. As the difference increases, the returns

to implementing the mechanism increase. When the gap is large implementing q̄ results in

large welfare losses, because q∗L and q∗H are far from q̄. Therefore, the regulator moves q1L

and q1H away from q̄, and thus q2L and q2H also move away from q̄ to maintain incentive

compatibility. Second, for large values of ρ,18 the low cost firm anticipates much higher costs

in the second period, and so the regulator need only offer a relatively small weakening of

second period regulation to induce the low cost firm to report truthfully. Thus q1L and q1H

move away from q̄ towards their first best levels for large ρ, as it is cheaper to implement the

mechanism. The effect of ρ on q2L and q2H is ambiguous. On one hand the regulator needs to

weaken (strengthen) the second period regulation less for the low (high) cost firm to satisfy

the incentive constraint, which moves q2L and q2H towards q̄. But because the mechanism

is overall cheaper to implement, the regulator widens the spread in the first period, which

tends to widen the spread in the second period.

The variance of the cost shock also increases the value of the information gained through

the mechanism. With no information, the regulator adopts q̄ each period and expected

welfare is:

W (q̄, q̄) =
1

2
(1 + δ) q̄2. (2.23)

18Here for convenience we use ρ rather than R. Note that ρ = γ + (1− γ)R so the intuition for ρ and R
are the same.
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Whereas, using (2.6), the expected welfare of the optimal mechanism is:

L =
1

2
(1 + δ) q̄2 +

1

2
γ (1− γ)

(

δρ2

1 + δρ2

)

∆π2. (2.24)

Thus the term:

1

2
γ (1− γ)

(

δρ2

1 + δρ2

)

∆π2 (2.25)

represents the regulator’s gains from using the optimal mechanism. With quadratic prefer-

ences, E [q1] = E [q2] = q̄, so the welfare gains arise from reducing compliance costs, rather

than higher benefits of regulation. Welfare is directly proportional to the variance of the

prior, γ (1− γ)∆π2, since an increase in the prior variance directly increases the returns to

acquiring information about firm type. Welfare is also increasing in ρ, since an increase in ρ

makes the mechanism cheaper to implement.

By reporting a low cost shock instead of a high cost shock in period one, the firm expects

profits to rise by

(1− γ)
ρ2∆π2

(1 + δρ2) (ρ− 1)
. (2.26)

in the second period. As ∆π increases, the regulator must increase second period compensa-

tion to the low cost firm, as the regulator moves q1L and q1H away from q̄. The effect of an

increase in ρ on compensation to the low cost firm depends on whether the regulator moves

q1L and q1H far enough away from q̄ so that overall compensation to the low cost firm must

increase despite the decrease in the cost of the mechanism.

Consider finally expected firm profits, which from (2.3) satisfy:

wf (q1L, q2L, πL) = wf (q̄, q̄, πL) , (2.27)

wf (q1H , q2H , πH) > wf (q̄, q̄, πH) . (2.28)

Firms of either type weakly prefer the optimal mechanism over q̄. Therefore, the industry

will support a transition from the prior information policy to the optimal mechanism either

before or after learning the cost shock.
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2.5 Other Mechanisms

Other regulation systems also give firms some discretion to choose the strength of regulation

over time, but do not reveal firm costs, and thus result in lower welfare than our mechanism.

Consider, for example, pollution permit “banking.” In our framework, permit banking regu-

lation requires that firms implement a minimum lifetime level of regulation q̂, but gives firms

the discretion to choose the level of regulation in each period.19 The firm’s problem is then:

max
q1i,q2i

wf (q1i, q2i, πi) , s.t. q1i + q2i ≥ q̂, i = L,H. (2.29)

The firm first order condition is:

Cq (q1i, πi) = E [Cq (q2i, π)] , i = L,H. (2.30)

Banking regulation equalizes expected marginal costs across time for both firms. Equations

(2.7) and (2.9) imply (2.30) holds for the low type, but (2.10) and (2.8) and (2.10) imply

(2.30) does not hold for the high type. Therefore, the optimal timing mechanism equalizes

marginal costs over time for the low type only. Since costs are convex, both the firm and

the regulator desire to equalize marginal costs over time. However, in the optimal timing

mechanism marginal costs are not equal for the high type to discourage the low type from

claiming to have high costs.20 Information revelation allows the regulator to better tailor

regulation to firm costs. The welfare gains resulting from information revelation outweigh the

costs of not equalizing marginal costs over time for the high type, so the timing mechanism

yields higher welfare.21

In other mechanisms (Montero 2008) the firm receives a monetary payment that is in-

creasing in the strength of regulation. Monetary payments induce the firm to reveal costs,

despite the stronger regulation that the low cost firm must endure by reporting low costs.

The monetary payment transfers the benefits of regulation to the firm, inducing the firm to

choose the first best optimal regulation. Here, the regulator transfers benefits in the form of

weaker future regulation to the low cost firm, and the reverse to the firm reporting high costs

in the first period. Varying the strength of regulation in the second period to satisfy the

19For example, using the notation in the paragraph after equation (2.3), the firm receives E = E0 −
1

2
q̂

permits in each period and may both save and borrow permits.
20The high cost type does not want to claim low costs, which is why the regulator is free to equalize

marginal costs over time for the low cost type.
21The optimal banking regulation system could be implemented by adding (2.30) as an extra constraint

to problem (2.6). Since the unconstrained problem does not equalize the marginal costs, the constrained
problem must result in lower welfare.
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incentive constraint creates distortions, so the first best level of regulation does not result.

To contrast our results with the literature using monetary payments, we must monetize

the value of lenient regulation. Suppose we adopt the proposal of Montero (2008), and

specify the following mechanism:

1. The firm reports its type, and specifies a demand for subsidies P̂ (q, π). The firm must

submit demand schedules for both periods in the first period.

2. The regulator sets the subsidy rate to solve P̂ (q, π) = Bq (q).

3. The firm chooses a level of regulation for both periods prior to learning the second

period cost shock, and pays a fraction α (q, π) of the total value of the subsidies back

to the regulator.

Notice that the subsidy is independent of the report, instead the regulator uses the rebate

α to induce truthful reporting. The low cost firm’s problem is thus:

maxq1L,q2L

{

(1− α (q1L, πL)) P̂ (q1L, π) q1L − C (q1L, πL) +

δ
(

(1− α (q2L, πL)) P̂ (q2L, π) q2L − E [C (q2L, π)]
)}

. (2.31)

Or:

maxq1L,q2L {(1− α (q1L, πL))Bq (q1L) q1L − C (q1L, πL)+

δ ((1− α (q2L, πL))Bq (q2L) q2L − E [C (q2L, π)])} . (2.32)

Let:

fL ≡
1

1 + λ
γ

, (2.33)

f1H ≡
1

1− λ
1−γ

1
R

, f2H ≡
1

1− λ
1−γ

. (2.34)

Next, following Montero, we specify:

α (q1L, πL) = 1− fL
B (q)

Bq (q) q
, (2.35)
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which results in the firm’s problem simplifying to:

max
q1L,q2L

{fLB (q1L)− C (q1L, πL) + δ (fLB (q2L)− E [C (q2L, πL)])} . (2.36)

The above problem, along with the corresponding rebates if the firm reports high costs,

generates a solution identical to equations (2.7)-(2.11).

In general the regulator transfers a fraction of the benefits of regulation to the firm in

each period. The fraction is fL < 1 if the firm reports low costs, and f1H > 1 and f2H > 1

if the firm reports high costs. The regulator cannot transfer the full benefits of regulation

to the firm without violating the truth-telling constraint. The fraction in general depends

on λ, the shadow price of the incentive constraint, which is endogenous, but bounded by

proposition (2.3).22

3 Cost of Funds

Suppose now the regulator may offer payments to the firm conditional on the firm’s reported

type, but such payments are costly for the regulator to offer. Such a cost of funds arises

naturally if lump sum taxes are not possible, and the regulator/government obtains funds

via distortionary taxation, for example (Bovenberg and Goulder 1996).

The regulator can use the payments to extract information about the firm’s costs in

the second period. Therefore, the regulator requires the firm to give a cost report in each

period, {π̂1, π̂2}. The regulator may condition regulation in period two on both reports.

Let q2ij ≡ q (π̂i, π̂j) denote the level of regulation in period two if the firm reported type i

in period 1 and j in period 2. Since the timing of the problem is such that the regulator

implements the regulation in period one before the firm learns the cost shock in the second

period, the regulation in period one depends only on the period one report. Similarly, let

t1i ≡ t1 (π̂i) be the first period payment from the regulator to the firm if the firm reports

type i in period one and let t2ij ≡ t2 (π̂i, π̂j) be the payment in the second period if the firm

reports type i in period one and type j in period 2.

Incentive compatibility requires that a low cost firm in period two receive profits from

22Note that Montero’s mechanism requires no prior cost information to set the subsidy or rebate. That
is, with fL = 1 in equation (2.35), both the price and the rebate depend only on the benefit function. The
firm need not report costs, since the firm essentially chooses the level of regulation. In general fL depends
on prior cost information through λ and γ. So if monetary payments are not possible, the regulator requires
more prior information.
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reporting low costs which are not less than profits from reporting high costs:

−c (q2iL, πL) + t2iL ≥ −c (q2iH , πL) + t2iH , i = L,H. (3.1)

Similarly, a high cost firm in period two must receive higher profits from reporting high costs:

−c (q2iH , πH) + t2iH ≥ −c (q2iL, πH) + t2iL , i = L,H. (3.2)

The first period incentive compatibility constraints are:

wf (q1L, q2 (πL, π) , πL) + t1L + δE (t2 (πL, π)) ≥

wf (q1H , q2 (πH , π) , πL) + t1H + δE (t2 (πH , π)) , (3.3)

wf (q1H , q2 (πH , π) , πH) + t1H + δE (t2 (πH , π)) ≥

wf (q1L, q2 (πL, π) , πH) + t1L + δE (t2 (πL, π)) . (3.4)

It is well known (Montero 2008) that the regulator can achieve the first best allocation

by imposing a sufficiently large lump sum tax on the firm. The regulator need only make

the difference in total payments from the firm to the regulator equal to the benefits of

regulation. Because the firm pays the regulator regardless of the firm’s choice, the cost

of funds is irrelevant. Therefore, similar to Montero (2008), we impose a restriction that

payments from the regulator to the firm not be too small. In particular, we impose that

lifetime payments are positive, regardless of the firm’s reports:23

t1i + δt2ij ≥ 0 , i, j = L,H. (3.5)

The regulator’s problem is to maximize expected welfare, W, given a cost of funds φ > 0.

