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1 Introduction

Large banks increasingly take into account non-financial information, including Environ-

mental, Social and Corporate Governance (ESG) disclosures when making credit allocation,

interest rate, and other lending decisions.1 Kim et al. (2023) find that lending that accounts

for ESG factors grew from $6 billion in 2016 to $322 billion in 2021.2

At the same time, some central banks are considering policies that favor green lending in

order to help resolve environmental externalities. For example, the European Central Bank

(ECB) is decarbonizing its corporate bond holdings in order to reach the EU’s climate neu-

trality and Paris Agreement goals (ECB, 2022). Further, bank regulators and policy makers

are considering policies that account for environmental risks for regulatory decisions that limit

risk taking by banks. Acharya et al. (2023) find that regulators in 23 countries have or plan to

conduct scenario analysis to measure the effect of climate change on bank portfolios, known

as climate stress tests. Many central banks are considering stress tests which account for en-

vironmental risks strictly to predict systemic financial risk.3 Nonetheless, climate stress tests

effectively subsidize (penalize) bank lending to firms with good (bad) environmental perfor-

mance records.

We examine the feasibility, optimality, and policy implications of using such non-financial

information in the credit allocation process. In our framework, an asymmetric information

problem exists where banks are uncertain about the riskiness of a project for which a bor-

rower needs financing. Borrowers receive a private signal that conveys the probability that

their project technology has relatively high productivity or equivalently the probability that

1Banks use a variety of terms for these programs, including sustainability-linked loans, green loans, and ESG
compliant loans.

2An empirical literature has established several reasons for the ESG-linked lending trend, including prefer-
ences of investors (e.g. Baker et al., 2002), mandatory disclosure rules for banks (Wang, 2023), and that ESG-
linked borrowers have lower credit risk (e.g. Danisman and Tarazi, 2024).

3Acharya et al. (2023) notes that the Federal Reserve and Bank of England only focus on limiting financial
risks related to climate change.
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the project is profitable. Since high productivity firms require less inputs per unit of out-

put, including less energy inputs, the signal also conveys the probability that the total cost of

achieving a given environmental metric (denoted “green investment costs”) is relatively low.

Borrowers can thus signal to lenders they received a high productivity/low financial risk signal

through observable green investments. We derive conditions under which banks segment the

market into an ESG-linked “green” loan product which offers a lower rate but requires the

borrower to undertake green investments directly or achieve an ESG score or metric that the

borrower can satisfy by undertaking green investments and a “brown” loan product that does

not require green investments.4

We show, both theoretically within the context of a Leontief production structure and with

empirical evidence, that borrowers whose projects have higher total factor productivity use

less energy inputs per unit of production and are thus more profitable. Since these projects

use less energy, emissions are also lower. Thus, the total cost of meeting a specified emissions

target in a green loan is lower. In contrast, low productivity projects use more energy per

unit production, are less profitable, and face higher total costs of meeting the same emissions

target.5 For example, the total cost of solar panels required to achieve an emissions level is

lower for a high productivity project that uses little energy per unit output. Moreover, while

community engagement efforts can be costly, it is less costly to achieve a good reputation with

the community for a productive firm that is consuming fewer resources.

We derive the equilibrium investment in green investment technologies by unregulated bor-

rowers for signaling purposes. Borrowers undertake green investments if their signal indicates

that expected green investment costs (the cost of achieving an environmental metric required

for a green loan) are sufficiently low. At the cutoff, the expected cost of green investment

4We use the terms green and brown loan products as the most common ESG-linked loans require borrowers
to attain environmental metrics. However, our framework applies to any ESG activity which has social benefits
not captured by the borrower or lender.

5Note that ex post, a borrower that uses a green only increases profitability further because the interest rate
on the green loan more than compensates for the cost of meeting the target in our equilibrium.
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equals the difference in interest cost between green and brown loan products. Competitive

banks then set green rates lower than brown rates, anticipating that the average type that ap-

plies for green loans is more likely to have low green investment costs, high productivity, and

low financial risk.

We find that (1) green investments are made based on how well such investments signal

low financial risk, which is generically not equal to the socially optimal green investment that

equates the marginal damage alleviated by green investments to the marginal cost, and (2) the

unregulated market can sustain only a limited amount of green lending, since if all borrowers

undertake green investments no signaling occurs.

We then consider two policies designed to achieve the social optimum, a standard carbon

tax and recent proposals by bank regulators to penalize banks for the higher risk inherent

in brown lending, which we model as a reserve requirement for brown loans. We find that

the optimal carbon tax is less than the marginal damage and in fact replaces the signaling

value of green investments with the marginal damage. The carbon tax can sustain higher

levels of green investment vs the unregulated economy but also can only sustain a limited

amount of green investment and may not be able achieve the social optimum. In effect, if the

marginal damages are too large, the social optimum eliminates the signaling value of green

investments since most firms in the regulated economy opt to undertake green investments to

avoid the large carbon tax. However, when the equilibrium shifts to only a single loan product,

the optimal carbon tax also shifts as the signaling value no longer needs to be accounted

for. Put differently, the optimal carbon tax differs across equilibrium types, and is no longer

optimal when the equilibrium switches from green and brown lending to a single loan product

equilibrium.

We also show that a Federal Reserve policy that raises the brown lending rate by requiring

more reserves cannot sustain as much green investment as the carbon tax, but a combined

policy which sets the carbon tax equal to the marginal damage and a subsidy for brown loans,
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which eliminates the signaling benefit of green lending can sustain more green lending than

either the carbon tax or reserve requirement in isolation. We conclude that unregulated green

lending products by banks and bank regulation which encourages green lending can improve

welfare relative to an unregulated economy with no green lending. However, unregulated

or regulated green lending by banks can be counterproductive if the marginal damage is suffi-

ciently high as they cannot sustain enough green investments to maximize welfare. In contrast,

in a world where no green lending is possible, a carbon tax can always maximize welfare.

2 Related Literature

A nascent literature examines features of the sustainable banking market. Acharya et al.

(2023) provides a review but argues that more research is needed, including modeling the

response of banks to climate risks and how regulation affects the cost of capital for high

emission firms. We show here that banks raise the cost of capital by increasing the brown

lending rate, not only because a borrower that applies for a brown loan signals higher risk, but

also because market segmentation concentrates high risk firms in the brown lending market.

However, an equilibrium with only brown loan products can also arise endogenously if even

very low risk borrowers find it costly to signal by investing in green technologies.

Within banking markets, the literature finds a small but significant premium (lower rate) for

green loans relative to conventional loans. Ehlers, Packer, and Greiff (2022) finds a firm with

carbon intensity one standard deviation above the mean pays a rate about 17 basis points higher

than the average firm after the Paris Accords. Similarly, Delis, Greiff, and Ongena (2018) find

a 16 basis point higher lending rate for a one standard deviation increase in their measure of

climate policy risk exposure and Shin (2021) finds a one standard deviation increase in ESG

scores results in a 10.67 basis point decrease in lending rates. Chava (2014) finds that firms

with environmental concerns in all categories considered pay 25 basis points higher rates vs
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firms with an equal number of environmental concerns and strengths. Our results provide

theoretical support for this literature. We find that only equilibria with relatively low interest

rate spreads and a small green loan market are possible in our framework. If the spread and

thus the green market is too large, banks have an incentive to deviate and offer a pooled brown

market. Brown borrowers prefer the pooled market versus paying high rates in the segmented

market, and most green borrowers also prefer the pooled market over paying for costly green

investments to avoid the high brown rate in the segmented market.

Few theoretical papers exist in sustainable banking. Oehmke and Opp (2022) consider a

model in which banks are capital constrained and brown borrowers are more profitable. They

derive a single loan rate equilibrium in which only some green borrowers receive funding

and that higher capital requirements for brown loans can decrease green lending, since banks

first allocate more scarce capital to the more profitable brown borrowers. Here we focus

instead on equilibria in which two lending rates arise endogenously, as borrowers signal higher

profitability by making green investments. Our model thus explains the empirical regularity

above of a lower rate for green loans.

In our model banks offer green loans at lower rates because borrowers making green in-

vestments signal higher productivity and lower risk. Other authors focus on other motivations

for green lending. Baker et al. (2002) argue that the small municipal green bond premium

supports the idea that green bonds provide non-pecuniary utility to investors. In Chang, Rhee,

and Yoon (2024), non-pecuniary utility is split between the bank and the borrower. Flammer

(2021) finds evidence consistent with corporate green bond issuers signaling their environ-

mental commitments to customers, employees, and equity investors (a “green halo”). In Chen,

Gupta, and Starmans (2025), an informed equity investor who receives utility from investing

in green firms may not trade in brown firms, dampening the revelation of private information.

Managers with stock option contracts may therefore invest in reducing externalities to induce

the informed investor to trade on positive information. Most likely, green banking markets ag-
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gregate both green preferences and our risk-signaling motivation. We view the risk-signaling

motivation as particularly important as it generates a segmented market with a small green rate

premium seen in the data as well as a concentration of financial risk in brown loans that is the

motivation behind central bank policy proposals.

We focus on how ESG and green lending affects green investments by borrowers. An

emerging literature focuses on the ESG scores of the lenders (e.g. Basu et al., 2022). In par-

ticular, Wang (2023) shows that mandatory ESG disclosure rules for banks causes banks to

increase green lending and reduce brown lending and borrowers to improve ESG scores. Fur-

ther, Danisman and Tarazi (2024) show that banks with high ESG scores have lower declines

in profitability, credit risk, and access to capital during financial crises. In our model, compe-

tition ensures that both the green and brown bank have zero expected profits. Nonetheless, the

green bank has lower credit risk and therefore smaller losses during periods where defaults

are high. However, the green bank has a lower rate and thus lower profits if no defaults occur.

Our model relies on an assumption that high productivity firms use less energy resources,

are more profitable, and need to reduce energy use by less to achieve an environmental met-

ric. Thus, both ex ante and ex post, high environmental performance is associated with lower

financial risk. This idea is supported by evidence primarily in equities and derivative securi-

ties markets. Albuquerque, Koskinen, and Zhang (2019) find that firm beta (non-diversifiable

risk) is negatively correlated with a measure of ESG performance. Several papers (e.g. Albu-

querque et al., 2020; Lins, Servaes, and Tamayo, 2017) find that firms with high ESG scores

have better financial performance after negative marcoeconomic shocks, and thus less down-

side financial risk. The argument is that firms that address concerns of stakeholders such as

employees and suppliers are more likely to receive help during a negative shock (higher trust).

Hoepner et al. (2024) show that investor engagement in ESG issues reduce downside financial

value at risk, especially related to the environment and climate change, and that environmen-

tal incidents decrease after investor engagement. Ilhan, Sautner, and Vilkov (2021) find that
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carbon intensive firms have more tail risk as measured via the cost of protection in the options

market.

Our model of banks offering a menu of loan types takes inspiration from a large literature

of competitive screening beginning with the seminal paper Rothschild and Stiglitz (1976). In

this literature, firms facing adverse selection offer an menu of contracts to induce agents to

sort into high and low risk groups. Low risk types use contract provisions such as deductibles

to separate from high risk types and obtain lower rates. This is welfare reducing relative to the

first best of full insurance. We add to this literature by considering green investments that are

privately costly but beneficial from society’s perspective as green investment provides benefits

that are external to the borrower and lender. We show that the aggregate green investments

depends on the signal value, which is generically not equal to the external marginal damages

alleviated by green investments. Thus, the market with green lending generically provides too

little or too much green investment, relative to the social optimum.

Our model of green lending draws on the foundational work of Burke, Taylor, and Wagman

(2012). They describe a banking equilibrium wherein borrowers apply for loans, and banks

engage in costly screening to assess borrower profitability. More intensive screening increases

the likelihood of identifying and rejecting low-profit applicants. In contrast, in our model high

profit borrowers use a signaling mechanism, green investments which improve observable

ESG metrics, to obtain favorable interest rates in credit markets.

We adopt a competitive screening approach to show how green investments which im-

prove ESG metrics can create the empirically observed two loan products equilibrium be-

tween green and brown lending. Traditional frameworks mitigate banks’ adverse selection

problems through mechanisms such as collateral (e.g. Chan and Kanatas, 1985; Bester, 1985),

partial self-financing (e.g. de Meza and Webb, 1987), and bank investigations (e.g. Broecker,

1990; Burke, Taylor, and Wagman, 2012). Banks use these techniques to deny credit to the
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lowest quality borrowers.6 In contrast, the highest quality borrowers in our model use green

investment to obtain lower rates in a two loan products equilibrium.7 Our framework thus ac-

counts for the empirical regularity that green and non-green loan markets exist simultaneously.

Loumioti and Serafeim (2022) find that approximately 17% of sustainability-linked loans in

their sample are collateralized, indicating that banks likely employ a combination of methods

to mitigate adverse selection.

Recent studies examine how carbon taxation interacts with financial market frictions.

Huang and Kopytov (2023) show that heterogeneous socially responsible investors can weaken

carbon tax effectiveness by reallocating ownership toward less responsive firms. Allen, Bar-

balau, and Zeni (2023) demonstrate that sustainability-linked debt and green subsidies can

complement or substitute for carbon pricing. Döttling and Rola-Janicka (2023) highlight the

role of leverage regulation in restoring policy effectiveness when financial constraints bind.