The maximization is subject to (3.1)-(3.5). For this problem, the timing of the payments is

irrelevant. That is, the regulator and firm are indifferent between a payment in period one

conditional on type i and a payment in period two conditional on reporting type i in period

23Suppose condition (3.5) did not hold. Then there exists a t∗ij such that t1i + δt2ij = t∗ij − T̄ , where

T̄ = −minij (t1i + δt2ij) is a lump sum tax on the firm and t∗ satisfies (3.5). Therefore, we are ruling out
lump sum taxes on the firm. This is sensible since a “lump sum” tax on firms would in fact cause distortions
not modeled here: households would reduce savings and increase consumption, and some low profit firms
would exit the market. In a more complicated model, the optimal solution would weigh the cost of these
distortions against the benefits of government revenue and information revelation.
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one.24 Therefore, let:

tij =
1

δ
t1i + t2ij . (3.6)

The regulator’s problem then simplifies to:

maxq,t γw (q1L, πL) + (1− γ)w (q1H , πH) + δγ2w (q1LL, πL) +

δγ (1− γ)w (q2LH , πH) + δ (1− γ) γw (q2HL, πL) + δ (1− γ)2w (q2HH , πH)

−φδ ·
(

γ2tLL + γ (1− γ) tLH + (1− γ) γtHL + (1− γ)2 tHH

)

, (3.7)

subject to:

−c (q2iL, πL) + tiL ≥ −c (q2iH , πL) + tiH , i = L,H, (3.8)

−c (q2iH , πH) + tiH ≥ −c (q2iL, πH) + tiL , i = L,H, (3.9)

wf (q1L, q2 (πL, π) , πL) + E (t (πL, π)) ≥ wf (q1H , q2 (πH , π) , πL) + E (t (πH , π)) , (3.10)

wf (q1H , q2 (πH , π) , πH) + E (t (πH , π)) ≥ wf (q1L, q2 (πL, π) , πH) + E (t (πL, π)) , (3.11)

tij ≥ 0, i, j = L,H. (3.12)

Similar to the problem without a cost of funds, we solve a relaxed problem where only

some constraints bind. We then show that the solution satisfies the remaining constraints.

The non-binding constraints are (3.9), i = L,H , and (3.11). Let λLL and λLH be the

Lagrange multipliers on (3.8), i = L,H , respectively. Further, let λL be the multiplier for

(3.10) and µij be the multipliers for (3.12).

Appendix 8.3 gives the first order conditions for problem (3.7). The first order conditions

indicate the regulator can use payments to reduce the multipliers on the incentive compat-

ibility constraints, thus moving regulation closer to the first best, but at a cost of funds

φ. We next ask to what extent the regulator uses payments versus our timing mechanism

described in section 2.1. If payments are zero and qi 6= q2Li 6= q2Hi, then the regulator,

by non-trivially using the first period report in the second period regulation, is timing the

24Typically, with full commitment, the timing of payments is irrelevant.
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regulation exclusively. Conversely, if payments are positive and qi = q2iL = q2iH then the

regulator is using payments, but not timing the regulation. It is immediate (see 8.47 and

8.48) that the regulator sets tHH = 0, but other payments may be positive or zero depending

on φ and the size of the multipliers.

Without a cost of funds, we find the well-known result that the regulator achieves first

best using only payments.

PROPOSITION 3 Let C be super modular in [q, π] and φ = 0. Then the solution to (3.7)

has q1L = q1LL = q1HL = q∗L and q1H = q2LH = q2HH = q∗H . That is, the regulator achieves

first best using payments, and does not use the timing mechanism.

If the cost of funds is sufficiently high, however, the regulator uses the timing mechanism

and no payments.

PROPOSITION 4 Let C be super modular in [q, π] and R be constant in q. Then if:

φ ≥

(

1− γ

γ

)

R, (3.13)

then the solution to (2.6) solves problem (3.7), with tij = 0 for all i, j. That is, the regulator

relies only on the timing mechanism and does not use payments.

For a cost of funds sufficiently large, the regulator does not use any payments, but instead

relies on the timing mechanism to induce incentive compatibility in the first period. As

γ → 1, the critical threshold approaches zero.

Intuitively, as γ → 1, timing the regulation becomes less costly since the regulator can

simply impose very high penalties in the second period if the firm reports it is the high cost

type. Low cost firms are then motivated to report truthfully, but because firms are unlikely

to be of the high type, the regulator is unlikely to bear the cost of overly stringent regulation

of the high cost type in the second period.25 In contrast, with payments the firm reporting

low costs must receive a higher payment than the firm reporting high costs. For γ near one,

almost all firms are low type, so the regulator incurs the cost of funds with high probability.

Therefore, payments become more costly (and therefore less effective) as the regulator pays

the low cost firm more often. The presence of R in equation (3.13) occurs since a large spread

between marginal costs of the high and low type implies a large welfare gain from moving to

25This intuition can also be seen in that the bound of shadow cost of the incentive constraint λ < 1 − γ
approaches zero as γ → 1. Equations (2.19) and (2.20) also show that as γ → 1, the mechanism only
punishes the high type in period 2, but does not reward the low type.
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the first best regulation. The regulator is therefore more motivated to use payments even if

φ is large.

Thus the timing mechanism tends to work well when payments do not and vice versa.

It is even possible that the choice of payments versus timing would vary across industries

depending on γ and R. However, the regulator uses the timing mechanism to some degree,

as long as φ > 0:

PROPOSITION 5 Let C be super modular in [q, π] and φ > 0. Then q1H = q2LH = q2HH

does not hold. That is, the regulator relies at least in part on the timing mechanism.

Proposition 5 is most interesting because in practice the absence of lump sum taxes im-

plies the cost of funds to the regulator is positive. Therefore, in practice using the timing

mechanism is optimal.

4 General Marginal Cost Processes

The previous sections assume marginal cost shocks are iid. Here we explicitly characterize

the optimal regulatory policy for more general marginal cost processes, including correlated

shocks. In the iid case, the firm and the regulator have identical information regarding

marginal costs in the second period. Independent shocks might be appropriate if, for ex-

ample, input prices fluctuate around a stationary value. For example, the marginal cost

of stricter sulfur regulations might rise as the price of low sulfur coal rises. However, for

some applications, correlated costs are more appropriate (Stavins 1996, Heutel 2009). Fur-

ther, for some applications, asymmetric information may be persistent (that is, asymmetric

information may exist regarding second period expected costs). Finally, a more general

stochastic process for the marginal costs shocks yields additional insights as to the nature of

the mechanism.

Let c(q, π) = πc(q). Suppose first period costs are unchanged (Pr(π1 = πL) = γ), but

second period costs are now:

E(π2|π1 = πL) = π̄L and E(π2|π1 = πH) = π̄H . (4.14)

Thus, π̄i represents a firm’s expectations about period two costs, given cost realization πi in

period one. Equation (4.14) allows for the most general dependent cost structures possible

in a two period model. Because contracting happens at time one, from the perspective

of both regulator and firm only the conditional expectations π̄i = E[π2|π1] enter into the
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objective function and the constraints. Therefore, equation (4.14) supports any dependent

distribution F (x| π1). Below, we describe a number of natural cases of this specification.

• Permanent shocks. If costs are permanent, then π̄i = π1; that is, period two’s

expected cost is identical to period one’s realized cost.26

• Persistent shocks. Persistence in the cost process implies that a low cost firm in

period one is more likely to have a low cost in period two, relative to a high cost firm

in period one, or π̄L < π̄H .

• Productivity shocks. Suppose costs are a fraction of GDP (y), so that c (q) = ĉ (q) y,

where y = πk is subject to a productivity shock that follows a discrete Markov process.

Suppose further the transition matrix is:

Π =

[

γ 1− γ

1− β β

]

. (4.15)

Then if we assume π0 = πL, productivity shocks fit our framework with π̄L = π̄ and

π̄H = (1− β)πL + βπH .

• Multiplicative shocks. Let π̄i = βiχiπi + (1− βi)πi, then with probability β the

firm experiences a multiplicative marginal cost shock χ. This may be the result of

an uncertain innovation, etc. If the shock represents the discovery of a cost reducing

innovation, because of learning by doing for example, then it is natural to think that

the probability and size of the innovations depend significantly on the firms current

technology/type.

Optimal regulation given no information may now be different in period two. Let q̄1 = q̄

be the no information level of regulation in period one, and let q̄2 satisfy:

Bq (q̄2) = E [π2] cq (q̄2) , (4.16)

where E [π2] = γπ̄L + (1− γ) π̄H is the unconditional expected cost shock in period two.

The expected change in firm profits from the regulation is now:

wf (q1, q2, π1, π̄1) = −π1C (q1)− δπ̄1C (q2) . (4.17)

26Given that only conditional expectations matter, the optimal regulation policy is identical for permanent
shocks and shocks which are only expected not to change.
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The incentive constraints are now:

wf (q1L, q2L, πL, π̄L) ≥ wf (q1H , q2H , πL, π̄L) , (4.18)

wf (q1H , q2H , πH , π̄H) ≥ wf (q1L, q2L, πH , π̄H) , (4.19)

The Lagrangian for the relaxed problem is:

Lr = γ (B (q1L)− πLc (q1L) + δ (B (q2L)− π̄Lc (q2L)))+ (4.20)

(1− γ) (B (q1H)− πHc (q1H) + δ (B (q2H)− π̄Hc (q2H))) + (4.21)

λ (wf (q1L, q2L, πL, π̄L)− wf (q1H , q2H , πL, π̄L)) . (4.22)

Proposition 6 shows the mechanism is unchanged, given a simple condition,

π̄H

π̄L

≤
πH

πL

, (4.23)

which we discuss below.