We contribute to this literature by examining the carbon tax and central bank policy implica-

tions of green lending. In our framework, the ability of green lending to substitute for a carbon

tax is limited, as the signaling value decreases with the amount of green lending. Further, the

optimal carbon tax becomes more complex as it depends on the signaling value, which varies

by firm, as well as the standard marginal damage.

The use of ESG criteria in the capital allocation process is also becoming common in non-

bank debt financing. Flammer (2021) and Tang and Zhang (2020) study the corporate green

bond market and find no significant difference between green and brown rates. Zerbib (2019)

finds that green bonds rates are about two basis points lower than similar conventional bonds

and Caramichael and Rapp (2002) find green bonds yields are eight basis points lower than

conventional bonds, with the difference concentrated in large issuers in developed economies.

6In Diamond (1993), all borrowers are funded initially, but high risk borrowers may be denied credit over
time as new information is revealed.

7Flannery (1986) obtains an equilibrium in which low risk borrowers choose short term debt and high risk
borrowers choose long term debt for a certain range of transaction costs.
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While we focus on bank lending, most of our results carry over to a segmented market with

green and brown bonds with similar intuition.

3 Model

Consider a model in which perfectly competitive banks offer loan products to entrepreneurs

or firms (hereafter borrowers) seeking funding for investment projects.8 The timeline begins

with banks posting take it or leave it prices for the loan products. Next, borrowers receive

private signals about the value, and thus the default risk, of their investment projects. These

signals also convey information about the expected total cost of investments that improve the

projects’ ESG scores (hereafter “green investments”). Borrowers then apply for a single loan

product at a single bank. Banks then allocate funding specified by the loan product contract to

the borrowers. Borrowers then invest in projects. Investing in the project reveals the true value

of their investment projects and the true cost of green investments. Finally, borrowers either

default and return the residual project value to the bank, or fulfill the contract returning the

interest and principle to the bank and engaging in green investments if the contract requires.9

3.1 Borrowers

Borrowers require x dollars to fund their investment projects. One can view the project as

a new investment that requires startup funding, or as an established firm investing in a new

project with uncertain value.10 Investment projects ex post generate profits net of operating

8The model is loosely related to Burke, Taylor, and Wagman (2012), but adds multiple loan types and an
externality, among other features.

9An alternative timeline is for borrowers to undertake green investments up front. This formulation is less
realistic in most cases as the loan contract typically requires the borrower satisfy ESG metrics after the loan
is granted. Up front green investments would not change the set of equilibria we derive, but would make the
equilibria exist under much weaker conditions than we find below.

10A variety of funding sources exist, including green bonds, green private equity, and angel investing. We
do not model the choice of funding source, noting only that banks are often preferred due to the different tax
treatment of debt versus equity, among other considerations.
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expenses which are either high (vH − x) or low (vL − x). Projects are thus either high value or

low value types. We assume that vL−x < 0 < vH −x so that only high value projects generate

positive returns.

Each borrower i receives an unbiased private signal, λi, such that the investment project

is the low value type with probability λi, that is vi = vL with probability λi. The signal is

unobserved by banks and regulators. We assume that λi ∼ U [0,1], where U is the uniform

distribution. Each borrower decides which loan product to apply based on the borrower’s

expected payoff driven by the given λi. The signal distribution is common knowledge.

Borrowers can also make green investments. The bank may specify in the loan contract

that the borrower undertake observable green investments or can require borrowers to achieve

an observable environmental metric or ESG score.11 For convenience, we denote such con-

tracts as “green loan” products, noting that the loan contract may additionally or instead be

an ESG-linked loan that specifies social and governance metrics or ESG scores. We denote

conventional loan contracts with no required green investments as “brown loans.” The green

loan contract specifies that failure to achieve the specified environmental metrics constitutes a

default, in which case the bank claims the residual value of the investment project.12 Let fi de-

note the total cost of green investments needed to meet the environmental metric for borrower

i. The cost of green investment satisfies fi ∈ { fL, fH}, with fH > fL.13

We assume that vH > x+ fH , so that high value projects generate enough profits to fund the

11The assumption that environmental metrics are observable may seem strong given misreporting (“green-
washing”) sometimes occurs. However, misreporting project data to obtain favorable loan terms is a potential
problem in all bank lending. This problem could be modeled by allowing banks to conduct costly investigations
of borrowers ala Burke, Taylor, and Wagman (2012). However, to simplify the exposition, we do not do so here.

12Kim et al. (2023) defines ESG and sustainability linked loans as specifying environmental or ESG metrics
whereas green loans specify that loan funds are used for a green investment. Either fits into our framework.
Some green loan contracts convert to brown loan contracts if the ESG metric is not met, rather than default. If
the conversion is costless, all borrowers would apply for green loans and then convert if necessary. Hence, to
non-trivially model this possibility we would need a conversion cost, which would significantly complicate the
model.

13An equivalent interpretation is that the green investment cost for a borrower receiving signal λi is λi fH +
(1−λi) fL with certainty.
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green investments needed to meet the environmental metric. This assumption also ensures that

it is sequentially rational for a borrower with a high value project to comply with the contract

and make green investments rather than default. The probability that the total cost of meeting

the environmental metric is high is prob( f = fH |λi) = λi. Because projects that are likely

low value (high λi) also likely have high green investment costs, a negative correlation exists

between project value and green investment costs.14 In fact, it is straightforward to show the

correlation is −1/3. This assumption can be modified to allow the correlation to vary without

affecting the qualitative results.

This cost structure can be derived from deeper model primitives in many ways. For exam-

ple, projects with greater energy productivity use less energy inputs per unit of output, which

reduces costs and increases profits. Further, the total cost of achieving a particular emissions

target is fi = p∆ei where p is the unit cost of an emissions free technology (e.g. a solar panel)

and ∆ei = e0,i−eg, i ∈ {H,L}, is the amount emissions must be reduced from a baseline e0,i to

a metric eg. More energy productive firms have lower baseline emissions and therefore lower

total cost of achieving the metric.15 Appendix 8.1 provides a straightforward model where

projects vary in terms of productivity and more productive firms use less energy per unit out-

put and are more profitable. Kim et al. (2023) find that observable ESG scores are similar for

conventional and green loans, prior to the loan. This supports our idea that the cost of green

investments is private information, especially since only some borrowers with similar ESG

scores apply for green loans.

The assumption of a relationship between profitability and total green investment costs is

equivalently a relationship between financial risk and environmental performance. For exam-

ple, suppose as above a low λi signals the project is likely to be high productivity, low baseline

emissions, and therefore to have a low cost of green investments. Then, low financial risk and

14Note that fH > fL > 0 so that all firms incur a cost to improve environmental performance.
15Note that the assumption is that more productive firms have lower baseline emissions prior to making green

investments. Firms that make green investments will subsequently have still lower emissions.
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low baseline emissions are correlated holding fixed the loan type. Further, in the equilibrium

we will derive, the firms that have low baseline emissions select green loans and thus reduce

emissions still further. Thus, this assumption is supported by the empirical literature in Section

2 which finds a negative correlation between financial risk and ESG scores (Lins, Servaes, and

Tamayo, 2017; Albuquerque, Koskinen, and Zhang, 2019; Albuquerque et al., 2020; Ilhan,

Sautner, and Vilkov, 2021; Hoepner et al., 2024). Finally, a common argument (e.g. PwC,

2023) is that green lending reduces risk in the value of collateral attached to the loan. For ex-

ample, green investments might reduce the likelihood of an environmental accident which not

only bankrupts the firm, but also reduces the value of the land used for collateral. Although

we do not specifically model collateral, this idea matches our assumption in that a firm with

low baseline emissions has lower financial risk through lower collateral risk.

3.2 Banks

In the supply side of the market, banks are competitive and make zero expected profits.

Banks receive loan applications from borrowers. Loan provision is costly banks. Banks incurs

a net dollar cost of funds for all loans equal to c to obtain x dollars for lending. For example,

a bank may borrow x dollars in the Federal Funds market repaying x+ c after the borrower

repays the loan, for a Federal Funds Rate of c/x. Alternatively, c/x could be the cost per dollar

of attracting and maintaining deposits used to fund the loan or the interest rate the FED pays

on bank reserves (and thus the opportunity cost of the loan). If default occurs the bank incurs

a processing cost k ≥ 0, as well as some loss of principal. We assume that banks always repay

depositors and/or creditors in the Fed Funds market. Thus, bank stockholders incur any losses

from default through reduced profits.

Initially, banks announce dollar prices, pg, pb ∈ R+, for two different loan products.16

16Offering the same price, but a higher probability of approval for green loans would work in a similar way.
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Loan product g requires the borrower to undertake green investments and loan product b is the

brown loan which does not. At these two prices, banks commits to loan x dollars to a borrower

in exchange for x+ pg or x+ pb dollars after the project is completed.17 Price announcements

are made publicly and simultaneously. Then, borrowers apply to banks for one of the two loan

products to start their projects.

Since green investments are more costly in expectation for low value projects, banks will

obtain information about signals received by firms by observing which loan products borrow-

ers apply to, which implies different equilibrium interest rates for green and brown loans.

3.3 Externality

We model the external impact of projects through a damage function D. In particular, a

funded project i causes damage D(e0,i), where e0,i is the level of the externality, and D is

strictly increasing. These damages are incurred by third parties, not the bank or borrower.18

Green investments reduce externality levels to eg < e0. We normalize the damage of project

with green investments to zero, D(eg) = 0.

Projects without green investments that turn out to be low value also cause damage, since

borrowers complete the project before deciding whether or not to default. To make the problem

non-trivial, let fL < D(e0) < fH . This ensures that it is socially optimal for a project that

for certain has low (high) green investment costs to in fact undertake (not undertake) green

investments.

For example, let e0 denote uncontrolled carbon emissions and D(e) damage from higher

temperatures and sea level rise. A green investment in solar panels results in eg = 0 and the

17The implied interest rates offered are thus pg/x and pb/x.
18In Chang, Rhee, and Yoon (2024), banks and borrowers split a non-pecuniary benefit and in Oehmke and

Opp (2024) some investors have an exogenous preference for social benefits, both of which motivates banks to
offer lower green rates. Our framework can be extended to include such exogenous benefits of green lending,
causing an increase equilibrium green lending.
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green loan product is either an ESG-linked loan which requires e = 0 or a green loan which

requires investment in observable solar panels. Achieving the metric e = 0 with solar panels

is more costly for firms that use more energy, and firms requiring more energy for a given

level of output are likely less productive overall. Appendix 8.1 derives vH , vL, fH , and fL for

a simple example where firms with low productivity are less profitable and high productivity

firms may also be more energy productive, and therefore require less energy use and have

a lower cost of green energy. In another example, e is plastic use and D(e) as the external

harm from plastic use. A social example is where e is the probability of an accident from

unsafe working conditions and D(e) the expected external health costs associated with unsafe

working conditions.

3.4 Payoffs

The payoffs to the banks and borrowers depends on the type of loan and the value of the

project. For high value brown loans, borrower profits are vH − x− pb, and bank profits equal

pb − c. For low value brown loans, the borrower defaults, so borrower profits are zero and

bank profits are −cH ≡ vL − x− c− k. That is, the lender incurs a loss of principle equal to

x− vL plus the cost of funds and extra processing costs of a default, k. For high value green

loans, borrower profits are vH − f j − x− pb, j ∈ {L,H}, and bank profits equal pg − c. For

low value green loans, the borrower defaults so borrower profits are zero and lender profits are

−cH . Notice that if the project is low value, the borrower defaults prior to undertaking green

investments, as green investments do not improve profits in this state.

Finally, the assumption made earlier that vH is large enough to fund high cost of green in-

vestments, vH > x+ fH , implies vH − fH > x> vL. Hence, the payoffs net of green investments

costs satisify vH > vH − fL > vH − fH > vL > vL − fL > vL − fH .
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4 Unregulated Market Equilibrium

4.1 Borrower Decision

Here we derive a set of conditions under which perfectly competitive and unregulated

banks offer both green and brown loan products. We anticipate that the green rate is strictly

less than the brown rate, otherwise no borrower would incur the extra cost required for a green

loan.

After receiving their signal, a borrower applies for a green loan product if the savings

from choosing the lower green rate outweighs the expected green investment cost. Given our

assumptions, a borrower defaults if and only if the project is low value. Hence the borrower

applies for a green loan if and only if:

(1−λi)(vH − pg −E [ f |λi])≥ (1−λi)(vH − pb) . (1)

Since the borrower defaults and receives zero for low value projects, the loan decision depends

only on the difference in prices and the expected green investment costs given the project turns

out to be high value. Condition (1) follows since, conditional on λi, vi and f are independent

(unconditionally, v and f are correlated as both distributions depend on the random variable

λi). Equation (1) implies borrowers apply for green loans if they are sufficiently confident that

the green investment cost is low:

λi ≤ λ
∗ ≡

pb − pg − fL

∆ f
, ∆ f ≡ fH − fL. (2)

The cutoff type for applying to green loans, λ ∗, is increasing in the interest difference. As

the differential rises, green loans become more attractive and so firms with marginally higher

risk of high green investment costs are willing to apply for green loans to save the interest
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difference.

All borrowers apply for a loan, even if the expected social value of the loan is negative.

Even a borrower with very high λi applies since a small probability exists that the project is

high value and profitable, whereas the borrower faces no bankruptcy costs if the project is low

value.