PROPOSITION 6 Suppose c (q, π) = πc (q) and let π̄H > π̄L. Then the solution to the

relaxed problem (4.22) solves the original problem subject to (4.18) and (4.19).

Suppose further that the inequality in condition (4.23) is strict. Then the solution to the

problem (4.22) has the following properties:

6.1. γ (1− γ)
(

π̄H

π̄L
− 1

)

= λL < λ < λR = γ (1− γ)
(

πH

πL
− 1

)

6.2. q1H < q̄1 < q1L.

6.3. q2L < q̄2 < q2H .

Conversely, if condition (4.23) holds with equality, then the solution is the no information

solution: q1L = q1H = q̄1 and q2L = q2H = q̄2.

To understand the intuition of condition (4.23), let us focus on the special case where

δ = 1. The regulator would like to move regulation closer to the first best level in the

period where the expected difference in marginal costs is widest. The regulator will use the

other period to satisfy incentive compatibility. Condition (4.23) states that the growth rate

of πH is less than that of πL. If the inequality in (4.23) is strict, then marginal costs are
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wider in the first period,27 and the mechanism is qualitatively unchanged from the previous

sections. If (4.23) holds with equality, then the difference in marginal costs is identical in

the first and second period. In this case, moving regulation toward first best in one period

requires an equal move away from first best in the other period. Thus in this special case the

regulator does not gain from varying the regulation over time, and uses the no information

level of regulation.28 Finally, if (4.23) does not hold, then the timing of the mechanism would

reverse: the regulator would move regulation towards first best in period two, and use period

one to satisfy incentive compatibility. Therefore, the mechanism (or its reverse) applies for

all but the knife edge case of identical expected growth rates.

The above intuition suggests that it is possible to achieve the first best regulation in

both periods if π̄H < π̄L. If π̄H is less than π̄L then under the first-best mechanism a firm

reporting L is regulated strongly in period one, but receives weak regulation in period two

and the reverse timing for a firm reporting H . In this case, a low-cost firm’s incentive to

exaggerate its cost is mitigated. By lying it reduces its regulation in the first period, when

its compliance cost is low, but increases it in the second period, when its cost is high. In this

case the benefit of lying is small while the cost of lying is large. If this effect is sufficiently

strong, the first-best mechanism may be incentive compatible.29 In order to ensure that the

first-best mechanism violates incentive compatibility, we focus on the case of π̄H ≥ π̄L. Here,

the firm with lower cost in period one also expects a lower cost in period two and, under the

first-best mechanism, would face higher regulation in both periods.

We can get an idea about how the expected growth rates of the cost shocks affects welfare

and the optimal policy by looking at the quadratic example for this case. Let ρL = π̄L/πL,

then resolving the model of section 2.4 with the more general shocks yields the solution:

q1L = q̄ + (1− γ)
δρ2L

1 + δρ2L
πL

(

πH

πL

−
π̄H

π̄L

)

, (4.24)

q1H = q̄ − γ
δρ2L

1 + δρ2L
πL

(

πH

πL

−
π̄H

π̄L

)

, (4.25)

27Note that the theorem also requires π̄H > π̄L. If the growth rate of πH is very negative, the difference
in marginal costs can be wider in the second period even if (4.23) holds.

28Since costs are convex, the regulator prefers a constant level of regulation over time relative to regulation
that is varied by equal amounts in each period.

29This effect can be observed in the proposition. If π̄H < π̄L then λL can be negative, which allows for a
zero Lagrange multiplier on the incentive constraint.
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q2L = q̄2 − (1− γ)
ρL

1 + δρ2L
πL

(

πH

πL

−
π̄H

π̄L

)

, (4.26)

q2H = q̄2 + γ
ρL

1 + δρ2L
πL

(

πH

πL

−
π̄H

π̄L

)

, (4.27)

λ =
1

1 + δρ2L
λR +

δρ2L
1 + δρ2L

λL, (4.28)

W =
1

2

(

q̄21 + δq̄22
)

+
1

2
γ (1− γ)

δρ2L
1 + δρ2L

π2
L

(

πH

πL

−
π̄H

π̄L

)2

. (4.29)

As shown in Proposition 6, the solution reduces to the no information case if the growth

rates are identical, and reduces to the solution of section 2.4 if π̄H = π̄L = π̄. Further, the

solution is analogous to that of section (2.4), with ∆π being replaced by the difference in

growth rates. The welfare gains are convex in the difference in growth rates between πH and

πL, as the regulator gains more by differentially regulating in the first period if the first best

regulation levels are very far apart.

5 Multiple firms

In this section, we allow for multiple firms and show that the qualitative results continue to

hold. Suppose now n firms exist, each of which receives an independently distributed cost

shock equal to πL with probability γ and πH otherwise. We assume the timing is such that

the regulator collects all reports, and then assigns regulation to each firm in each period

based on all reports. All firms that report low costs are identical to the regulator, and

thus receive identical regulation. Let 0 ≤ m ≤ n be the number of firms reporting the low

cost shock. If m firms report low costs, firms receive regulation qij,m = qi (πj , m), i = 1, 2,

j = L,H . We further assume that regulation of one firm is a perfect substitute for regulating

another in the benefit function:

Bi = B (mqiL,m + (n−m) qiH,m) , i = 1, 2. (5.1)

Let Pr (m|i) denote the probability that m firms received the low cost shock, conditional

on one firm receiving shock i ∈ {L,M}. The incentive constraints (2.4)-(2.5) for low and
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high cost firms are now:

n
∑

m=1

Pr (m|L) [wf (q1L,m, q2L,m, πL)] ≥
n

∑

m=1

Pr (m|L) [wf (q1H,m−1, q2H,m−1, πL)] . (5.2)

n−1
∑

m=0

Pr (m|H) [wf (q1H,m, q2H,m, πH)] ≥

n−1
∑

m=0

Pr (m|H) [wf (q1L,m+1, q2L,m+1, πH)] . (5.3)

Here the firm takes expectations since other firms’ costs are unknown. Mechanisms that sat-

isfy (5.2) and (5.3) imply truthful revelation of information is a Bayesian-Nash equilibrium.

The Lagrangian of the regulator’s problem is:

Ln =
n

∑

m=0

Pr (m)

[

B (mq1L,m + (n−m) q1H,m)−mC (q1L,m, πL)− (n−m)C (q1H,m, πH)

+δB (mq2L,m + (n−m) q2H,m)−mδE [C (q2L,m, π)]− (n−m) δE [C (q2H,m, π)]

]

+nλ

n
∑

m=1

Pr (m|L)

[

wf (q1L,m, q2L,m, πL)− wf (q1H,m−1, q2H,m−1, πL)

]

(5.4)

All low cost firms have the same incentive constraints and thus λ does not vary by firm.

The first order condition for q1L,m is:

Bq (mq1L,m + (n−m) q1H,m) =

(

1 +
λnPr (m|L)

mPr (m)

)

Cq (q1L,m, πL) . (5.5)

Note that, from the properties of the binomial distribution, the probability that m of n firms

are low type conditional on one known low type equals the probably that m − 1 of n − 1

remaining firms are the low type:

Pr (m|L) =

[

n− 1

m− 1

]

γm−1 (1− γ)n−m =
m

γn
Pr (m) . (5.6)

Thus, the first order condition reduces to:

Bq (mq1L,m + (n−m) q1H,m) = Cq (q1L,m, πL)

(

1 +
λ

γ

)

. (5.7)
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Next, via a similar calculation:

Bq (mq1L,m + (n−m) q1H,m) = Cq (q1H,m, πH)

(

1−
λnPr (m+ 1|L)

(n−m)Pr (m)

Cq (q1H,m, πL)

Cq (q1H,m, πH)

)

,(5.8)

Pr (m+ 1|L) =
n−m

n (1− γ)
Pr (m) , (5.9)

Bq (mq1L,m + (n−m) q1H,m) = Cq (q1H,m, πH)

(

1−
λ

(1− γ)

Cq (q1H,m, πL)

Cq (q1H,m, πH)

)

. (5.10)

The second period first order conditions are:

Bq (mq2L,m + (n−m) q2H,m) = E [Cq (q2L,m, π)]

(

1 +
λ

γ

)

. (5.11)

Bq (mq2L,m + (n−m) q2H,m) = E [Cq (q2H,m, π)]

(

1−
λ

(1− γ)

)

. (5.12)

The first order conditions for firms reporting low costs revert back to those of section 2.1

for n = m = 1, and the first order conditions for firms that report high costs revert to those

of section 2.1 for n = 1 and m = 0. Indeed, the results change only in that the marginal

benefits are lower with more firms since costs increase linearly with the number of firms but

benefits are concave.30

Equations (5.7), (5.10), and (5.11)-(5.12) imply that the equi-marginal principle is vio-

lated in both periods. The regulator cannot equalize marginal costs across types without

violating the incentive constraint.

We define the optimal regulation with only prior information for n firms, q̄n as the solution

to:

maxB (nq̄n)− nE [C (q̄n, π)] , (5.13)

Bq (nq̄n) = E [Cq (q̄n, π)] . (5.14)

30For the limiting case, normalize the size of each firm to 1/n, then as n → ∞, total regulation approaches
γqjL + (1− γ) qjH , j = 1, 2. This case differs from section 2.1 only in that here the regulator faces no
aggregate uncertainty.
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The first best policies, q∗L,m and q∗H,m, satisfy:

Bq

(

mq∗L,m + (n−m) q∗H,m

)

= Cq

(

q∗L,m, πL

)

= Cq

(

q∗H,m, πH

)

. (5.15)

Proposition 7 shows that optimal mechanism is analogous with n firms.