4.2 Bank Decision

Banks can specialize in either green or brown loans or offer both. We assume N ex ante

identical banks. Let n j denote the number of banks offering loan product j ∈ {g,b}. If n j > 1

then a borrower in market j applies to the bank offering the lowest rate. If all banks offer the

same rate, then the borrower applies randomly to one of the banks and so the probability of

a bank of type j receiving an application is 1/n j. Given this structure, Bertrand competition

between banks ensures that banks offer the same rate and profits are zero for each type of loan

(see Appendix 8.2). In the discussion below we will refer to a single green and a single brown

bank, for ease of exposition. As a result of zero profits in both markets, this is without loss of

generality as the results are identical for any number of banks specializing in green, brown, or

both types of lending.19

Banks anticipate that borrowers that are low risk (λi ∈ [0,λ ∗]) will apply for green loans

as such borrowers have low expected green investment costs. Hence the zero profit condition

for green loans is:

E [πG] =
∫

λ ∗

0

[
λi (−cH)+(1−λi)(pg − c)

]
dλi = 0. (3)

19Green loans have lower risk of default but also a lower rate and thus lower profits if no default occurs. The
lower risk of default matches the findings of Danisman and Tarazi (2024), who show that high ESG banks suffer
less credit risk declines during financial crises.
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Solving for the green loan price results in:

pg (λ
∗) = c+

λ ∗

2−λ ∗ cH . (4)

The second term on the right hand side spreads the expected losses from the fraction of bor-

rowers that opt for green loans and default, λ ∗ · (λ ∗/2) across the profits from the fraction of

the borrowers that choose green loans and repay, λ ∗ ·(1−λ ∗/2). The second term on the right

hand is the default risk premium. An important complication in the model is that λ ∗ not only

affects the probability of default, but also the measure of borrowers over which the default

premium is spread.

The zero profit condition for the brown loan market is identical except borrower quality is

lower:

E [πB] =
∫ 1

λ ∗

[
λi (−cH)+(1−λi)(pb − c)

]
dλi = 0. (5)

Solving for the brown interest rate results in:

pb (λ
∗) = c+

1+λ ∗

1−λ ∗ cH . (6)

The default premium for brown borrowers is larger since brown borrowers are more likely to

default. We adopt the standard assumption that both borrowers and banks are risk neutral.

Nonetheless, it is straightforward to show that equilibrium profits are more variable for brown

banks than green banks.

4.3 Candidate equilibria with Two Loan Products

It is easiest to proceed in two steps. First, we derive a set of partial results, denoted

candidate equilibria, which have zero profits for both types of banks (and thus banks offering

both types of loans). We will then consider whether or not a profitable deviation exists in
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the form of a price cut that increases borrower quality sufficiently to offset the loss of margin

from the price cut. We refer to a candidate equilibrium with no profitable deviations as the

full Bertrand equilibrium. A Bertrand equilibrium is thus an equilibrium with zero profits

(candidate equilibrium) such that neither a brown or green bank can profitably reduce prices.

Section 4.5, derives the Bertrand equilibrium.

Formally, a candidate equilibrium consists of prices pg and pb and a cutoff signal λ ∗

which solve equations (1), (4), and (6), and for which pb > pg. That is, the equilibrium

requires optimal borrower decisions and zero profits for both types of loan products.

Existence of candidate equilibria is best understood intuitively through a graphical anal-

ysis. We will also show existence rigorously through a proposition. We begin by showing

some properties of the brown and green loan product prices, which are the components of the

graphical analysis.

Appendix 8.3 establishes that the green loan price (4) satisfies:

pg (0) = c, pg (1) = c+ cH , p′g (λ
∗)> 0. (7)

First, if only borrowers who never default apply for green loans (λ ∗ = 0) then perfect com-

petition drives the loan price equal to the cost of funds, pg (0) = c. If all borrowers apply

for green loans (λ ∗ = 1), then the loan price equals the cost of funds plus the unconditional

default premium, pg (1) = c+ cH . The unconditional expectation is that half of borrowers

default, each costing the bank cH . This cost is spread over the fraction one half of borrowers

that repay, hence the unconditional default premium is ((1/2)cH)/(1/2). As λ ∗ increases,

expected green borrower quality decreases, causing the bank to increase the price, p′g (λ
∗)> 0.

Appendix 8.3 shows that the brown loan price (6) satisfies:

pb (0) = c+ cH , lim
λ ∗→1

pb (λ
∗) = ∞, p′b (λ

∗)> 0. (8)
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If all borrowers except the probability zero set of borrowers that never default apply for brown

loans (λ ∗ = 0), then the loan price equals the cost of funds plus the unconditional default

premium. If expected brown borrower quality deteriorates so that the fraction of borrowers

applying for brown loans approaches zero (λ ∗ → 1), no repaying borrowers exist to spread

the default cost over, and so the default premium diverges. Finally, as λ ∗ increases, expected

brown borrower quality also decreases, causing the price to increase, p′b (λ
∗) > 0. Surpris-

ingly, an increase in λ ∗ decreases borrower quality for both brown and green loans, since the

highest quality brown borrower becomes the lowest quality green borrower.

Next, we subtract equation (4) from equation (6):

pb (λ
∗)− pg (λ

∗)≡ ∆p1 (λ
∗) =

2cH

(1−λ ∗)(2−λ ∗)
. (9)

The price difference is the benefit of applying for green loans. The price difference has prop-

erties:

∆p1 (λ
∗)> 0, ∆p1 (0) = cH , lim

λ ∗→1
∆p1 (λ

∗) = ∞, ∆p′1 (λ
∗)> 0, ∆p′′1 (λ

∗)> 0. (10)

If λ = 0, all green borrowers repay with probability one, and hence the difference in prices

is the unconditional default premium. As the quality of brown borrowers deteriorates, the

difference in prices diverges since the default premium for brown borrowers diverges and the

default premium for green borrowers is finite. The difference in prices is positive, since green

borrowers are higher quality than brown borrowers. The difference in prices increases at an

increasing rate with λ ∗. Both green and brown prices increase with λ ∗, but the increase in

prices is less in the green market. A marginal borrower switching from brown to green (higher

λ ∗) means there are more borrowers in the green market to spread the default costs across, but

less borrowers in the brown market. So the effect on the brown market is larger.
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Next, rewriting equation (2) yields:

∆p2 (λ
∗)≡ fL +∆ f λ

∗, (11)

= λ
∗ fH +(1−λ

∗) fL. (12)

Equation (12) gives the expected cost of green investments for a borrower with signal λ ∗.

A candidate equilibrium is a price difference ∆p = ∆p1 = ∆p2 and λ ∗ that satisfy (9)

and (11). These two equations equate the price difference (benefit of a green loan), with the

expected green investment cost of a green loan for a borrower who is indifferent (λi = λ ∗)

between the two loan products.

Although conceptually straightforward, existence is complicated because an increase in

λ ∗ has a nonlinear effect on the price difference, because the default premium must be spread

over fewer borrowers. In addition, corner solutions can result if investment costs are too small

or too large.

Existence of candidate equilibria with two loan products depends on two conditions:

cH ≤ fL +g1 ( fL, fH) , (13)

where g1 > 0 is a function defined in Appendix (8.4) and

fH >
5
2

fL. (14)

Appendix 8.4 shows:

Proposition 1. Existence of candidate equilibria.

1. If fL > cH then a unique candidate equilibrium exists with both brown and green lend-

ing, λ ∗ ∈ (0,1).
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2. If fL = cH then a unique candidate equilibrium exists with both brown and green lend-

ing, λ ∗ ∈ (0,1), if and only if condition (14) holds, otherwise no equilibrium exists with

both brown and green lending.

3. If fL < cH and

• condition (13) holds strictly and condition (14) holds, then two candidate equilib-

ria exist, both with brown and green lending.

• condition (13) holds with equality and condition (14) holds, then a single candi-

date equilibrium exists with both brown and green lending.

• if either (13) or (14) does not hold, no equilibrium exists with both brown and

green lending.

The function g1 is defined in the appendix and is increasing in fH . Therefore, although

three cases exist, Proposition 1 implies at least one candidate equilibrium exists with both

brown and green lending for fH sufficiently large.

Figure 1 shows the equilibrium geometry.
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Figure 1: Equilibrium Geometry. The three lines in the right panel are for increasing values
of fH .

In Figure 1, the curve with circles is the difference in prices between brown and green

loans, which is the benefit of choosing green loans for the borrower. The convexity reflects that

the interest charged on brown loans increases as the default costs are spread across relatively

few repaid loans when λ ∗ is high. The lines are the expected cost of green investments for a

borrower with λi = λ ∗. Equilibrium requires the price difference to be equal to the expected

cost of green investment for a borrower with λi = λ ∗.

The right panel shows that for fL < cH , if fH is large enough, two candidate equilibria

exist, both with green and brown loan products. In the first equilibrium, λ ∗
1 , a small price

difference exists and so only very high quality borrowers have expected green investment

costs low enough to justify applying for green loans. Since borrowers of moderate quality

apply for brown loans, the average quality of brown borrowers is good and the brown price

is relatively low. Thus, the price difference is also relatively low. In turn, only high quality

borrowers apply for green loans given the small price difference.
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If fH is large, a second candidate equilibrium also exists where the price difference is

large enough to attract moderate quality borrowers to green loans. Because only low quality

borrowers are applying for brown loans, the brown loan price is high, and thus so is the price

difference. Because the price difference is large, low and moderate quality borrowers have

expected green investment costs which are low enough to apply for green loans.

As fH decreases, the right panel shows that eventually the economy reaches a knife edge

with only one candidate equilibrium (condition 13 holds with equality) and then further de-

creases result in no equilibrium (condition 13 does not hold). In this case, the expected cost

of green investments increases more slowly than the price difference. Therefore, a borrower

with λi = λ ∗ strictly prefers a green loan for any λ ∗, violating the equilibrium indifference

condition.

The left panel shows that if fL > cH , a single candidate equilibrium exists with both brown

and green lending. The equilibrium is similar to the equilibrium with fL < cH where low and

moderate quality borrowers apply for green loans and the price difference is large. However,

no equilibrium exists where only high quality borrowers apply for green loans. Since fL is

large, even high quality borrowers prefer brown loans if the price difference is small.

4.4 Candidate Equilibria with One Loan Product

Additional candidate equilibria where all borrowers apply for only one type of loan product

also exist. Consider first an equilibrium where all borrowers apply for brown loan products.

In such an equilibrium,

pb (0) = c+ cH , (15)

is the brown loan price since all borrowers are applying for brown loans. Further, λ ∗ ≤ 0 so

that even borrowers who are certain their green investment costs are low (λi = 0) apply for
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brown loans because the price difference does not cover the lowest cost of green investments:

λ
∗ ≤ 0 →

pb − pg − fL

∆ f
≤ 0, (16)

pg ≥ c+ cH − fL. (17)

We restrict the equilibrium set to where equation (17) holds with equality, since all values of

pg which satisfy (17) result in the same equilibrium allocations with probability one.20

Hence, a single brown loan product candidate equilibrium satisfies:

pb (0) = c+ cH ,

pg = c+ cH − fL,

λ
∗ = 0 (18)

Using identical logic, a candidate equilibrium with a single green loan product satisfies:

pb = c+ cH + fH ,

pg = c+ cH ,

λ
∗ = 1. (19)

In this case, the price difference, fH , is large enough so that even a firm that for certain has

high green investment costs applies for a green loan.

20Throughout the paper, we consider an equilibrium with λ ∗ = 0 to be an equilibrium with a single brown loan
product as the probability of a green loan application is zero, given only a borrower with λi = 0 is indifferent
between brown and green loans and no borrower prefers green loans.
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4.5 Bertrand Equilibria

Multiple candidate equilibria exist in the model because the relative prices affects the

quality of loan applicants. If higher quality borrowers apply for a loan product, the likelihood

of default falls, which lowers the price, which justifies more borrowers applying for the loan

product. To refine the set equilibria, we impose Bertrand competition so that a bank cannot

deviate by lowering a loan price and make positive profits. Bertrand competition is reasonable

in a modern banking market, since typical features that lead to non-Bertrand competition

are absent. Borrowers can shop a loan via internet service providers at low search cost and

capacity constraints are minimal given that banks have large excess reserves and can borrow

from other banks easily to increase capacity if necessary. Brown and green loan products are

homogeneous across banks.

4.5.1 Only Green Loan Product Candidates

Consider first the candidate equilibrium with only green loan products. Suppose a brown

bank deviates by lowering the price to:

p̃b = pb − ε∆ f , (20)

λ̃ =
p̃b − pg − fL

∆ f
= 1− ε. (21)

A bank making such a deviation will have a lower price than the brown banks offering the

equilibrium price and will thus capture all green borrowers of quality [1− ε,1] as the lower

brown price makes green loans less attractive. As ε increases, the deviating brown bank

captures more borrowers and borrower quality improves.

In fact, Appendix 8.7 shows that the gain in market share and borrower quality outweighs

the lower price and so a brown bank which deviates by setting ε = 1 captures the entire market
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with positive profits. Hence, no Bertrand equilibrium exists with only green loan products.

4.5.2 Only Brown Loan Product Candidates

Consider next a candidate equilibrium with only brown loan products. A green bank with

zero market share deviates by lowering the price to:

p̃g = pg − ε∆ f , (22)

λ̃ =
pb − p̃g − fL

∆ f
= ε. (23)

As the deviating price falls, the green bank begins to attract brown borrowers starting with the

highest quality brown borrowers.