PROPOSITION 7 Let C be super modular and R be constant in q. Then the solution to

the two period problem with n firms has the following properties:

7.1. q1H,m < q̄n < q1L,m.

7.2. q2L,m < q̄n < q2H,m.

7.3. q1H,m and q1L,m are increasing functions of m.

With n firms, the optimal mechanism is to offer each firm a choice of regulation which

becomes either more stringent or more lax over time. The high cost firms all select regulation

which is initially more lax and the low cost firms all select regulation which is initially more

stringent.

6 Endogenous Investment and Declining Costs

Frequently, firms undertake investment or R&D which reduces compliance costs over time.

In response, regulation often becomes more strict over time. Here we suppose that firms

may undertake endogenous investment which reduces compliance costs and show that our

basic result continues to hold. In particular, if regulation becomes more strict over time in

expectation, then the regulator offers one regulation which is above the expected trend in

regulation in the first period and is below the expected trend in regulation in the second

period, and a second regulation which is initially below, and subsequently above, the trend.

We consider the model of section 2.1, but assume costs are also a function of investment

ζ in a cost saving technology: C = C (q, π, ζ). We assume Cζ < 0, so investment reduces

costs and Cζζ > 0 so the firm’s investment problem is concave. We also assume that Cζq < 0,

so that investment reduces marginal costs of compliance as well. Investment is increasing

in regulatory stringency if and only if Cζq < 0. Finally, we assume that the cost function

is such that the second order conditions for the regulator’s problem continue to hold. Let

δPζ denote the price of investment paid in the first period and we normalize the stock of

investment in the first period to 0.
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The firm chooses a level of investment after reporting first period costs to the regulator.

Because the regulator announces regulation for both periods in the first period, the firm

anticipates the level of regulation in the second period when the investment decision is

made. The firm’s investment problem conditional on regulation q2i is then:

max
ζ

−C (q1i, π, 0)− δE [C (q2i, π, ζ)]− δPζζ. (6.1)

The firm’s first order condition is:

Pζ = −E [Cζ (q2i, π, ζ)] , i = L,H. (6.2)

We assume a function ζi = ζ (q2i), i = L,H , satisfying (6.2) exists which maps the level of

regulation the firm receives upon reporting costs to the regulator into an investment decision.

The change in firm profits from the regulation becomes:

wf (q1, q2, π1, ζ (q2)) = −C (q1, π1, 0)− δE [C (q2, π, ζ (q2))]− δPζζ (q2) . (6.3)

The welfare function includes the resource costs of investment:

w (q, π, ζ (q)) = B (q)− C (q, π, ζ (q))− Pζ · ζ (q) . (6.4)

The incentive constraints are then:

wf (q1L, q2L, πL, ζ (q2L)) ≥ wf (q1H , q2H , πL, ζ (q2H)) , (6.5)

wf (q1H , q2H , πH , ζ (q2H)) ≥ wf (q1L, q2L, πH , ζ (q2L)) . (6.6)

The problem in Lagrange form is then:

Lζ = γ ·

[

w (q1L, πL, 0) + δE [w (q2L, π, ζ (q2L))]

]

+ (1− γ) ·

[

w (q1H , πH , 0)+

δE [w (q2H , π, ζ (q2H))]

]

+ λ ·

[

wf (q1L, q2L, πL, ζ (q2L))−

wf (q1H , q2H , πL, ζ (q2H))

]

(6.7)

The investment decision does not affect the first order conditions in the first period:

Bq (q1L) = Cq (q1L, πL, 0)

(

1 +
λ

γ

)

, (6.8)

29



Bq (q1H) = Cq (q1H , πH , 0)

(

1−
λ

1− γ

Cq (q1H , πL, 0)

Cq (q1H , πH , 0)

)

. (6.9)

The first order condition with respect to q2L is:

Bq (q2L) = (E [Cq (q2L, π, ζL)] + (E [Cζ (q2L, π, ζL) + Pζ) ζq (q2L)])

(

1 +
λ

γ

)

. (6.10)

However, using (6.2), we see that:

Bq (q2L) = E [Cq (q2L, π, ζL)]

(

1 +
λ

γ

)

. (6.11)

Similarly, using (6.2), the first order condition with respect to q2H is:

Bq (q2H) = E [Cq (q2H , π, ζH)]

(

1−
λ

1− γ

)

. (6.12)

The incentive constraint binds:

C (q1H , πL, 0)− C (q1L, πL, 0) =

δ (E [C (q2L, π, ζL)]− E [C (q2H , π, ζH)] + Pζ (ζL − ζH)) . (6.13)

From the first order conditions, the regulator knows that after assigning a second period level

of regulation, the firm chooses the optimal level of investment given the regulation. Because

the second period regulation is suboptimal relative to the first best level of regulation in the

second period, investment is also not first best. But investment is optimal (for both the firm

and the regulator) conditional on q2, and thus the mechanism is qualitatively unchanged.

For the properties of the mechanism, let q̄ζ satisfy Bq (q̄ζ) = E [Cq (q̄ζ , π, ζ (q̄ζ))]. Then:

PROPOSITION 8 Let R be constant in q. Then the solution to problem (6.7) has the

following properties:

8.1. q1H < q̄ < q1L.

8.2. q2L < q̄ζ < q2H .

Note q̄ζ > q̄, so if the regulator has only prior information about firm costs, regulation

becomes more stringent over time since costs fall. Under our mechanism, the regulator

offers one contract that is initially above and subsequently below the trend line of regulatory

stringency in the prior information case. The other regulation option starts out below the

trend in regulatory stringency, and then is above the trend in the second period.
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Thus the mechanism is essentially unchanged. One difference is that, with declining

costs, the regulator may offer regulation which strengthens over time, but at different rates

depending on the firm’s report. From proposition (8), the high cost firm is offered regulation

which becomes more stringent over time since q1H < q̄ < q̄ζ < q2H . For the firm reporting

low costs, if costs decline enough, q1L < q2L is possible. The regulator offers the low cost

firm regulation which becomes more stringent over time, just not as stringent as when the

firm reports high costs. Thus the results are consistent with the empirical observation that

regulation tends to strengthen over time as costs decline.

7 Conclusions

We have shown, in an environment where marginal compliance costs are subject to random

shocks, that the regulator can induce firms to reveal their costs shocks and increase welfare

by varying the strength of regulation over time. In particular, the optimal mechanism is

to offer the firm two regulation choices. The first starts out weak and becomes stronger,

while the second does the opposite. Firms currently facing high cost shocks know their costs

are likely to decline over time, and chose regulation which is initially weak. Firms with low

cost shocks choose the opposite. In this way, firms reveal their cost shocks to the regulator.

Welfare improves both because firms choose strict regulation only when marginal costs are

low, and because doing so reveals information to the regulator.

To implement our mechanism in practice, the regulator could combine a default regulation

that becomes more stringent over time (as is the case for most regulations), with a program

whereby firms exceeding the regulation standard in the current period receive waivers or

credits for use in the future. Such waiver and credit programs are common. For example, a

provision of the corporate average fuel economy standards allows companies exceeding the

fuel economy standard in the current period to receive credits which allow the companies to

be below the standard in the future. Low cost firms take advantage of the credit program,

in order to better equalize marginal costs over time. High cost firms do not, delaying costly

regulation as costs are expected to fall. Our mechanism differs from existing waiver/credit

programs in that the waiver program must be implemented so as to reveal information.

The regulator must set the appropriate intertemporal price (the rate at which exceeding the

current standard is exchanged for future credits), which trades off the benefits of equalizing

marginal costs with higher average regulation.

Our mechanism is robust to a number of extensions. If the regulator may make payments

to the firm, then for any positive cost of funds, the optimal mechanism varies regulation over
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time to some degree. Further, if the cost of funds is high enough, the optimal mechanism

does not use payments, but instead relies exclusively on the timing of regulation. In general,

varying regulation over time is more effective than payments when the probability of receiving

a low cost shock is high.

Our mechanism comes with several caveats. First, our mechanism essentially trades off

current for future distortions, and thus cannot achieve first best. Using payments results in

the first best allocation, but only under the assumption that no cost of funds exists (that is,

that lump sum taxes are available).

Second, our mechanism relies on commitment. The regulator has an incentive to renege

on promised regulation in the second period, and revert to the optimal level of regulation

given no cost shock information. Nonetheless, the incentive to renege here is more mild than

in models where firm types do not change over time, since the regulator only desires to return

to the no-information level of regulation, not the optimal regulation given the firm has a low

cost shock (that is, no “ratchet effect” exists). For the example of the 1990 amendment to

the Clean Air Act, the EPA offered firms bonus permits in the future for installing scrubbers.

The EPA kept the commitment and allocated the bonus permits, despite specific clauses in

the law stating that the EPA could revoke any part of the permit system at any time.

Third, the mechanism breaks down if shocks have identical expected growth rates across

time, for example if marginal costs were constant over time. The mechanism relies on

differentiating regulation in the period where marginal costs are most different, and satisfying

incentive compatibility in the period where marginal costs are most similar. A deeper issue

arises, however, here and in some of the literature which takes cost heterogeneity across

firms as constant. In the long run only firms with the lowest cost technologies survive

in a competitive market. Thus it is not clear that shocks which are constant over time

are consistent with a long run competitive equilibrium.31 In contrast, differential expected

growth rates has natural interpretations. For example, the more regulated firm could see a

more negative expected growth rate in costs since as it adapts to more stringent regulation.32.

A number of further extensions are possible, but are unlikely to change the main results.

The most interesting extension is to make the number of periods infinite. In this case, our

hypothesis is that the regulator would start with some promised level of total future profits

generated from past reports, and then offer a promise of future profits that are either higher

31In addition, it is not clear why a regulator would be uncertain about shocks which are constant in time,
since the regulator could simply invert the cost function after one observation and learn the unobserved cost
parameter.

32Conversely, one might suppose that the high cost firm has a more negative growth rate as it observes
the technological choices of the low cost firm (spillovers)
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or lower depending on the firm’s report. Still, an infinite horizon version of the model may

be less realistic than our two period model, since commitment into the infinite future implies

the regulator will never be replaced.