Increasing ε attracts more borrowers, but lowers both the price and average borrower qual-

ity. Hence, the best chance of a profitable deviation occurs for small ε , where the price de-

crease is small and only the highest quality brown borrowers switch to the deviating green

bank. In fact, Appendix 8.8 shows that if:

fL ≥ cH , (24)

then no profitable deviation exists. Further, if condition (24) does not hold then a profitable

deviation exists near ε = 0. Hence, a one brown loan product Bertrand equilibrium exists if

and only if condition (24) holds.

4.5.3 Green and Brown Loan Candidates

Proposition 1 shows that for equilibria with both green and brown loan products, either

zero, one, or two candidate equilibria exist, depending on the parameter values. The next

proposition establishes which of the candidate equilibrium are Bertrand equilibria. Two con-
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ditions are required so that a bank cannot deviate and earn positive profits.

cH ≤ fL +g2 ( fL, fH) , (25)

where g2 < g1 is a function defined in Appendix (8.9) and

fH > 3 fL. (26)

Proposition 2. Existence of Bertrand equilibria.

1. If fL ≥ cH then the unique candidate equilibrium that exists with both green and brown

loan products is not a Bertrand equilibrium.

2. If fL < cH then

(a) if conditions (25) and (26) hold, two candidate equilibria exist, both with green

and brown loan products, λ ∗
1 and λ ∗

2 , such that 0 < λ ∗
1 < λ ∗

2 < 1 and λ ∗
1 is a

Bertrand equilibrium and λ ∗
2 is not.

(b) if condition (25) and/or (26) do not hold, then no Bertrand equilibrium exists with

both brown and green lending.

Proposition 2 shows that, under Bertrand competition, if an equilibrium exists it is always

unique. Both one loan product and two loan products candidate equilibria exist, but at most

one equilibrium has no profitable deviations. The appendix shows that g2 is increasing in

fH . Thus, for fH sufficiently large we have only two cases. Either fL ≥ cH and the unique

Bertrand equilibrium is one loan product equilibrium with only brown lending, or fL < cH and

the unique Bertrand equilibrium is a two loan products equilibrium with both green and brown

lending.
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Corollary 1. For fH sufficiently large:

1. if fL ≥ cH then in the unique Bertrand equilibrium, banks offer a single brown loan

product.

2. if fL < cH then the unique Bertrand equilibrium, λ ∗
1 ∈ (0,1), has both green and brown

loan products.

If fH is large relative to fL, a Bertrand equilibrium always exists and is unique. The result

that, for some parameter values, the Bertrand equilibrium consists of a single brown bank is

in contrast to Rothschild and Stiglitz (1976), where one loan product equilibria never exist.

The difference is that in their paper insurance companies are free to adjust deductibles to

cream skim low risk types. Here, the cost of a green investment like a solar panel cannot be

manipulated by the bank and so parameter values exist where the signaling cost for low risk

types is too high for cream skimming to take place.

Corollary 1 (see also Figure 8.3) provides a theoretical explanation for the empirical result

that the green banking market has small interest rate premia and comprises a relatively small

share of the overall banking market (Chava, 2014; Delis, Greiff, and Ongena, 2018; Ehlers,

Packer, and Greiff, 2022; Shin, 2021): a large interest rate differential creates the opportunity

for a brown bank to deviate and capture the market as brown borrowers prefer the lower rate

and moderate quality green borrowers prefer not to undertake expensive green investments.

5 Welfare

Welfare in the model depends on the surplus accruing to banks and borrowers as well as

green investment costs and environmental damage. Here we show that welfare in the unregu-

lated market is not socially optimal, as the signaling value of green investments does not equal

the net benefit from alleviating the externality.
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Ex-ante expected welfare equals the sum of borrower surplus (WB) and bank surplus,

less external damages to third parties. Bertrand competition ensures bank surplus is zero in

expectation (ex-post surplus can be positive or negative depending on if the investment project

turned out to be high or low value) and all expected private surplus from the projects accrues

to the borrowers. Thus:

W = E [borrower surplus]+E [bank surplus]−E [environmental damages to households]

= E [WB]+0−E [D] . (27)

Parameter changes affect welfare directly, and potentially indirectly if the type of Bertrand

equilibrium changes (one brown loan product vs green and brown loan products).

5.1 Welfare, Single Brown Loan Product Bertrand Equilibrium

Corollary 1 shows that a region of the parameter space exists where banks offer a single

brown loan product that doesn’t require any green investment. Banks accept all loan appli-

cants at pb = c+ cH (refer to equation 18), and borrowers have no incentive to make green

investments. To simplify the exposition in this section, we assume that all firms that default

and all firms using brown loans generate e emissions. Therefore, damage D(e) is generated

by all projects.

The borrower surplus in the region of the parameter space with a single brown loan prod-

uct, WBb, is:

WBb =
∫ 1

0
[λi ·0+(1−λi)(vH − x− pb)] f (λi)dλi, (28)

=
1
2
(vH − x− pb) (29)

In equation (28), with probability λi the project is low value and so the borrower defaults
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and gets zero. With probability 1−λi the project is high value, in which case the borrower

repays the loan principle and interest with the income generated from the project. Given that

all loan applications are accepted and the signals are uniform on the unit interval, the project

is unconditionally high value with probability 1/2, and so the borrower expected welfare in

(29) is the probability that the project is high value times the borrower surplus for a high value

project.

Total environmental damages to households are D(e), because no green investments occur

and all projects generate damages, as the project must be implemented to learn the true value.

Substituting in the price (18), borrower surplus (29), and the externality cost into the wel-

fare function implies welfare for a single brown loan product equilibrium, Wb, is:

Wb =
1
2
(vH − x)− 1

2
(c+ cH)−D(e) , (30)

=
1
2
· (vH − x− c)︸ ︷︷ ︸

gain from high value

−1
2
· (x− vL − c)︸ ︷︷ ︸

loss from low value

− k
2︸︷︷︸

transaction cost

− D(e)︸︷︷︸
environment damage

(31)

Here the second equation follows from the definition of cH . The assumption vL − x < 0 <

vH − x ensures banks generate enough profits from good projects to cover the default and

bank funding costs, otherwise the market would not exist. However, Wb might be negative

if the project has negative net social benefits (if the external damages exceed the private net

benefits).

5.2 Two Loan Product Equilibrium

With brown and green lending, green borrowers who do not default make green invest-

ments, which reduce total expected damages. The expected bank surplus is zero for both loan
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types and borrower surplus, WBgb, is the sum of expected green and brown borrower surplus:

WBgb =
∫

λ ∗

0
[(1−λi)(vH −E [ f |λi]− x− pg)]dλi +

∫ 1

λ ∗
[(1−λi)(vH − x− pb)]dλi

=
1
2

λ
∗ (2−λ

∗)(vH − x− pg)+
1
2
(1−λ

∗)2 (vH − x− pb)

−(λ ∗)2
(

1
2
− λ ∗

3

)
fH −λ

∗ (
λ
∗,2 −3λ

∗+3
)

fL. (32)

The second equality in equation (32) states that borrower surplus is the probability the loan is

green and high value, times the borrower profits from a high value green loan excluding green

investment costs, plus the probability that the loan is brown and high value, times the borrower

profits from a high value brown loan, less the probability that the loan is green and high value,

and then either higher or low green investment costs are realized. The complications arise

since all of these probabilities depend crucially on λ ∗.

Next, using the equilibrium green (4) and brown (6) prices, equation (32) simplifies to:

E
[
WBgb

]
=

1
2
(vH − x− c− cH)− (λ ∗)2

(
1
2
− λ ∗

3

)
fH − λ ∗

3
(
λ
∗,2 −3λ

∗+3
)

fL. (33)

Recall, all loan applications are eventually funded and the unconditional probability that the

loan is high value is 1/2. Thus, with probability 1/2 we have a high value loan generating

profits exclusive of green investment costs equals vH −x−c. Conversely, with probability 1/2

we have a low value loan which generates profits of −cH . The last two terms of (33) reflect

the green investment costs which only occur given a green loan that turns out to be high value.

Total environmental damages to households from both loan types are:

E [D] =
∫

λ ∗

0
[(1−λi) ·0+λiD(e)]dλi +

∫ 1

λ ∗
[(1−λi)D(e)+λiD(e)]dλi

=D(e)
[

λ ∗,2

2
+1−λ

∗
]
. (34)
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Damages occur in all cases except for a high value green loan. Total welfare when banks offer

two loan products is expected borrower surplus (33) less expected damages (34).

Wgb (λ
∗) =

1
2
(vH − x− c− cH)− (λ ∗)2

(
1
2
− λ ∗

3

)
fH − λ ∗

3
(
λ
∗,2 −3λ

∗+3
)

fL

−D(e)
[

λ ∗,2

2
+1−λ

∗
]
. (35)

Welfare in the two loan product case reflects the private benefits of lending plus the expected

green investment costs and environmental damages. The green investment costs arise from

borrowers sending signals to banks. In a typical screening model (e.g. Rothschild and Stiglitz,

1976), low risk agents do not fully insure to signal low risk, which is welfare reducing relative

to full information. Here signaling has a private cost but a social benefit in reducing damages.

The amount of green lending in equilibrium depends on the signaling value of green invest-

ment. However, here the net social benefit of signaling depends on the expected reduction in

damages and the expected green investment costs.

5.3 Optimal Green Lending

A benevolent social planner that possesses perfect information about the borrower signals

could choose which borrowers undertake green investment. Note that if it is socially optimal

for a borrower with signal λi to make green investments, then it is optimal for any borrower

with signal λ j < λi to also make green investments as the expected cost is lower while the

expected avoided damages is the same. Thus, given perfect information about the signals,

the planner would set a cutoff λ̄ and require green investment for all borrowers with signals

λi ≤ λ̄ . In the next section, we show how such a welfare maximum can be implemented

via government policy (e.g. a carbon tax). Even though the regulator does not in fact know

the borrower signals, it can alter the payoffs of green vs brown loans to borrowers and then
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rely on the signaling equilibrium created by banks to get the correct borrowers to make green

investments.

A social planner with perfect information might not allow borrowers with sufficiently high

λi to invest in their projects at all, in particular if the expected damages are high enough to

make the project have negative expected social value. In fact, this over-investment problem

is worse than in de Meza and Webb (1987), since some borrowers have expected positive

financial return, and yet have negative social return due to the externality. However, absent

knowledge of λi, the planner cannot prevent these loans.21 Therefore, we will compute the

value λ̄ which maximizes social welfare and show this optimum is implementable via policy

in the next section.

Let λ̄ denote the second best optimum fraction of borrowers that make green investments.

Maximizing welfare (35) results in:

W
(
λ̄
)′
=
(
1− λ̄

)(
D(e)− fL −∆ f λ̄

)
= 0 (36)

To find the local maximum value of λ̄ , we calculate second order condition:

W
(
λ̄
)′′

= 2∆ f λ̄ −D(e)+ fL −∆ f (37)

Here, W (1)′′ < 0 holds only if fH < D(e), which we have ruled out by assumption.22 Next,

W
(

D(e)− fL
∆ f

)′′
< 0 since fH > D(e). Thus, the social optimum satisfies:

D(e) = λ̄ fH +
(
1− λ̄

)
fL ↔ λ̄ =

D(e)− fL

∆ f
. (38)

21In de Meza and Webb (1987), borrowers must use some of their own wealth in the project. Thus, in their
framework regulators can raise the safe rate of interest, so that low expected return borrowers invest their wealth
at the safe rate of interest and do not apply for loans. Here we assume borrowers do not have any wealth in the
project to focus on the externality that is important for green lending.

22Recall fL < D(e) < fH , so that it is socially optimal for a firm with for sure low (high) green investment
costs to undertake (not undertake) green investments.
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The social planner maximizes welfare by incentivizing borrowers who receive a signal such

that expected green investment costs are less than damages to undertake green investments.

The assumption fL < D(e)< fH also implies λ̄ ∈ (0,1).

Since λ̄ > 0, any regulation which induces the social optimum generates an equilibrium

with both brown and green lending. Therefore, the Bertrand equilibrium with only brown

lending does not maximize welfare. In the next section we show how regulation can cause the

equilibrium to generate the optimal amount of green investment.

6 Optimal Regulation

Many regulation options exist including Pigouvian taxation (e.g. a carbon tax), subsidizing

green lending, or taxing brown lending. Here we focus on carbon taxes and penalizing brown

lending by requiring more reserves.

6.1 Carbon Tax

Consider a tax τ per unit of e such that total tax payments are τe. To fix ideas, we will

refer to τ as a carbon tax and e as carbon emissions. An important assumption is what priority

carbon tax payments receive as a creditor during bankruptcy. Although the law is not set-

tled on the matter and often bankruptcy judges have some discretion, Appelbaum (2021) and

others argue that the government is an unsecured creditor and thus ranks somewhere below

secured creditors and even bankruptcy fees and costs. We therefore treat the bank as a secured

creditor with first claim given bankruptcy. Since we have assumed low value projects generate

revenues that are insufficient to make the secured creditor (bank) whole, no carbon taxes are

paid in the event of bankruptcy. The borrower decision (1) becomes:

(1−λi)(vH − pg,t −E [ f |λi])≥ (1−λi)
(
vH − pb,t − τe

)
, (39)
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and so the condition for applying for a green loan becomes:

λi ≤ λτ ≡
pb − pg − fL + τe

∆ f
. (40)

Since banks do not directly pay the tax, the loan prices at which banks earn zero profit is

unchanged up to λ . Equations (4) and (6) imply:

pg,t = c+
λτ

2−λτ

cH , (41)

pb,t = c+
1+λτ

1−λτ

cH , (42)

∆p1 =
2cH

(1−λτ)(2−λτ)
(43)

∆p2,τ = fL − τe+∆ f λτ . (44)

So, in Figure 1, the line ∆p2 shifts down if the tax is positive. For small shifts starting from a

region of the parameter space where two equilibria exist with both loan products, λ1,τ > λ ∗
1 and

λ2,τ < λ ∗
2 . The equilibrium with the smaller green lending share continues to be a Bertrand

equilibrium. But if the shift is too much, a single brown bank can profitably deviate and

undermine the equilibrium. If the shift is larger still, the economy can enter a region where no

equilibrium exists.

The equilibrium with a carbon tax is a solution to:

∆p1 (λτ) = ∆p2,τ (λτ) . (45)
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Further, an equilibrium with taxes is socially optimal if λτ = λ̄ .23

∆p1
(
λ̄
)
= ∆p2,τ

(
λ̄
)
,

2cH(
1− λ̄

)(
2− λ̄

) = fL − τ̄e+∆ f λ̄ , (46)

τ̄e = fH λ̄ +
(
1− λ̄

)
fL −

2cH(
1− λ̄

)(
2− λ̄

) , λ̄ =
D(e)− fL

∆ f
. (47)

The optimal tax first removes the signaling incentives, which is the third term after the equality

in (47) and equals the price difference. Then, the first two terms of the optimal tax makes a

borrower with expected green investment costs equal to expected damages indifferent between

a green loan which has no tax costs and a brown loan which does.24

Equation (47) can also be written as:

τ̄ =
D(e)−0

e−0
− 1

e
2cH(

1− λ̄
)(

2− λ̄
) . (48)

The tax equals the equivalent, in our discrete framework, to the marginal damage less the

correction which removes the signaling value.

Note from Figure 1, ∆p1 > (<,=)∆p2 for λ < (>,=)λ ∗
1 . Hence:

λ̄ > λ ∗
1 τ̄e > 0

λ̄ = λ ∗
1 τ̄e = 0

λ̄ < λ ∗
1 τ̄e < 0.

(49)

That is, if the signaling value generates too little (too much) green investment, the optimal

carbon tax is positive (negative) to create more (less) green investment.

It remains to determine whether profitable deviations exist at λτ = λ̄ . As shown in Propo-

23We assume that tax revenue is rebated back to households so that tax revenue does not affect welfare. Only
the change in incentives created by the tax matter.

24Further, the optimal loan product price difference depends only on the external damages, not the signal value.
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sition 2, if the equilibrium fraction of green lending (in this case λ̄ ) is too large, then a brown

bank can deviate and make positive profits. Consider the following change of variables:

fL,τ ≡ fL − τe, (50)

fH,τ ≡ fH − τe, (51)

∆ fτ ≡ fH,τ − fL,τ = ∆ f . (52)

Then:

λτ ≡
pb − pg − fL,τ

∆ fτ

. (53)

The problem with a tax is identical to the unregulated problem except fH and fL change by

identical amounts. So can use all of the results in Propositions 1 and 2. In particular, λτ is a

Bertrand equilibrium with two loan products if and only if:

fH,τ > 3 fL,τ , (54)

fL,τ < cH ≤ fL,τ +g2 ( fH,τ , fL,τ) . (55)

Suppose that the unregulated signaling economy generates too little green investment and the

optimal tax is positive, so that fL,τ < fL and fH,τ < fH . Then condition (54) and the first

inequality in condition (55) become less restrictive. Further, in the right inequality of (55)

the first term decreases and g2 increases relative to the unregulated problem. The tax means

it is more difficult for a brown bank to deviate and profitably offer a lower rate given that a

borrower switching from a green to brown loan must now pay the tax (g2 increases). However,

the term fL,τ also decreases, which reflects that the optimal tax creates more green lending,

and too much green lending creates an opportunity for a brown bank to profitably deviate.

Next, suppose that either (54) or (55) is violated at the optimal tax, so that the optimal tax
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does not result in a Bertrand equilibrium. From equations (36) and (37), welfare is increasing

(decreasing) in λ for λ < (>)λ̄ . The best the regulator can do is choose a tax to get the highest

λ such that no-deviations are possible.

Consider now a carbon tax where the equilibrium consists of a single brown loan product.

The borrower still decides whether or not to pay the carbon tax. The borrower considers only

the tax vs the cost of reducing carbon emissions. The borrower reduces if and only if:

E [ f |λi]≤ τe,

λi ≤
τe− fL

∆ f
. (56)

Next, in any equilibrium where pb ≥ pg, any borrower with λi satisfying (56) will also apply

for a green loan since they are making green investments already. Thus, any equilibrium with

one brown loan product satisfying pb ≥ pg must also satisfy τe ≤ fL, so that no borrower

chooses to reduce and therefore also chooses a green loan. Modifying (18) results in:

pb = c+ cH ,

pg = c+ cH − fL + τe = c+ cH − fL,τ

λτ = 0. (57)

The equilibrium results in no green lending and has the same no-deviations condition, up to fL,

fL,τ ≥ cH . Such an equilibrium is sub-optimal since it is efficient for at least some borrowers

to make green investments (recall D > fL). The regulator can improve welfare by increasing

τe above fL and shifting to an equilibrium with two loan products.

Proposition (3) summarizes the above analysis:

Proposition 3. Regulated economy with a tax τ per unit of e.

1. If fL,τ ≥ cH (which implies τe < fL), then (57) is a sub-optimal Bertrand equilibrium
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with no green investment and only brown lending.

2. If (54) and (55) hold, a Bertrand equilibrium λ1,τ with two loan products exists satisfy-

ing (45).

3. Equation (47) gives the socially optimal tax, which is less than the marginal damage.

4. The socially optimal tax results in a Bertrand equilibrium if (54) and (55) hold, where

equation (47) gives the tax.

5. If the socially optimal tax does not result in a Bertrand equilibrium, the highest welfare

that is a Bertrand equilibrium, the constrained social optimum, is a tax which creates

the highest possible λτ such that no-deviations are possible.

Proposition 3 points to several subtleties with regard to carbon tax policy given a green

banking market. First, if in the absence of a carbon tax the parameter values generate the

one loan product with brown loan market, then a tax smaller than the marginal damage is

optimal. The tax shifts the equilibrium to a two loan products equilibrium which provides

private motivation for green investment. In this sense, a small carbon tax can have a relatively

large effect by shifting the equilibrium from one loan product to two loan products. Although

the US does not have a national carbon tax, carbon is priced in some regions through cap

and trade systems. Thus, one could empirically test whether or not the green banking market

developed in response to an increasing price of carbon.

Surprisingly, Proposition 3 states that green lending can create a problem: if the optimum

requires too much green investment, an an equilibrium does not exist. Notice that if no green

lending were possible, then the optimal carbon tax equals the marginal damage and the social

optimum results.
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6.2 Reserve Requirement

Central banks have proposed including climate risks as part of their overall assessment

of financial risk at banks and in the banking system (Acharya et al., 2023). Often, central

banks specify that such regulation be designed to reduce financial risk at banks related to

climate change. The environmental benefits are ancillary. However, the ECB is aligning

policy with “the objectives of the Paris Agreement and the EU’s climate neutrality objectives”

(ECB, 2022). Taking this statement as given, here we consider bank regulation designed to

induce the welfare maximizing level of green investment. A straightforward way to model

such regulation is to impose a reserve requirement for brown loans.25

In particular, suppose regulators impose a required reserve ratio of rr =α(1−λr)/2=R/x

on brown loans, where α is a policy parameter, λr is the cutoff such that borrowers with λi > λr

apply for brown loan given the reserve requirement, and R is the dollar amount of required

reserves.

The functional form of the required reserve ratio is chosen for ease of analysis but in fact is

not a restriction, because we will show the optimal required reserve ratio depends on λr = λ̄ .26

The bank now requires x+R dollars to make a brown loan of x. The rate of interest the bank

pays the depositor or other funding source is c/x, and so the dollar cost of funds for a brown

loan becomes (1+ rr)c.

In the event of bankruptcy by the borrower, the bank has some reserves. We assume that

the bank losses are paid by the bank stockholders through negative profits, rather than having

the bank default and not repay the depositors. In this case, bank profits on a defaulted brown

loan are −cH,r = vL − x− (1+ rr)c− k = −cH − rrc, and bank profits on a successful brown

25A number of other options are possible but all would generate similar results, including subsidizing green
loans through establishment of a green bank that provides credit enhancements for green loans (recommended
in a CFTC report, see Martinez-Diaz and Keenan, 2020, p. 109) or prioritizing green bonds in central bank
corporate bond holdings (announced by the European Central Bank, ECB, 2022).

26The optimal carbon tax also depends on λ̄ .
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loan are pb − (1+ rr)c.

The equilibrium outcomes in the model with a reserve requirement are:

pg,r = c+
λr

2−λr
cH = pg, (58)

pb,r = c(1+ rr)+
1+λr

1−λr
cH,r

= pb +
2rr · c
1−λr

, (59)

λr =
pb,r − pg,r − fL

∆ f
(60)

The price difference rises to:

∆p1,r =
2cH

(1−λr)(2−λr)
+

2rr · c
1−λr

,

=
2cH

(1−λr)(2−λr)
+α (61)

and the line governing borrower behavior is unchanged up to λ :

∆p2,r = fL +∆ f λr. (62)

In Figure 1, the line is unchanged and the curve which is the price difference shifts up by α .

The functional form for the reserve ratio was in fact chosen so that α shifts the price difference

upward equally for all λ . Assuming the new candidate equilibrium with two banks remains a

Bertrand equilibrium, we have λ1,r > λ ∗
1 and λ2,r < λ ∗

2 .

Combining equations (58)-(60) generates the equilibrium condition for the economy with

a required reserve ratio:

∆p1,r =
2cH

(1−λr)(2−λr)
+α = ∆p2,r = fL +∆ f λr. (63)
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Further, λ̄ is an equilibrium in the economy with a reserve requirement if:

α = D(e)− 2cH(
1− λ̄

)(
2− λ̄

) , (64)

which is identical to the optimal carbon tax (τe = α at the optimum).27 As with the tax, the

optimal reserve policy replaces the signaling value of green investments with the marginal

damage. The implied optimal required reserve ratio is:

rrc =
1− λ̄

2

(
D(e)− 2cH(

1− λ̄
)(

2− λ̄
)) . (65)

As damage and λ̄ increase, the price difference widens as brown borrowers are increasingly

likely to default, and so the brown rate becomes large to maintain zero profits. The optimal

reserve requirement decreases as borrowers already have a strong signaling incentive for green

loans.

It remains to find the range of parameter values such that a Bertrand equilibrium exists.

Consider the change of variables:

fL,r ≡ fL −α, (66)

fH,r ≡ fH −α, (67)

∆ fr ≡ fH,r − fL,r = ∆ f . (68)

The equilibrium condition then becomes:

2cH

(1−λr)(2−λr)
= fL,r +∆ frλr. (69)

27Note that the cost of holding reserves is accounted for in the welfare function. The borrowers pay for the cost
of holding extra reserves through the higher brown rate, which accounts for the welfare loss of the opportunity
cost of using these funds elsewhere, c.
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Thus the equilibrium equation and conditions for the existence of candidate equilibria are

unchanged up to fH and fL.

The conditions for existence of a candidate equilibrium are identical under tax and required

reserve regulations, but the no-deviation conditions are different. To see which regulation

system has the largest range of λ with no profitable deviations, consider the case where the

reserve requirement and the tax are set so that the equilibrium is the same: λr = λτ . Then:

λr =
Pb,r − pg,r − fL

∆ f
= λτ =

Pb,τ − pg,τ − fL + τe
∆ f

,

⇔pb,r = pb,τ + τe (70)

The brown loan product price is higher with the reserve requirement versus the tax. The tax

is placed on the borrowers which discourages brown borrowing. In contrast, the reserve re-

quirement relies on increasing the price difference to discourage brown borrowing. However,

the high price difference given required reserve regulation makes deviating more attractive. A

deviating brown bank induces green borrowers to switch which is more profitable when the

brown price is already high and very few repaying brown borrowers exist to spread the default

costs over.28

Graphically, Figure 1 shows that the price difference increases in a convex way with λ . As

the quality of borrowers decreases in the brown loan market, an increasingly high brown rate

is required to spread the default costs over the relatively few brown borrowers that repay their

loan. As λ increases and the price difference widens, it becomes increasingly attractive for

a brown bank to lower the rate slightly, gaining green borrowers who, if they repay, generate

large profits. This is why in the unregulated economy high values of λ ∗ are not Bertrand. The

same principle holds in the regulated economy. The higher reserve requirement increases the

28The deviating brown bank also loses more if the borrower that switches from green to brown does not repay,
since the reserve requirement must also be repaid. However, this is outweighed by the higher price if the borrower
does repay and the spreading of the default costs.
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price difference and makes deviations more attractive.

In fact, we show in the appendix that the new no-deviation conditions become:

fH,r > 3 fL,r +α (71)

fL,r < cH < fL,r +g2,r ( fL,r, fH,r,α) (72)

Here g2 ( fL,r, fH,r) = g2,r ( fL,r, fH,r,0) and g2,r is decreasing in α . Then if the optimal policy is

to increase green lending (α > 0), parameter values exist such that λ̄ is a Bertrand equilibrium

given the carbon tax, but is not an equilibrium with the optimal reserve policy.