Despite these caveats, a robust result is that our timing mechanism improves regulatory

efficiency. In recent years the public’s appetite for increased regulation has grown. Regula-

tions are becoming increasingly complex, with compliance costs that are increasingly difficult

to forecast, for both firms and regulators. Therefore, it is clear that more efficient regulations

is an important policy goal, and will only become more so in the future.

References

Baron, D., and D. Besanko, 1987, “Committment and Fairness in a Dynamic Regulatory

Relationship,” Review of Economic Studies, 54, 413–36.

Besley, T., and S. Coate, 2003, “Elected Versus Appointed Regulators: Theory and Evi-

dence,” Journal of the European Economic Association, 1, 11761206.

Bovenberg, A., and L. H. Goulder, 1996, “Optimal Environmental Taxation in the Presence

of Other Taxes: General-Equilibrium Analyses,” American Economic Review, 86, 985–

1000.

Cremer, J., and R. McLean, 1988, “Full Extraction of the Surplus in Bayesian and Dominant

Strategy Auctions,” Econometrica, 56, 1247–57.

Dasgupta, P., P. Hammond, and E. Maskin, 1980, “On Imperfect Information and Optimal

Pollution Control,” Review of Economic Studies, 47, 857–60.

Department of Health and Human Services, 2011, “Approved Applications for Waiver of the

Annual Limits Requirements of the PHS Act Section 2711 as of January 26, 2011,” Depart-

ment of Health and Human Services website: http://www.hhs.gov/ociio/regulations/

approved_applications_for_waiver.html.

Duggan, J., and J. Roberts, 2002, “Implementing the Efficient Allocation of Pollution,”

American Economic Review, 92, 1070–78.

Ellerman, A. D., and J. P. Montero, 2007, “The Efficiency and Robustness of Allowance

Banking in the U.S. Acid Rain Program,” The Energy Journal, 28, 47–72.

33



Fischer, C., and M. Springborn, 2011, “Emissions Targets and the Real Business Cycle:

Intensity Targets versus Caps or Taxes,” Journal of Environmental Economics and Man-

agement, forthcoming.

Freixas, X., R. Guesnerie, and J. Tirole, 1985, “Planning and Incomplete Information and

the Ratchet Effect,” Review of Economic Studies, 52, 173–91.

Gersbach, H., and T. Requae, 2004, “Emissions Taxes and Optimal Refunding Schemes,”

Journal of Public Economics, 88, 713–25.

Guasch, J., J. Laffont, and S. Straub, 2008, “Renegotiation of Concession Contracts in

Latin America: Evidence from the Water and Transport Sectors,” International Journal

of Industrial Organization, 26, 421–42.

Hahn, R., 1989, “Economic Prescriptions for Environmental Problems: How the Patient

Followed the Doctor’s Orders,” Journal of Economic Perspectives, 3, 95–114.

Heutel, G., 2009, “How Should Environmental Policy Respond to Business Cycles? Optimal

Policy under Persistent Productivity Shocks,” University of North Carolina at Greensboro

Working Paper.

Joskow, P., and R. Schmalensee, 1998, “The Political Economy of Market-Based Environ-

mental Policy: The US Acid Rain Program,” Journal of Law and Economics, 41, 37–83.

Karp, L., and J. Zhang, 2005, “Regulation of Stock Externalities with Correlated Shocks,”

Environmental and Resource Economics, 32, 273–299.

Kelly, D. L., 2005, “Price and Quantity Regulation in General Equilibrium,” Journal of

Economic Theory, 125, 36–60.

Kim, J., and K. Chang, 1993, “An Optimal Tax/Subsidy for Output and Pollution Control

Under Asymemtric Information in Oligopoly Markets,” Journal of Regulatory Economics,

5, 183–97.

Kwerel, E., 1977, “To Tell the Truth: Imperfect Information and Optimal Pollution Control,”

Review of Economic Studies, 44, 595–601.

Laffont, J., and J. Tirole, 1991, “The Politics of Government Decision Making: A Theory of

Regulatory Capture,” Quarterly Journal of Economics, 106, 1089–1127.

34



Mason, C., and A. Plantinga, 2010, “The Additionality Problem With Offsets: Optimal

Contracts for Carbon Sequestration in Forests,” University of Wyoming working paper.

Montero, J. P., 2008, “A Simple Auction Mechanism for the Optimal Allocation of the

Commons,” American Economic Review, 98, 496–518.

Newell, R., and W. Pizer, 2003, “Regulating Stock Externalities Under Uncertainty,” Journal

of Environmental Economics and Management, 45, 416–432.

Roberts, M., and M. Spence, 1976, “Effluent Charges and Licenses Under Uncertainty,”

Journal of Public Economics, 5, 193–208.

Spulber, D. F., 1988, “Optimal environmental regulation under asymmetric information,”

Journal of Public Economics, 35, 163–181.

Stavins, R., 1996, “Correlated Uncertainty and Policy Instrument Choice,” Journal of En-

vironmental Economics and Management, 30, 218–232.

Stavins, R., 2006, “Vintage-Differentiated Environmental Regulation,” Stanford Environ-

mental Law Review, 25, 29–63.

Varian, H., 1994, “A Solution to the Problem of Externalities when Agents are Well-

Informed,” American Economic Review, 84, 1278–93.

Wiggins, S., and G. Libecap, 1985, “Oil Field Unitization: Contractual Failure in the Pres-

ence of Imperfect Information,” American Economic Review, 75, 368–85.

Yao, D., 1988, “Strategic Responses to Automobile Emission Control: A Game-Theoretic

Analysis,” Journal of Environmental Economics and Management, 15, 419–38.

8 Appendix

8.1 Proof of Proposition 1

Let X ≡ δ (E [C (q2L, π)]− E [C (q2H , π)]). Then the solution to the problem (2.6) satisfies:

C (q1H , πL)− C (q1L, πL) = X. (8.1)

Thus, condition (2.5) holds if and only if:

X ≥ C (q1H , πH)− C (q1L, πH) . (8.2)
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Combining equations (8.1) and (8.2), condition (2.5) holds if and only if:

C (q1H , πL)− C (q1L, πL) ≥ C (q1H , πH)− C (q1L, πH) , (8.3)

Next, let a = [q1H , πH ] and b = [q1L, πL], then since q1L > q1H (see Proposition 2) and

πH > πL:

C (a ∧ b)− C (b) ≥ C (a)− C (a ∨ b) . (8.4)

Condition (8.4) holds if and only if C is supermodular.

8.2 Proof of Proposition 2

2.1. By definition of q∗L,

Bq (q
∗

L) = Cq (q
∗

L, πL) . (8.5)

Given B is concave and C is convex, q1L < q∗L if and only if:

Bq (q1L) > Cq (q1L, πL) . (8.6)

Using equation (2.7),

Cq (q1L, πL)

(

1 +
λ

γ

)

> Cq (q1L, πL) . (8.7)

Equation (8.7) holds since λ > 0. We prove q̄ < q1L in 2.3 below.

2.2. By definition of q∗H ,

Bq (q
∗

H) = Cq (q
∗

H , πH) . (8.8)

Given B is concave and C is convex, q1H > q∗H if and only if:

Bq (q1H) < Cq (q1H , πH) . (8.9)

36



Using equation (2.8),

Cq (q1H , πH)

(

1−
λ

1− γ

Cq (q1H , πL)

Cq (q1H , πH)

)

< Cq (q1L, πH) . (8.10)

Equation (8.10) holds since λ > 0. We prove q1H < q̄ in 2.3 below.

2.3. For the second period regulations, by definition:

Bq (q̄) = E [Cq (q̄, π)] . (8.11)

Since B is concave and C is convex, q2L < q̄ if and only if:

Bq (q2L) > E [Cq (q2L, π)] . (8.12)

Equation (2.9) implies the above inequality holds since λ > 0. Similarly, q2H > q̄ if

and only if:

Bq (q2H) < E [Cq (q2H , π)] . (8.13)

Equation (2.10) implies the above inequality holds since λ > 0.

For q1H < q̄, we first show that q1L > q1H . To see this, we suppose not. Suppose

q1H ≥ q1L and note that the Kuhn-Tucker condition for the incentive constraint (2.4)

is:

λ

[

C (q1H , πL)− C (q1LπL) + δE [C (q2H , π)]− δE [C (q2L, π)]

]

= 0. (8.14)

We have shown q2H > q2L, which along with q1H ≥ q1L implies the second term in

(8.14) is positive and thus that λ = 0. But from the first order conditions, λ = 0

implies q2L = q∗L which contradicts q2L < q2H , for example. Thus q1H < q1L.

With q2L < q2H in hand, to show q1H < q̄, we suppose not and then construct a

regulation set which is feasible and provides higher welfare, thus contradicting that

q1H ≥ q̄ is an optimum. Suppose {q1L, q1H , q2L, q2H} is optimal with q1H ≥ q̄. Consider

an alternative policy {q1L − ǫ, q1H − ǫ, q2L, q2H}, with ǫ > 0 sufficiently small (i.e. small

enough to make a first order approximation of B and C accurate enough so as to not
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change the signs of any of the inequalities). The alternative policy is feasible if and

only if:

C (q1H − ǫ, πL)− C (q1L − ǫ, πL) ≥ X = C (q1H , πL)− C (q1L, πL) . (8.15)

Approximating C (q1L − ǫ, πL) around q1L and C (q1H − ǫ, πL) around q1H , implies for

ǫ small the inequality reduces to:

Cq (q1H , πL) (−ǫ)− Cq (q1L, πL) (−ǫ) ≥ 0, (8.16)

Cq (q1L, πL) ≥ Cq (q1H , πL) . (8.17)

Equation (8.17) holds since q1L > q1H . Thus the alternative policy is feasible.