Proposition 4 summarizes the above analysis:

Proposition 4. Required reserve regulation. Suppose a required reserve ratio rr =α (1−λr)/2

per dollar of brown loans and α > 0.

1. If fL,τ ≥ cH (which implies α < fL), then a sub-optimal Bertrand equilibrium exists with

no green investments and only brown lending.

2. If (71) and (72) hold, a Bertrand equilibrium λ1,r with two loan products exists satisfying

(58), (59), and (63).

3. Equation (65) gives the socially optimal required reserve policy, which is less than the

marginal damage.

4. The socially optimal required reserve policy results in a Bertrand equilibrium if (71)

and (72) hold, where equation (65) gives the required reserve ratio.

5. The optimal reserve policy parameter α equals the optimal tax policy.

6. There exists an open set of parameter value such that the optimal tax policy is a Bertrand

equilibrium and the optimal reserve policy is not.
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Both the carbon tax and the reserve requirement can be set so that the socially optimal

fraction of green investment, λ̄ is a candidate equilibrium. However, if the social optimum

is too large, brown banks may deviate and enter the market, causing λ̄ to be not a Bertrand

equilibrium.

6.3 Combined Regulation

If the efficient amount of green investment is not too high, either a carbon tax or a reserve

requirement on brown loans can induce the efficient allocation by replacing the signaling

incentive with the marginal damage. However, one of the virtues of the traditional carbon tax is

that the efficient carbon tax is independent of the economic financing structure. The regulator

need only set the carbon tax equal to the marginal damage to get the efficient outcome.29 The

information requirement of the carbon tax rises considerably if the tax varies depending on if

the project is bank financed or not.30

An appealing alternative is to set the carbon tax equal to the marginal damage, and then use

the reserve requirement on brown loans to remove the signaling benefit of green loans in the

lending market. This reduces the information required for the carbon tax. The required reserve

ratio on brown loans can then be set at the Federal Reserve where banks submit information

that might allow the FED to learn the signaling value (e.g. cH).

Consider then a combined optimal policy:

τe = D(e),

α =− 2cH(
1− λ̄

)(
2− λ̄

) , (73)

29Note that other market characteristics which vary by industry may affect the optimal carbon tax. For exam-
ple, Simpson (1995) shows that the optimal carbon tax in a duopoly is less than the optimal carbon tax given
perfect competition.

30Indeed, the expected bankruptcy costs, cH , and thus the optimal carbon tax, likely varies from borrower to
borrower.
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Policy (73) yields the efficient allocation, assuming no profitable deviations exist. Notice that

the optimal required reserve policy subsidizes brown loans. Given the signaling value of green

investments, the reserve requirement must be negative to equalize the attractiveness of brown

versus green lending, after which a carbon tax equal to the marginal damage resolves the

externality.

To determine whether profitable deviations exist, consider the change of variables:

fL,τr ≡ fL −α − τe, (74)

fH,τr ≡ fH −α − τe, (75)

∆ fτr ≡ fH,r − fL,r = ∆ f . (76)

The conditions for existence are unchanged, up to fL,τr and fH,τr. Further, the condition for

no-deviations is unchanged up to fL,τr, fH,τr, and α . Thus an equilibrium exists with no

profitable deviations if:

fH,τr > 3 fL,τr +α (77)

fL,τr < cH < fL,τr +g2,r ( fL,τr, fH,τr,α) (78)

Finally, at the efficient allocation, fH,r = fH,τr = fH,τ and the same for fL. Thus, the no-

deviation conditions given the combined regulation (77) and (78), differ from the no-deviation

conditions given the required reserve ratio regulation (71) and (72) only because the reserve

requirement on brown loans is larger αr > ατr. Recall, g2,r is decreasing in α so the range of

values cH such that no-deviations are possible is larger when using the combined regulation.
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Further, since α = 0 when the carbon tax is used in isolation, we have ατ = 0 > ατr and so:

fL,τr < cH < fL,τr +g2,r ( fL,τr, fH,τr,αr)

< fL,τ +g2 ( fL,τ , fH,τ ,0)

< fL,τr +g2,r ( fL,τr, fH,τr,ατr) . (79)

Further, the condition fH,τr > 3 fL,τr +α is most strict with required reserve regulation and

least strict with the combined regulation.

Proposition (5) summarizes the above analysis:

Proposition 5. Consider a regulated economy with a required reserve ratio of rr =α (1−λr)/2

per dollar of brown loans and a tax τ per unit of carbon emissions.

1. If (77) and (78) hold, a Bertrand equilibrium λ1,τr with two loan products exists.

2. Equation (73) gives the socially optimal policy.

3. If (77) and (78) hold at the socially optimal policy (73), then the social optimum is a

Bertrand equilibrium.

4. There exists an open set of parameter value such that the optimal combined policy is a

Bertrand equilibrium and the optimal reserve and tax policies in isolation are not.

The combined policy thus has two advantages. First, the tax is set equal to the marginal

damage and so the tax does not have to vary by funding source or by borrower, and can be set

by the EPA or other regulator with knowledge of the damages. The required reserve ratio does

require knowledge of the borrower risk (cH), but is set by the bank regulator who presumably

has better access to such information. Second, the combined policy can support a higher level

of green investment with no-deviations than either the carbon tax or required reserve ratio in

isolation. Thus, the combined policy is particularly attractive if damages are large.
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7 Conclusions

The Federal Reserve and other public and private organizations argue that bank lending to

borrowers with poor environmental metrics, or more generally poor ESG scores, have financial

risks. Our results support this idea both ex ante as low productivity firms tend to have lower

profits and use more energy per unit of output and ex post as high productivity firms undertake

green investments to obtain lower green rates.

We find that borrowers engage in costly effort to improve environmental performance

(green investments) based their ability to signal low risk. Therefore, green lending may in-

crease welfare relative to an unregulated economy, but will not result in the social optimum as

the marginal signaling value does not equal the marginal value of environmental damage alle-

viated. A carbon tax or a reserve requirement on brown loans can achieve the social optimum

by replacing the signaling value with the marginal damage. However, if the optimal green

lending is too large so that most or all borrowers make green investments, then the signaling

value vanishes and the equilibrium unravels as banks are no longer willing to give lower rates,

which in turn changes the optimal regulation. Thus, if the marginal damage is too high, carbon

taxes or reserve requirements are unable to achieve the social optimum. Finally, a combined

carbon tax equal to the marginal damage and a subsidy for brown loans which removes the

incentive to signal with green investments achieves the highest level of green investments.

Our results come with several caveats. First, our model assumes banks rely only on public

information to set loan product prices. An interesting extension is to allow banks to investigate

borrowers for credit worthiness or to demand collateral, to keep the worst borrowers out of

the market. We leave this possibility for future research, noting that investigating can result

in more efficient lending. We have assumed only a single motive for green lending, which is

the risk associated with poor environmental metrics. Other motivations, including stockholder

and employee preferences, likely also increase green lending, but do not incentivize socially
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optimal green lending. We also leave other motivations for future research.

Across the economy, firms are undertaking activities to improve environmental, social, and

governance metrics. Firms have a variety of private motivations for these activities which align

only partially with the public interest. Regulators seeking to achieve welfare improvements

by regulating activities that cause external harm, must now consider the interaction between

regulation and private ESG activities. Given the trend in the size of green investments by

firms, this coordination will only become more important in the future.
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8 Online Appendix

8.1 Example Derivation of Cost and Technology Parameters

To fix ideas, we derive parameters fH , fL, vH , and vL from a standard firm optimization

problem. Note that one can derive these parameters in other contexts and with other assump-

tions as well. Assume that each firm has access to a constant elasticity of substitution (CES)

production function and seeks to minimize costs according to:

min cost =rK +wL+PE

subject to:
[(

AT KαL1−α
) ρ−1

ρ +(AEE)
ρ−1

ρ

] ρ

ρ−1

≥ Y. (80)

Here K, L, and E are capital, labor, and energy, respectively and r is the interest rate, w is

the wage, and P is the price of energy.31 The elasticity of substitution is ρ ≥ 0, and Y is the

required level of production. The productivity parameters are Ai, i = T,E, corresponding pro-

ductivity of the composite input generated from K and L and energy productivity, respectively.

Let Po be the price of the output.

We further specialize to the Leontief case of ρ = 0.32 The model specifies that k = x

31A number of papers determine the nesting structure that best matches various industries and economies. For
example, Kemfert (1998) finds for the German economy that a structure where capital and labor are combined
first best matches most industries but combining capital and energy first best matches the overall economy. Shen
and Whalley (2013) find a nesting structure where energy and labor are combined first best matches China’s
economy, but all nesting structures have similar goodness of fit.

32Hassler, Krusell, and Olovsson (2021) find that ρ tightly estimated around 0.02. However, Dissou, Karni-
zova, and Sun (2015) find that ρ at the industry level in Canada varies between 0.1 and 0.54.
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dollars of capital is borrowed from the bank. Hence the factor demands and profits, π , are:

K =x, (81)

L =x
−α

1−α

(
Y
AT

) 1
1−α

, (82)

E =
Y
AE

, (83)

π =PoY − rx−wx
−α

1−α

(
Y
AT

) 1
1−α

−P
Y
AE

. (84)

The firm is profitable for sufficiently high productivity. Therefore, suppose that composite

productivity is either low, AT = AT,L with probability λi, or high, AT = AT,H , with probability

1− λi, where AT,h > AT,l . The low productivity firm does not repay the interest pi = rix,

i = g,b, but instead simply returns the residual value of the firm. The residual value is then:

vL = PoY −wx
−α

1−α

(
Y

AT,L

) 1
1−α

−P
Y
AE

+ x (85)

Here we assume the capital used, x, does not depreciate. The only requirement is that AT,L is

sufficiently small so that vL < x. Next, we adopt the standard assumption that emissions are

proportional to energy use, so that e = ξY/AE .

Suppose now the firm receives the high productivity shock AT = AT,H . We assume that the

high composite productivity shock is sufficiently high so that the firm is profitable:

PoY − pb −wx
−α

1−α

(
Y

AT,H

) 1
1−α

−P
Y
AE

≥ 0. (86)

Here equation (86) specifies that the firm is profitable at the higher brown rate, pb = rbx.

Equation (86) is satisfied for AT,H sufficiently large for Y (P0 −P/AE)− pb > 0. Next, we

model the shock which determines high or low green energy costs as follows. Suppose high
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composite productivity firms receive a second shock where AE = AE,H with probability 1−λi,

where AE,H > AE . With probability λi, energy productivity remains at AE . The value of the

firm exclusive of interest costs, vH , is then:

vH,H =PoY − pb −wx
−α

1−α

(
Y

AT,H

) 1
1−α

−P
Y

AE,H
,

vH,L =PoY − pb −wx
−α

1−α

(
Y

AT,H

) 1
1−α

−P
Y
AE

,

vH =λivH,L +(1−λi)vH,H . (87)

That is, vH is the expected profits net of interest costs.

Finally, to compute fH and fL, we suppose firms can purchase fossil electricity from the

utility at price P or can purchase emissions-free electricity at price P+ τ .33 Thus, fH and fL

are:

fH =τE (AE,L) = τ
Y

AE,L
,

fL =τE (AE,H) = τ
Y

AE,H
. (88)

Emissions of brown high composite productivity firms are e= ξY/AE and emissions for green

high productivity firms are zero.

To summarize, the above example generates all of the assumptions in the paper, under the

reasonable conditions that composite productivity is sufficiently low for the low productivity

firm to generate negative profits exclusive of interest costs and composite productivity is suf-

ficiently high for high productivity firms to generate non-negative profits inclusive of interest

costs.
33Many utilities offer such programs, (see for example, Jena, 2023).
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8.2 Zero Profits

Here we show that Bertrand competition ensures banks of the same type offer identical

rates and earn zero profits. Consider any set of prices such that a bank l′ offers a rate p j,l′ > p j,l

in market j ∈ {g,b}, which exceeds that of n j bank(s) which offer the lowest rate in market

j, p j. Then bank l′ has no customers and earns zero profits. Further, banks offering price

p j earn non-negative profits
(
1/n j

)
π j ≥ 0 to offer a loan in market j. Thus, bank l′ can

weakly improve profits from πl′ = 0 to
(
1/
(
n j +1

))
π j ≥ 0 by lowering its price to match the

lowest price among competing banks. Thus all banks in the same market offer the same rate

in equilibrium.

Next, suppose that there exists N > 1 banks offering the lowest price in market j, p j, with

corresponding profits (1/N)π j
(

p j
)
> 0. Note that if only n j < N banks are in market j,

then a bank that is not participating can enter at the same price and increase profits from zero

to
(
1/(n j +1)

)
π j
(

p j
)
> 0. Suppose that participating bank l′ deviates and offers a slightly

lower rate, p j − ε . Since bank l′ now has the lowest price, it captures the entire market. The

deviation is profitable if and only if:

(1/N)π j
(

p j
)
< π j

(
p j − ε

)
, (89)

1/N <
π j
(

p j − ε
)

π j
(

p j
) . (90)

Since the profit function is continuous (refer to equations 5 and 3) and we have assumed

π j(p j)> 0, the right hand side approaches one for ε small and the left side is at most 1/2. It

follows that (90) holds for ε sufficiently small and thus an incentive to deviate and cut prices

exists whenever π j(p j)> 0.