We next compare the welfare of the alternative policy with the optimal policy. Since

the second period policies are identical, the alternative policy generates higher welfare

if and only if:

γ

[

B (q1L − ǫ)− C (q1L − ǫ, πL)

]

+ (1− γ)

[

B (q1H − ǫ)− C (q1H − ǫ, πH)

]

>

γ

[

B (q1L)− C (q1L, πL)

]

+ (1− γ)

[

B (q1H)− C (q1H , πH)

]

. (8.18)

Performing first order approximations reduces the inequality to:

γ

[

Bq (q1L)− Cq (q1L, πL)

]

+ (1− γ)

[

Bq (q1H)− Cq (q1H , πH)

]

< 0. (8.19)

Next, since we assumed q1H ≥ q̄, and B is concave and C is convex:

Bq (q1H)− Cq (q1H , πH) ≤ Bq (q̄)− Cq (q̄, πH) . (8.20)

Further, since q1L > q1H ≥ q̄,

Bq (q1L)− Cq (q1L, πL) < Bq (q̄)− Cq (q̄, πL) . (8.21)
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We multiply (8.20) by 1 − γ and (8.21) by γ, and sum the two resulting equations.

Comparing the result with (8.19), it is sufficient to show:

γ

[

Bq (q̄)− Cq (q̄, πL)

]

+ (1− γ) ·

[

Bq (q̄)− Cq (q̄, πH)

]

≤ 0, (8.22)

Bq (q̄)− E [Cq (q̄, πL)] = 0 ≤ 0. (8.23)

Thus we have a contradiction that {q1L, q1H , q2L, q2H} is optimal as the alternative

policy is feasible and generates higher welfare.

To show q1L > q̄, we use the previous results. First, since q1H < q̄, we have:

Bq (q1H)

E [cq (q1H , π)]
>

Bq (q̄)

E [cq (q̄, π)]
= 1. (8.24)

Using equation (2.8):

(

1−
λ

1− γ

1

R

)

Cq (q1H , πH) > E [Cq (q1H , π)] , (8.25)

(

1−
λ

1− γ

1

R

)

R > γ + (1− γ)R, (8.26)

λ < γ (1− γ) (R− 1) . (8.27)

Thus λ cannot be too big. Finally, q1L > q̄ if and only if:

Bq (q1L)

E [cq (q1L, π)]
<

Bq (q̄)

E [cq (q̄, π)]
= 1. (8.28)

Using equation (2.7):

(

1 +
λ

γ

)

Cq (q1L, πL) > E [Cq (q1H , π)] , (8.29)
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(

1 +
λ

γ

)

> γ + (1− γ)R, (8.30)

λ < γ (1− γ) (R− 1) . (8.31)

The above equation is identical to (8.27). Therefore q1L > q̄.

2.4. To see that λ < 1 − γ, suppose not, suppose {q1L, q1H , q2L, q2H} is an optimum with

λ ≥ (1− γ). Then from condition (2.10), we have a corner solution of q2H = 0 since

for all q2H ≥ 0,

Bq (q2H) > 0 ≥ E [Cq (q2H , π)]

(

1−
λ

1− γ

)

, (8.32)

which violates the first order condition (2.10).

Next, the incentive constraint (2.4) with q2H = 0 implies:

C (q1H , πL)− C (q1L, πL) ≥ E [C (q2L, π)] . (8.33)

Thus q1H ≥ q1L is required for incentive compatibility, with equality if and only if

q2L = 0.

Further, combining the two incentive constraints yields (8.3):

C (q1H , πL)− C (q1L, πL) ≥ C (q1H , πH)− C (q1L, πH) . (8.34)

Let a = [q1H , πL] and b = [q1L, πH ], then since πH > πL, if q1L < q1H :

C (a)− C (a ∧ b) > C (a ∨ b)− C (b) , (8.35)

which contradicts that C is super modular. Thus we have a contradiction unless

q1H = q1L and q2H = q2L = 0. In this case, the firm is unregulated in the second

period, regardless of type.

Consider now an alternative policy with identical first period policies of q1L = q1H ,

but positive regulation of q2j = q∗H for all j = L,H in the second period. From (2.4)
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and (2.5), such a policy is clearly incentive compatible. We also have q∗H > 0 since

Bq (0) > Cq (0, πH) by assumption and Bq is decreasing and Cq is increasing in q.

No welfare difference exists in the first period. In the second period, the alternative

policy incurs no welfare loss if the firm is the high cost type, so the alternative policy

generates higher welfare than the unregulated economy if the firm is the high cost

type. If the firm is the low cost type, then the difference in welfare loss between the

alternative policy and unregulated firm is:

∆ Loss =

∫ q∗
L

q∗
H

(Bq (q)− Cq (q, πL)) dq −

∫ q∗
L

0

(Bq (q)− Cq (q, πL)) dq, (8.36)

= −

∫ q∗
H

0

(Bq (q)− Cq (q, πL)) dq. (8.37)

Note that the function being integrated in (8.37) is positive over the domain of in-

tegration, since Bq (q
∗

H) = Cq (q
∗

H , πL), Bq is decreasing, and Cq is increasing. Thus

the integral is positive, the difference in welfare losses is negative, and the alternative

policy gives higher welfare regardless of firm type. Thus no regulation in the second

period cannot be an optimum. Thus we have a contradiction and so λ < 1− γ.

8.3 First Order Conditions With a Cost of Funds and Proof of Proposition 3

The first order conditions for problem (3.7) are:

Bq (q1L) = cq (q1L, πL)

(

1 +
λL

γ

)

, (8.38)

Bq (q1H) = Cq (q1H , πH)

(

1−
λL

1− γ

Cq (q1H , πL)

Cq (q1H , πH)

)

, (8.39)

Bq (q2LL) = cq (q2LL, πL)

(

1 +
λL

γ
+

λLL

γ2

)

, (8.40)

Bq (q2LH) = Cq (q2LH , πH)

(

1 +
λL

γ
−

λLL

γ (1− γ)

Cq (q2LH , πL)

Cq (q2LH , πH)

)

, (8.41)
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Bq (q2HL) = cq (q2HL, πL)

(

1−
λL

1− γ
+

λLH

γ (1− γ)

)

, (8.42)

Bq (q2HH) = Cq (q2HH , πH)

(

1−
λL

1− γ
−

λLH

(1− γ)2
Cq (q2HH , πL)

Cq (q2HH , πH)

)

, (8.43)

µLL

γ2
= φ−

λL

γ
−

λLL

γ2
, (8.44)

µLH

γ (1− γ)
= φ−

λL

γ
+

λLL

γ (1− γ)
, (8.45)

µHL

γ (1− γ)
= φ+

λL

1− γ
−

λLH

γ (1− γ)
, (8.46)

µHH

(1− γ)2
= φ+

λL

1− γ
+

λLH

(1− γ)2
, (8.47)

µijtij = 0, i, j = L,H. (8.48)

Imposing the solution q1L = q1LL = q1HL = q∗L and q1H = q2LH = q2HH = q∗H on (8.38)-

(8.43), we see that the solution satisfies the first order conditions (8.38)-(8.43) if and only

if λL = λLL = λLH = 0. Imposing this and φ = 0 on (8.44)-(8.48), we see that the solution

satisfies the first order conditions (8.44)-(8.48) if and only if µij = 0 for all i, j.

We next show a set of positive payments exists that satisfies all constraints. First, let

tHH = 0, then constraint (3.8), i = H , is satisfied for:

tHL = ∆CL ≡ C (q∗L, πL)− C (q∗H , πL) > 0. (8.49)

Next, we let tLH = ∆CL

δ
and tLL = 1+δ

δ
∆CL. Substituting these conditions and q2LL = q∗L and

q2LH = q∗H into (3.8), i = L, implies constraint (3.8) is satisfied with equality. Substituting

the proposed solution for tLH and tLL and the first best solutions for all q’s into (3.10) implies

(3.10) holds with equality.

Finally, substituting the proposed solution for all tij and the first best solution for all

q’s into (3.9), i = L,H and (3.11), we see that all three constraints hold if and only if C

42



is super modular, which holds by assumption. Therefore, since all payments are positive

and all constraints and first order conditions are satisfied, the first best level of regulation is

optimal for φ = 0.

8.4 Proof of Proposition 4

We must show the solution to (2.7)-(2.11) with tij = 0 for all i, j satisfies all first order

conditions and constraints for (3.7). Comparing (2.7) and (8.38), we see that (8.38) is

satisfied if and only if λL = λ, where λ is the multiplier for problem (2.6). Condition (2.8)

implies condition (8.39) is also satisfied for λL = λ.

Next, imposing λL = λ and q2LL = q2L on (8.40), we see that (8.40) holds if and only if:

Bq (q2L)

cq (q2L, πL)
=

(

1 +
λ

γ
+

λLL

γ2

)

. (8.50)

Using (2.9), this is equivalent to:

E [cq (q2L, π)]

cq (q2L, πL)

(

1 +
λ

γ

)

=

(

1 +
λ

γ
+

λLL

γ2

)

. (8.51)

Using the definition of R:

(γ + (1− γ)R)

(

1 +
λ

γ

)

=

(

1 +
λ

γ
+

λLL

γ2

)

, (8.52)

λLL = γ2 (1− γ) (R− 1)

(

1 +
λ

γ

)

. (8.53)

So if (8.53) holds, condition (8.40) is satisfied. Further, imposing q2LH = q2L on (8.41) and

using (2.9) to eliminate the marginal benefit function, we see that (8.41) holds if and only if

(8.53) holds.

For (8.42), we impose q2HL = q2H and λL = λ, yielding:

Bq (q2H)

cq (q2H , πL)
= 1−

λ

1− γ
+

λLH

γ (1− γ)
. (8.54)

Imposing (2.10) gives:

E [Cq (q2H , π)]

cq (q2H , πL)

(

1−
λ

1− γ

)

= 1−
λ

1− γ
+

λLH

γ (1− γ)
. (8.55)

43



Finally, using the definition of R:

(γ + (1− γ)R)

(

1−
λ

1− γ

)

= 1−
λ

1− γ
+

λLH

γ (1− γ)
, (8.56)

λLH = γ (1− γ)2 (R− 1)

(

1−
λ

1− γ

)

. (8.57)

So condition (8.42) is satisfied if and only if (8.57) holds. Further, an analogous argument

shows that (8.43) holds if and only if (8.57) holds.