Thus, we have shown that profits are zero and all banks in market j ∈ {g,b} charge the

same price.
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8.3 Graphical Analysis

A candidate equilibrium is a solution [λ ∗, pg, pb] that satisfies pb > pg and solves equations

(1), (4), and (6). To find the equilibrium we show each equation satisfies certain properties.

The properties of pg and pb follow from substituting in λ ∗ = 0 and λ ∗ = 1, and by taking

the derivatives of equations (4) and (6) to get:

p′g =
2cH

(2−λ ∗)2 > 0,

p′b =
2cH

(1−λ ∗)2 > 0, (91)

Next, we combine equations (4) and (6) to form:

∆p1 (λ
∗)≡ pb − pg =

2cH

(1−λ ∗)(2−λ ∗)
. (92)

Equation (92) implies ∆p1 (λ
∗)> 0, ∆p1 (0) = cH , and limλ ∗→1 ∆p1 (λ

∗) = ∞. The remaining

properties follow from:

∆p′1 (λ
∗) =

2(3−2λ ∗)cH

(1−λ ∗)2 (2−λ ∗)2 > 0, (93)

∆p′′1 (λ
∗) =

4
(
7−9λ ∗+3λ ∗2)cH

(1−λ ∗)3 (2−λ ∗)3 . (94)

Denote the numerator of (94) as M (λ ∗). Then:

M (λ ∗)≡ 7−9λ
∗+3λ

∗2,

M′ (λ ∗) =−9+6λ
∗ < 0,

M (0) = 7 , M (1) = 1. (95)
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Hence the numerator of (94) is function which strictly decreases from seven to one over the

interval [0,1], and so the second derivative of ∆p1 is positive.

Next, rewriting equation (2) results in:

∆p2 (λ
∗)≡ pb − pg = fL +∆ f λ

∗, (96)

which is an increasing function which satisfies ∆p2 (0) = fL and ∆p2 (1) = fH .

8.4 Proof of First Proposition

It is convenient here to work with a different version of the equilibrium condition. For any

interior (both brown and green lending) candidate equilibrium λ ∗:

DP1 (λ
∗) = DP2 (λ

∗) , (97)

2cH

(1−λ ∗)(2−λ ∗)
= fL +∆ f λ

∗, (98)

which holds for interior λ ∗ if and only if:

H (λ ∗)≡ ∆ f λ
∗,3 − (3 fH −4 fL)λ

∗,2 +(2 fH −5 fL)λ
∗−2(cH − fL) = 0. (99)

Any equilibrium with both brown and green lending λ ∗ satisfies H (λ ∗) = 0. We now establish

several properties of H:

H (0) =−2(cH − fL) . (100)

H (1) =−2cH < 0. (101)

H ′ (λ ) = 3∆ f λ
2 −2(3 fH −4 fL)λ +2 fH −5 fL. (102)
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H ′ (0) = 2 fH −5 fL. (103)

H ′ (1) =− fH < 0. (104)

H ′′ (0) =−2(3 fH −4 fL) . (105)

H ′′ (1) = 2 fL > 0. (106)

Consider first the quadratic derivative H ′. Since H ′ (1) < 0, H ′ is increasing at λ = 1, and

H ′′′ > 0, H ′ has a global minimum which is less than one. Further, if H ′ (0) > 0, then the

global minimum is on the (0,1) interval and there exists a unique λ̃ ∈ (0,1) such that H ′ (λ )>

(=,<)0 for λ < (=,>)λ̃ . Note further that H ′ (0)> 0 if and only if 2 fH > 5 fL from (103). If

2 fH ≤ 5 fL, then H ′ (λ )≤ 0 for all λ ∈ [0,1] (either H ′′ (0)< 0 and the minimum is negative,

or H ′′ (0)> 0 and the minimum is positive).

Figure 2 shows the possible cases.
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Figure 2: Derivative of candidate equilibrium condition, with fL = 1 and values of fH which
correspond to the three possible cases.

Consider now the equilibrium condition (99). We consider three cases, fL > (<,=)cH .
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Case 1: fL > cH

Consider first fL > cH , so that H (0) > 0 from (100). From equations (101) and (104), H

is negative and decreasing at λ = 1. Thus, since H is continuous on λ ∈ (0,1) there exists at

least one candidate equilibrium λ ∗ such that H (λ ∗) = 0.

Next, H ′ is either strictly negative or is negative on the interval (λ̃ ,1) (refer to Figure 2). If

H ′ is strictly negative, it is immediate that λ ∗ is unique because H is monotonically decreasing

for λ ∈ (0,1). If H ′ is negative on the interval (λ̃ ,1) then H has a unique maximum on (0,1)

at λ̃ . Since H is positive and increasing at 0 and negative and decreasing at 1, it follows that a

unique λ ∗ ∈ (λ̃ ,1) exists such that H (λ ∗) = 0. Thus, for the case fL > cH , a unique candidate

equilibrium exists on the interval (0,1).

Case 2: fL = cH

For the knife-edge case where fL = cH , equation (99) implies λ ∗ = 0 is a candidate equi-

librium. However, λ ∗ = 0 means no green lending exists. Dividing equation (99) by λ when

fL = cH yields:

H̃ = H (λ ; fL = cH)/λ = ∆ f λ
2 − (3 fH −4 fL)λ +(2 fH −5 fL) = 0. (107)

H̃ (1) =−2 fL < 0, (108)

H̃ (0) = 2 fH −5 fL, (109)

H̃ ′ = 2∆ f λ −3 fH +4 fL → λmin =
3 fH −4 fL

2∆ f
, (110)

H̃ ′ (1) =− fH +2 fL, (111)

H̃ ′ (0) =−3 fH +4 fL, (112)

All of these conditions depend on how large is fH relative to fL:

1. fL < fH < 4/3 fL: H̃ is negative and increasing at zero and negative and increasing at
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one, and the global minimum is negative. Thus, H̃ is negative on (0,1), and no root

(candidate equilibrium) exists.

2. 4/3 fL < fH < 2 fL: H̃ is negative and decreasing at zero and negative and increasing

at one, and the global minimum is positive. Thus, H̃ is negative on (0,1) and no root

(candidate equilibrium) exists.

3. 2 fL < fH < 5/2 fL: H̃ is negative and decreasing at zero and negative and decreasing

at one, and the global minimum is positive. Thus, H̃ is negative on (0,1) and no root

exists.

4. 5/2 fL < fH : H̃ is positive and decreasing at zero and negative and decreasing at one.

By continuity, a unique root exists on (0,1).

Thus we see that for the knife edge case of fL = cH , a unique equilibrium with brown and

green lending exists if and only if fH > 5/2 fL.

Case 3: fL < cH

Consider next the case where fL < cH . The above properties then show that H (1) <

H (0) < 0. Thus if H ′ < 0 on (0,1), H is strictly negative on the interval (0,1) and thus no

equilibrium exists with both brown and green lending. It follows that 2 fH > 5 fL is necessary

for existence in this case. Given 2 fH > 5 fL, we have H ′ (0) > 0 and H ′ (1) < 0. It follows

that H has a unique maximum exists at λ̂ on the interval (0,1). Thus H has two roots on the

interval (0,1) if and only if H
(

λ̂

)
> 0.

Figure 3 shows the possible cases.
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Figure 3: Candidate equilibrium condition, with fL = 1, cH = 2, and values of fH which
correspond to the three possible cases.

In Figure 3, the black line is positive at the maximum (H
(

λ̂

)
> 0) and thus has two

equilibrium candidates with both brown and green lending (λ ∗
1 and λ ∗

2 ). The other two lines

are negative at the maximum, (H
(

λ̂

)
< 0) and thus have no candidate equilibria with both

brown and green lending.

It remains to derive a condition such that H
(

λ̂

)
> 0. Note also that H

(
λ̂

)
= 0 is the

knife edge case with a single equilibrium. We must show that:

∆ f λ̂
3 − (3 fH −4 fL) λ̂

2 +(2 fH −5 fL) λ̂ −2(cH − fL)> 0, (113)

given:

3∆ f λ̂
2 −2(3 fH −4 fL) λ̂ +2 fH −5 fL = 0. (114)

Multiplying the above two equations by 3 and λ and then subtracting simplifies the condition

to:

−(3 fH −4 fL) λ̂
2 +2(2 fH −5 fL) λ̂ −6(cH − fL)> 0 (115)
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Note also that the solution to (114) is:

λ̂ =
3 fH −4 fL −

√
3 f 2

H −3 fH fL + f 2
L

3∆ f
. (116)

Substituting the solution for λ̂ into (115) and extensively simplifying gives:

2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

9∆ f 2 > 6(cH − fL) . (117)

cH < fL+
2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

54∆ f 2 ≡ fL+g1 ( fH , fL) . (118)

Since in Case 3 cH > fL, the set of parameter values with two candidate equilibria is non-empty

if g1 ( fH , fL) > 0. This can be verified by squaring both sides and simplifying extensively.

It follows that two candidate equilibria with green and brown lending exist if and only if

condition (118) and 2 fH −5 fL > 0 hold. If either does not hold, then no candidate equilibria

with both brown and green lending exist.

8.5 Candidate Equilibrium, Single Brown Bank

Consider the candidate equilibrium for a single brown bank. We show that the prices in

(18) must hold. By definition, a single brown bank services the entire market, thus λ ∗ = 0.

Thus, from (5) brown bank profits are:

E [πB] =
∫ 1

0

[
λi (−cH)+(1−λi)(pb − c)

]
dλi = 0. (119)

Solving for the brown interest rate results in:

pb (0) = c+ cH . (120)
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Next, from (2):

0 ≥ λ
∗ =

pb (0)− pg − fL

∆ f
. (121)

pg ≥ c+ cH − fL. (122)

Any green loan price satisfying (122) is large enough so that even the highest quality borrowers

prefer brown loans. Given λ ∗ = 0, from (3), the green bank has no customers and thus earns

zero profits. Thus, the prices satisfying (18) result in a one brown bank candidate equilibrium.

8.6 Candidate Equilibrium, Single Green Bank

Consider the candidate equilibrium for a single green bank. We show that the prices in

(19) must hold. By definition, a single green bank services the entire market, thus λ ∗ = 1.

Thus, from (3) green bank profits are:

E [πG] =
∫ 1

0

[
λi (−cH)+(1−λi)(pg − c)

]
dλi = 0. (123)

Solving for the green interest rate results in:

pg (1) = c+ cH . (124)

Next, from (2):

1 ≤ λ
∗ =

pb − pg (1)− fL

∆ f
. (125)

pb ≥ c+ cH + fH . (126)

Any brown loan price satisfying (126) is large enough so that even the lowest quality borrowers

prefer green loans. Given λ ∗ = 1, from (5), the brown bank has no customers and earns

zero profits with probability one. Thus, the prices satisfying (19) result in a one green bank
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candidate equilibrium.

8.7 Bertrand Equilibrium, Single Green Loan Product

We first derive a general deviation condition that can be used in both one product and

two product equilibria, then apply the condition to the single green loan product candidate

equilibrium. Consider any candidate equilibrium pb, pg, and λ ∗. A brown bank that deviates

by lowering the price to p̃b = pb −∆ f ε captures all of the brown borrowers and some green

borrowers according to:

λ̃ =
p̃b − pg − fL

∆ f
= λ

∗− ε. (127)

Profits of the deviating brown bank are:

π̃b =−cH

∫ 1

λ ∗−ε

λdλ +(p̃b − c)
∫ 1

λ ∗−ε

(1−λ )dλ ,

=
1
2
(1−λ

∗+ ε)

[
− cH (1+λ

∗− ε)+(p̃b − c)(1−λ
∗+ ε)

]
. (128)

The single green loan product equilibrium (19) satisfies λ ∗ = 1 and p̃b = c+ cH + fH −∆ f ε .

Imposing these conditions results in:

π̃b =
1
2

ε

[
− cH (2− ε)+(cH + fH −∆ f ε)ε

]
. (129)

Choosing for example ε = 1 results in:

π̃b =
1
2

[
− cH +(cH + fH −∆ f )

]
=

1
2

fL > 0. (130)

Hence in any single green loan product equilibrium, a brown bank can deviate by offering a

price low enough to attract the entire market and make positive profits. Therefore, no single

green loan product equilibrium candidate is a Bertrand equilibrium.
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8.8 Bertrand Equilibrium, Single Brown Bank

We first derive a general deviation condition that can be used in both one product and

two product equilibria, then apply the condition to the single brown loan product candidate

equilibrium. Consider any candidate equilibrium pb, pg, and λ ∗. A green bank that deviates

by lowering the price to p̃g = pg −∆ f ε captures all of the green borrowers and some brown

borrowers according to:

λ̃ =
pb − p̃g − fL

∆ f
= λ

∗+ ε. (131)

Profits of the deviating green bank are:

π̃g =−cH

∫
λ ∗+ε

0
λdλ +(p̃g − c)

∫
λ ∗+ε

0
(1−λ )dλ ,

=
1
2
(λ ∗+ ε)

[
− cH (λ ∗+ ε)+(p̃g − c)(2−λ

∗− ε)

]
. (132)

The single brown loan product equilibrium (18) satisfies λ ∗ = 0 and p̃g = c+ cH − fL −∆ f ε .