Next, our solution requires all payments to be zero, and thus all of the multipliers µij to

be positive. From (8.44) given λL = λ, this requires:

µLL

γ2
= φ−

λ

γ
−

λLL

γ2
> 0. (8.58)

Given (8.53), the above inequality holds if and only if:

φ >
λ

γ
+ (1− γ) (R− 1)

(

1 +
λ

γ

)

, (8.59)

φ > (1− γ) (R − 1) +
λ

γ
(γ + (1− γ)R) . (8.60)

So for φ sufficiently big, tLL = 0 as required, with µLL defined by substituting (8.53) and

λL = λ into (8.44). Recall λ is the multiplier from problem (2.6), and thus is independent

of φ, so a φ sufficiently large always exists.

For tLH , (8.45) requires:

µLH

γ (1− γ)
= φ−

λ

γ
+

λLL

γ (1− γ)
> 0, (8.61)

Using (8.53) and simplifying gives:

φ >
λ

γ
− γ (R − 1)

(

1 +
λ

γ

)

. (8.62)

So for φ satisfying (8.62), tLH = 0 as required, with µLH defined by substituting (8.53) and

λL = λ into (8.45).
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Condition (8.60) is more restrictive than condition (8.62) if and only if:

(1− γ) (R − 1) +
λ

γ
(γ + (1− γ)R) >

λ

γ
− γ (R− 1)

(

1 +
λ

γ

)

. (8.63)

Simplifying gives:

(R − 1)

(

1 +
λ

γ

)

> 0, (8.64)

which holds since R > 1.

For tHL, (8.46) requires:

µHL

γ (1− γ)
= φ+

λ

1− γ
−

λLH

γ (1− γ)
> 0. (8.65)

Substituting in (8.57) and simplifying gives:

φ > (1− γ) (R − 1)

(

1−
λ

1− γ

)

−
λ

1− γ
. (8.66)

Given (8.66), tHL = 0 and µHL is defined by substituting (8.57) into (8.46). Clearly (8.66)

is less restrictive than (8.60).

Finally, note that for tHH , the multiplier is always positive and so tHH = 0, with the

multiplier defined by (8.47) and (8.57).

Therefore, given (8.60), the proposed solution satisfies the first order conditions. Clearly,

for C supermodular, the solution satisfies the first period incentive compatibility constraints,

which are identical to the incentive compatibility constraints from the problem without

payments. The second period incentive compatibility constraints are also satisfied since

payments are zero and q2LH = q2LL = q2L and q2HL = q2HH = q2H . Therefore the proposed

solution satisfies all constraints and first order conditions given (8.60).

Finally, we can bound (8.60) using Proposition 2.3. Since λ < 1−γ, a sufficient condition

for (8.60) is:

φ > (1− γ) (R − 1) +
1− γ

γ
(γ + (1− γ)R) . (8.67)

The above equation simplifies to:

φ >
(1− γ)R

γ
, (8.68)
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which is the desired result.

8.5 Proof of Proposition 5

Suppose not, suppose that q1H = q2LH = q2HH and φ > 0. Then since the cost function is

convex and the benefit function is concave:

Bq (q1H)

Cq (q1H , πH)
=

Bq (q2HH)

Cq (q2HH , πH)
. (8.69)

Substituting equations (8.39) and (8.43) and simplifying gives:

1−
λL

1− γ

1

R
= 1−

λL

1− γ
−

λLH

(1− γ)2
1

R
, (8.70)

λLH

1− γ

1

R
= −λL

(

R− 1

R

)

. (8.71)

Since λL and λLH are non-negative and R > 1, the above equation is satisfied if and only if

λL = λLH = 0.

Further, we have:

Bq (q2LH)

Cq (q2LH , πH)
=

Bq (q1H)

Cq (q1H , πH)
. (8.72)

Using equations (8.39) and (8.41) and simplifying gives:

λL

γ
−

λLL

γ (1− γ)

1

R
= −

λL

1 − γ

1

R
. (8.73)

Since λL = 0, we must have λLL = 0. Thus, q1H = q2LH = q2HH implies all incentive

constraints are non-binding. The first order conditions (8.38)-(8.43) then imply the regulator

achieves the first best allocation q1L = q2HL = q2LL = q∗L and q1H = q2LH = q2HH = q∗H .

Plugging in the first best decisions for all i, j into for example, the incentive constraint

(3.8), i = L, implies:

tLL − C (q∗L, πL) ≥ tLH − C (q∗H , πL) , (8.74)

which implies tLL > tLH ≥ 0 since q∗L > q∗H .
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Next, plugging in λL = λLL = λLH = 0 into (8.44) and evaluating (8.48) at LL gives:

µLL = γ2φ, (8.75)

µLLtLL = 0. (8.76)

The above two equations are satisfied only if φ = 0 since tLL > 0, which contradicts φ > 0.

Thus q1H = q2LH = q2HH cannot hold for φ > 0.

8.6 Proof of Proposition 6

We first show that upward incentive compatibility (4.19) is always satisfied if constraint

(4.18) is satisfied with equality and the level of regulation in period one is monotonic non-

increasing in cost q1L ≥ q1H . Given the low (high) cost firm expects costs to rise (fall):

π̄H

πH

≤
π̄L

πL

. (8.77)

Hence given q1L ≥ q1H :

π̄H

π̄L

πL (c (q1L)− c (q1H)) ≤ πH (c (q1L)− c (q1H)) . (8.78)

Next, since (4.18) holds with equality:

πL (c (q1L)− c (q1H)) = δπ̄L (c (q2H)− c (q2L)) . (8.79)

Substituting (8.79) into (8.78) gives:

π̄H

π̄L

δπ̄L (c (q2H)− c (q2L)) ≤ πH (c (q1L)− c (q1H)) , (8.80)

δπ̄H (c (q2H)− c (q2L)) ≤ πH (c (q1L)− c (q1H)) , (8.81)

−πHc (q1L)− δπ̄Hc (q2L) ≤ −πHc (q1H)− δπ̄Hc (q2H) , (8.82)

which is just (4.19). Provided the solution to a relaxed problem which ignores constraint

(4.19) satisfies q1L ≥ q1H , it also solves the original problem.
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The first order conditions for the relaxed problem are:

Bq (q1L) = πL

(

1 +
λ

γ

)

cq (q1L) , (8.83)

Bq (q1H) = πH

(

1−
λ

1− γ

πL

πH

)

cq (q1H) , (8.84)

Bq (q2L) = π̄L

(

1 +
λ

γ

)

cq (q2L) , (8.85)

Bq (q2H) = π̄H

(

1−
λ

1− γ

π̄L

π̄H

)

cq (q2H) , (8.86)

πL (c (q1L)− c (q1H)) = δπ̄L (c (q2H)− c (q2L)) . (8.87)

Define λL = γ (1− γ)
(

π̄H

π̄L
− 1

)

and λR = γ (1− γ)
(

πH

πL
− 1

)

. Observe that:

λ < (=)λR ⇔ q1L > (=)q1H , (8.88)

λ > (=)λL ⇔ q2H > (=)q2L, (8.89)

π̄H

π̄L

< (=)
πH

πL

⇔ λL < (=)λR. (8.90)

Consider first the case in which condition (8.90) holds with equality. Consider the solution

λ = λL = λR. Equations (8.88) and (8.89) imply that q1L = q1H and q2L = q2H satisfy the

first order conditions. Therefore the incentive constraints (4.18) and (4.19) are satisfied.

Plugging in the solution for λ into any of the first period first order conditions, we see that

q1L = q1H = q̄1. Further, plugging in the solution for λ into either of the second period first

order conditions implies q2L = q2H = q̄2. Therefore, the regulator offers the no information

regulation level to both types in both periods.

Next, consider the case where the inequality in (8.90) is strict. Consider λ = λL < λR.

Since q2H = q2L, the incentive constraint (4.18) is satisfied if and only if q1H ≥ q1L, but this

contradicts (8.88) since λ < λR.

Conversely, consider λ = λR > λL. Since q1H = q1L, the incentive constraint (4.18) is
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satisfied if and only if q2H ≥ q2L, which holds by (8.89) since λ > λL.

Therefore, the incentive constraint is slack at λ = λR, and is violated at λ = λL. By

the intermediate value theorem, there exists λ∗ ∈ (λL, λR) for which the incentive constraint

(4.18) holds with equality. From (8.88)-(8.89), at λ∗, q1L > q1H and q2H > q2L. Therefore

the solution to the relaxed problem solves the original problem.

We next compute the properties of the solution. First q1L > q̄1 if and only if:

Bq (q1L)

cq (q1L)
<

Bq (q̄1)

cq (q̄1)
. (8.91)

From the first order conditions and the definition of q̄1, equation (8.91) holds if and only if:

πL

(

1 +
λ

γ

)

< π̄. (8.92)

Using the definition of π̄, we have:

λ

γ
πL < (1− γ) (πH − πL) , (8.93)

λ < γ (1− γ)

(

πH

πL

− 1

)

= λR, (8.94)

which holds by (8.88).

Next, q2L < q̄2 if and only if:

Bq (q2L)

cq (q2L)
>

Bq (q̄2)

cq (q̄2)
, (8.95)

π̄L

(

1 +
λ

γ

)

> E [π2] = γπ̄L + (1− γ) π̄H , (8.96)

λ > γ (1− γ)

(

π̄H

π̄L

− 1

)

= λL, (8.97)

which holds by (8.89).

Analogous arguments show that q1H < q̄1 and q2H > q̄2.
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8.7 Proof of Proposition 7

7.2. Starting with the second period policies, we combine (5.11) and (5.12), so that:

E [Cq (q2L,m, π)]

(

1 +
λ

γ

)

= E [Cq (q2H,m, π)]

(

1−
λ

1− γ

)

. (8.98)

Since Cq is an increasing function, it is immediate that q2L,m < q2H,m.

Next, q2L,m < q̄n if and only if:

Bq (nq2L,m)

E [Cq (q2L,m, π)]
>

Bq (nq̄n)

E [Cq (q̄n, π)]
. (8.99)

Equation (5.11) and the definition of q̄n implies:

(

1 +
λ

γ

)

Bq (nq2L,m)

Bq (mq2L,m + (n−m) q2H,m)
> 1. (8.100)

Therefore, it is sufficient to show:

Bq (nq2L,m) > Bq (mq2L,m + (n−m) q2H,m) , (8.101)

which holds if and only if:

nq2L,m > mq2L,m + (n−m) q2H,m, (8.102)

q2H,m > q2L,m, (8.103)

which holds as shown above. Thus, q2L,m < q̄n.

Similarly, q2H,m > q̄n if and only if:

Bq (nq2H,m)

E [Cq (q2H,m, π)]
<

Bq (nq̄n)

E [Cq (q̄n, π)]
. (8.104)
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Equation (5.12) and the definition of q̄n implies:

(

1−
λ

1− γ

)

Bq (nq2H,m)

Bq (mq2L,m + (n−m) q2H,m)
< 1. (8.105)

Therefore, it is sufficient to show:

Bq (nq2H,m) < Bq (mq2L,m + (n−m) q2H,m) , (8.106)

nq2H,m < mq2L,m + (n−m) q2H,m, (8.107)

q2L,m < q2H,m, (8.108)

which holds as shown above. Thus, q2L,m < q̄n.

7.1. For the first period policies, we begin by showing q1H,m < q1L,m, which requires several

steps. The first step is to show that the sign of q1L,m − q1H,m does not vary with m.

To see this, we combine (5.7) and (5.10):

(

1 +
λ

γ

)

Cq (q1L,m, πL) =

(

1−
λ

1− γ

1

R

)

Cq (q1H,m, πH) . (8.109)

By the definition of R:

(

1 +
λ

γ

)

Cq (q1L,m, πL) =

(

R−
λ

1− γ

)

Cq (q1H,m, πL) , (8.110)

Cq (q1L,m, πL)

Cq (q1H,m, πL)
=

R− λ
1−γ

1 + λ
γ

. (8.111)

Since C is convex, q1L,m − q1H,m > 0 if and only if the right hand side of (8.111) is
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greater than one or if and only if:

λ < γ (1− γ) (R− 1) . (8.112)

Since (8.112) is independent of m, the sign of q1L,m − q1H,m is independent of m.

The next step is to show q1i (m, λ), i = L,H is an increasing function of m if and only

if q1L,m > q1H,m. Totally differentiating (5.7) and (5.10) with respect to m and solving

for q′1L (m) gives:

q′1L (m) =
Bqq · (q1L,m − q1H,m)

−Bqq · (m+ (n−m) z) + Cqq (q1L,m, πL)
(

1 + λ
γ

)

q′1L (m) = zq′1L,m, z ≡
Cqq (q1L,m, πL)

(

1 + λ
γ

)

Cqq (q1L,m, πL)
(

R− λ
1−γ

) . (8.113)

Here we have suppressed the function arguments for Bqq. Hence both derivatives are

positive if and only if q1L,m > q1H,m.

Finally, to prove q1L,m > q1H,m we suppose not, so that q1L,m ≤ q1H,m. If so, then step

one implies the inequality holds for all m and step two implies both derivatives are

decreasing functions of m. From the incentive constraint (5.2):

n
∑

m=1

Pr (m|L)

[

C (q1H,m−1, πL)− C (q1L,m, πL)− δE [C (q2H,m−1, π)− C (q2L,m, π)]

]

≥ 0,

with strict inequality only if λ = 0. Rewriting results in:

n−1
∑

m=1

Pr (m|L)

[

(C (q1H,m−1, πL)− C (q1H,m, πL)) + (C (q1H,m, πL)− C (q1L,m, πL))

+δE [(C (q2H,m−1, π)− C (q2H,m, π)) + (C (q2H,m, π)− C (q2L,m, π))]

]

+

Pr (n|L)

[

(C (q1L,n−1, πL)− C (q1L,n, πL)) + (C (q1H,n−1, πL)− C (q1L,n−1, πL))+

δE [(C (q2L,n−1, π)− C (q2L,n, π)) + (C (q2H,n−1, π)− C (q2L,n−1, π))]

]

> 0.(8.114)
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Notice that the second term in rows one and three are non-negative, since we have

supposed q1L,m ≤ q1H,m, which, if true holds for all m. The second terms in rows two

and four are strictly positive, since we have shown q2L,m < q2H,m. The first term in each

row is non-negative since q1L,m and q1H,m are non-increasing in m, given q1L,m ≤ q1H,m.

Thus the incentive constraint is strictly positive.

However, the Kuhn-Tucker condition then implies λ = 0. Then, from the first order

conditions (5.7) and (5.10), the first best solution results: q1L,m = q∗Lm > q1H,m = q∗Hm,

which contradicts that q1L,m ≤ q1H,m. Thus q1L,m > q1H,m.

With this result in hand, we now show that q1L,m > q̄n. First, multiplying the first

order conditions (5.7) and (5.10) by γ and 1− γ, respectively, and using the definition

of R gives:

γBq (mq1L,m + (n−m) q1H,m) = (γ + λ)Cq (q1L,m, πL) , (8.115)

(1− γ)Bq (mq1L,m + (n−m) q1H,m) = (R (1− γ)− λ)Cq (q1H,m, πL) . (8.116)

Since q1L,m > q1H,m:

(1− γ)Bq (mq1L,m + (n−m) q1H,m) < (R (1− γ)− λ)Cq (q1L,m, πL) . (8.117)

Adding equations (8.115) and (8.117) gives:

Bq (mq1L,m + (n−m) q1H,m) < (γ +R (1− γ))Cq (q1L,m, πL) = E [Cq (q1L,m, π)] .(8.118)

Here the last equality follows from the definition of R. Now since q1L,m < q1H,m:

Bq (nq1L,m) < Bq (mq1L,m + (n−m) q1H,m) < E [Cq (q1L,m, π)] . (8.119)

Finally, from the definition of q̄n.

Bq (nq1L,m)

E [Cq (q1L,m, π)]
= 1 =

Bq (nq̄n)

E [Cq (q̄n, π)]
. (8.120)
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Since the right and left hand sides are decreasing functions, q1L,m > q̄n as desired.

The proof that q1H,m < q̄n follows an identical logic.

7.3. That q1L,m and q1H,m are increasing functions of m follows immediately from q1L,m >

q1H,m and (8.113).

8.8 Proof of Proposition 8

Starting with the second claim, first note that for the second order conditions for the regu-

lator’s problem to hold, a necessary condition is that the derivative of equation (6.10) with

respect to q2L is negative:

Bqq − (E [Cqq] + E [Cqζ ] ζ
′

L)

(

1 +
λ

γ

)

−

(

1 +
λ

γ

)

(E [Cζ] + Pζ) ζ
′′

L−

(

1 +
λ

γ

)

(E [Cqq] ζ
′

L + E [Cqζ]) ζ
′

L. (8.121)

Differentiating the firm first order condition (6.2) gives:

ζq (q) =
E [Cζq (q, π, ζ (q))]

E [Cqq (q, π, ζ (q))]
. (8.122)

Substituting (8.122) and the firm first order condition (6.2) into (8.121) and simplifying

gives:

Bqq − (E [Cqq] + E [Cqζ ] ζ
′

L)

(

1 +
λ

γ

)

. (8.123)

Thus, B′ (q)− E [Cq (q, π, ζ (q))] is decreasing in q. Therefore q2L < q̄ζ if and only if:

Bq (q2L)−

(

1 +
λ

γ

)

E [Cq (q2L, π, ζL)] > Bq (q̄ζ)−

(

1 +
λ

γ

)

E [Cq (q̄ζ , π, ζ (q̄ζ))] .(8.124)

From the definition of q̄ζ and (6.11):

0 > E [Cq (q̄ζ , π, ζ (q̄ζ))]−

(

1 +
λ

γ

)

E [Cq (q̄ζ , π, ζ (q̄ζ))] , (8.125)

which holds since λ > 0.
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Similarly, for q2H > q̄, the second or order conditions imply q2H > q̄ if and only if:

Bq (q2H)−

(

1−
λ

1− γ

)

E [Cq (q2H , π, ζH)] <

Bq (q̄ζ)−

(

1−
λ

1− γ

)

E [Cq (q̄ζ , π, ζ (q̄ζ))] . (8.126)

Using the definition of q̄ζ and equation (6.12):

0 < E [Cq (q̄ζ , π, ζ (q̄ζ))]−

(

1−
λ

1− γ

)

E [Cq (q̄ζ , π, ζ (q̄ζ))] , (8.127)

which holds since λ > 0.

For the first claim, we first show that q1L > q1H . The incentive constraint (6.13) implies:

C (q1H , πL, 0)− C (q1L, πL, 0) =

δ (E [C (q2L, π, ζL)] + PζζL − E [C (q2H , π, ζH)]− PζζH) . (8.128)

A first order Taylor expansion of E [C (q2L, π, ζ (q2L))] + Pζζ (q2L) around q2H implies the

right and side is approximately:

r.h.s ≈ δ (E [Cq (q2H , π, ζH)] + (E [Cζ (q2H , π, ζH)] + Pζ) ζq (q2H)) (q2L − q2H) , (8.129)

= δE [Cq (q2H , π, ζH)] (q2L − q2H) < 0. (8.130)

Here the last equality uses the firm first order condition (6.2). Since the right hand side is

negative, equation (8.128) implies q1L > q1H .

Given q1L > q1H , the proof that q1H < q̄ < q1L is identical to the proof of proposition

(2). The proof of proposition (2) given q1H < q̄ < q1L depends only on equations (2.7) and

(2.8). In turn, these equations are identical to equations (6.8) and (6.9). Hence the proof is

identical and q1H < q̄ < q1L.
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