Imposing these conditions results in:

=
ε

2
(−εcH +(cH − fL − ε∆ f )(2− ε)) . (133)

The second term of condition (133) is decreasing in ε since p̃g > c, so it is sufficient to show

(133) is non-positive for ε small. Consider a deviation of ε → 0. If the limit of green bank

profits remains positive as ε → 0, then by continuity an interval 0 < ε < ε̂ exists such that

profits are positive and a profitable deviation exists. The second term in (133) approaches

2(cH − fL) as ε → 0. Thus no profitable deviations exist if and only if:

cH ≤ fL (134)

69



8.9 Bertrand Equilibrium with Green and Brown Lending

Green Bank Deviations

We first show that no green bank can profitably deviate by lowering the green price in a

two loan product candidate equilibrium. Equation (132) gives the profits of a deviating green

bank regardless of the equilibrium type. Evaluating the deviation profits of a green bank (132)

in a two bank equilibrium given by equations (4) and (6) results in:

p̃g =
1
2
(λ ∗+ ε)

[
− cH (λ ∗+ ε)+

(
λ ∗

2−λ ∗ cH − ε∆ f
)
(2−λ

∗− ε)

]
,

=
ε

2
(λ ∗+ ε)

[
− 2cH

2−λ ∗ − (2−λ
∗− ε)∆ f

]
< 0. (135)

Hence any decrease in price by a green bank at zero profits decreases profits below zero. Hence

no profitable deviation exists for the green bank in an equilibrium with two loan products.

Brown Bank Deviations

Next, we derive conditions such that no brown bank can profitably deviate by lowering the

brown price in a two loan product candidate equilibrium. Equation (128) gives the profits of a

deviating brown bank regardless of the equilibrium type. Evaluating the deviation profits of a

deviating brown bank (128) in a two bank equilibrium given by equations (4) and (6) results

in:

π̃b =
1
2
(1−λ

∗+ ε)

[
− cH (1+λ

∗− ε)+

(
1+λ ∗

1−λ ∗ cH −∆ f ε

)
(1−λ

∗+ ε)

]
,

=
ε

2
(1−λ

∗+ ε)

[
2cH

1−λ ∗ −∆ f (1−λ
∗+ ε)

]
(136)

The term inside the large brackets is decreasing in ε . Hence deviation profits increase as ε

approaches zero. Therefore, if the term inside the large brackets is non-positive at ε = 0, no
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profitable deviations exist for all ε . Therefore no profitable deviations exist if and only if:

2cH ≤ ∆ f (1−λ
∗)2 . (137)

Condition (137) is in terms of the endogenous variable λ ∗. In the remaining analysis,

we use the equilibrium condition to convert condition (137) to a condition that depends only

on the parameters. Recall that any equilibrium λ ∗ ∈ (0,1) satisfies (99). Substituting this

equilibrium condition into (137) to eliminate cH results in:

2cH = ∆ f λ
3 − (3 fH −4 fL)λ

2 +(2 fH −5 fL)λ −2 fL ≤ ∆ f (1−λ )2 , (138)

∆ f λ
3 − (3 fH −4 fL)λ

2 +(2 fH −5 fL)λ −2 fL ≤ ∆ f (1−λ )2 , (139)

(1−λ )
(
∆ f λ

2 − (3 fH −4 fL)λ + fH −3 fL
)
≥ 0. (140)

Since we are considering interior solutions, we need only show the second term is non-negative

at λ ∗ to ensure no profitable deviations exist:

J (λ ∗)≡ ∆ f (λ ∗)2 − (3 fH −4 fL)λ
∗+ fH −3 fL ≥ 0. (141)

The key properties are:

J (0) = fH −3 fL, (142)

J (1) =− fH < 0, (143)

J′ (λ ) = 2∆ f λ −3 fH +4 fL, → λmin =
3 fH −4 fL

2∆ f
, (144)

J′ (0) =−3 fH +4 fL, (145)

J′ (1) =− fH +2 fL, (146)
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Note that fH < 3 fL means J (0) < 0 and since J (1) < 0 and J is quadratic, it follows that

fH < 3 fL implies J < 0 for all λ ∈ (0,1), including λ ∗. Thus profitable deviations exist in this

case and fH > 3 fL is necessary for no-deviations. Given fH > 3 fL, we have three cases.

Case 1 ( fL > cH)

From Proposition (1), a single candidate equilibrium exists. Recall, fH > 3 fL is necessary,

in which case J′ (0)< 0, J′ (1)< 0, J (0)> 0, and J (1)< 0. Since further the global minimum

is greater than one, J is monotonically decreasing over (0,1) with a single root λ ∗∗ ∈ (0,1).

Further, J is positive for λ ∗ < λ ∗∗ Thus, no-deviations exist if λ ∗ ≤ λ ∗∗.

Given case 1, H (0) > 0, H (1) < 0, and H (λ ∗) = 0. Since exactly one root exists, it

follows from continuity and H ′ < 0 that λ ∗ < λ ∗∗ if and only if H (λ ∗∗)< H (λ ∗) = 0. Thus

we need only show that H (λ ∗∗) < 0 to establish that λ ∗ < λ ∗∗. If so, then λ ∗ is a Bertrand

equilibrium.

We wish to show:

H (λ ∗∗) = ∆ f (λ ∗∗)3 − (3 fH −4 fL)(λ
∗∗)2 +(2 fH −5 fL)λ

∗∗−2(cH − fL)< 0, (147)

where

J (λ ∗∗) = ∆ f (λ ∗∗)2 − (3 fH −4 fL)λ
∗∗+ fH −3 fL = 0. (148)

Multiplying J by λ ∗∗ and subtracting results in:

( fH −2 fL)λ
∗∗−2(cH − fL)< 0, (149)

Next, equation (148) has solution:

λ
∗∗ =

3 fH −4 fL −
√

5 f 2
H −8 fH fL +4 f 2

L

2∆ f
. (150)
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Notice we use the smaller root since given the necessary condition that fH > 3 fL, the smaller

root satisfies λ ∗∗ ∈ (0,1). Substituting the solution into (149) results in:

cH > fL +g2 ( fH , fL) , (151)

g2 ( fH , fL)≡ ( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
. (152)

We have already assumed fL > cH however, and it is straightforward to verify that g2 > 0. It

follows that H (λ ∗∗)> 0 and thus λ ∗∗ < λ ∗ and thus J (λ ∗)< 0 and so a profitable deviation

exists. Thus no Bertrand equilibrium exists for fL > cH .

Case 2 ( fL = cH)

The analysis here is identical as case 1. Since H (0) = 0, we have H (λ ) > (<)0 for

λ < (>)λ ∗. As in case one, H (λ ∗∗)> 0, and so λ ∗∗ < λ ∗ and the deviation results in positive

profits. The candidate equilibrium is not a Bertrand equilibrium.

Case 3 ( fL < cH)

Given that fH > 3 fL is a necessary condition, J (0) > 0, J′ (0) < 0, J′ (1) < 0, Since the

global minimum is occurs at λmin > 1, J has a single root λ ∗∗ on (0,1), with J (λ ∗) ≥ 0 for

λ ∗ ≤ λ ∗∗. Thus, we need to show whether or not the two candidate equilibria λ ∗
1 and λ ∗

2 are

less than λ ∗∗.

In this case, H (0) < 0, H (1) < 0, H (λ ∗
1 ) = 0, and H (λ ∗

2 ) = 0. Since exactly two roots

exist, it follows from continuity that H (λ )> 0 if and only if λ ∈ (λ ∗
1 ,λ

∗
2 ). Thus we need only

show that H (λ ∗∗)> 0 to establish that λ ∗
1 < λ ∗∗ < λ ∗

2 . If so, then λ ∗
1 is a Bertrand equilibrium

and λ ∗
2 is not.

Using an identical logic as the case 1, we must show:

( fH −2 fL)λ
∗∗−2(cH − fL)> 0, (153)
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where equation (150) gives λ ∗∗. Substituting equation (150) into (153) results in:

cH < fL +g2 ( fH , fL) , (154)

g2 ( fH , fL)≡ ( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
. (155)

We have already made a similar assumption for existence. We now show this condition

is more restrictive than the previous assumption, cH < fL +g1 ( fH , fL). That is, we show that

g2 < g1, or:

( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
< g1 (156)

=
2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

54∆ f 2 , (157)

where the equality follows from (118). Multiplying all this out verifies that g2 < g1, and so

the condition for a Bertrand equilibrium is stricter than the condition for existence.

Thus we have three cases:

1. cH < fL +g2 < fL +g1: two candidate equilibria exist and λ ∗
1 is a Bertrand equilibrium

and λ ∗
2 is not.

2. cH > fL +g1: no candidate equilibria exist.

3. fL + g2 < cH < fL + g1. We show below that in this case λ ∗∗ < λ ∗
1 < λ ∗

2 and so two

candidate equilibria exist but neither is a Bertrand equilibrium.

First, it is straightforward to verify that λ ∗∗ < λ̂ and neither depends on cH . Now consider

the boundary case where cH = fL +g1. In this case H
(

λ̂

)
= 0 and λ̂ is the unique candidate

equilibrium (that is, the maximum of H over (0,1) is zero and occurs at λ̂ ). In this case, λ̂ is

not a Bertrand equilibrium since λ ∗∗ < λ̂ .
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Next, consider an arbitrarily small decrease in cH . It follows from the above calculation

of g1 that H
(

λ̂

)
> 0 and 2 roots exist. Given the arbitrarily small decrease, λ ∗

1 < λ̂ < λ ∗
2 is

an arbitrarily small interval, and so λ ∗∗ < λ ∗
1 < λ̂ < λ ∗

2 and neither of the candidate equilibria

are Bertrand equilibria.

Next, continuing to decrease cH until cH = fL + g2, we see that λ ∗∗ = λ ∗
1 < λ ∗

2 . At this

point, λ ∗
1 becomes a Bertrand equilibrium. Thus, over the interval fL + g2 < cH < fL + g1,

both roots are not Bertrand equilibria.

Figure 4 summarizes these cases.

0.25 0.3 0.35 0.4 0.45 0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 4: Stability Geometry. Increasing cH moves H from the green to the magenta curve.

In Figure 4, the black curve is positive when no-deviations are possible (λ ≤ λ ∗∗ or

2cH/(1 − λ ∗)2 ≤ ∆ f ). The green curve is a value of cH for which the smaller candidate

equilibrium, λ ∗
1 , is a Bertrand equilibrium since no profitable deviations exist. The red curve

satisfies cH = fL +g2, the maximum value of cH for which the smaller candidate equilibrium

has no profitable deviations. The blue curve is a value of cH for which neither of the candi-
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date equilibria are Bertrand equilibria. The magenta curve is the maximum value of cH for

which a candidate equilibrium exists, cH = fL+g1. At this knife edge, only a single candidate

equilibrium exists which is not a Bertrand equilibrium.

This completes the proof as all cases have been analyzed.

8.10 Proof of No-Deviation Condition with Required Reserves

We begin by repeating the analysis starting with equation (128), while adding in the reserve

requirement. The deviating brown bank profits become:

π̃b,r =
1
2
(1−λr + ε)

[
− (cH + rrc)(1+λr − ε)+(p̃b − c(1+ rr))(1−λr + ε)

]
. (158)

The analysis differs only in added opportunity cost of holding reserves and that the equilib-

rium fraction of borrowers that chooses green loans changes. Substituting in the two bank

equilibrium given by equations (58) and (59) results in:

π̃b =
1
2
(1−λr + ε)

[
− (cH + rrc)(1+λr − ε)+

(
1+λr

1−λr
(cH + rrc)−∆ f ε

)
(1−λr + ε)

]
,

=
ε

2
(1−λr + ε)

[
2(cH + rrc)

1−λr
−∆ f (1−λr + ε)

]
(159)

Deviating profits are decreasing in ε and so the largest deviation profits occur as ε approaches

zero. Thus deviation profits are non-positive if and only if:

2(cH + rrc)≤ ∆ f (1−λr)
2 . (160)

Note that ∆ f = ∆ fr, and the equilibrium condition is unchanged up to fH,r and fL,R. Hence,

substituting the equilibrium condition into (160) and repeating the same simplification gives a
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no-deviations condition that is identical except for a single term:

J (λr)≡ ∆ f (λr)
2 − (3 fH −4 fL)λr + fH −3 fL +2rrc ≥ 0. (161)

Next, recall 2rrc = (1−λ )α , which implies:

J (λr;α)≡ ∆ f (λr)
2 − (3 fH −4 fL +α)λr + fH −3 fL +α ≥ 0. (162)

Analyzing the modified quadratic function reveals similar cases as in the unregulated case.

In particular J has a positive region (0,λ ∗∗
r ) if and only if fH − 3 fL +α > 0. Note that this

necessary condition is identical to fH,r −3 fL,r −α > 0, which is condition (71) in Proposition

4. Note also that λ ∗∗ is the smaller root of (160).

Next, we need to derive the condition under which λr ∈ (0,λ ∗∗
r ). Analogous to the unreg-

ulated case, we have λr < λ ∗∗
r if and only if H (λ ∗∗

r ) < H (λr) = 0, where H is defined using

fH,r and fL,r. Following the steps in the unregulated case, this holds if and only if:

cH ≤ fL,r +( fH,r −2 fL,r +α)λ
∗∗
r . (163)

Substituting in for λ ∗∗
r as the smaller root of (160) gives the second condition:

cH > fL +g2,r ( fH,r, fL,r,α) , (164)

g2 ( fH,r, fL,r,α)≡ ( fH,r −2 fL,r +α)
3 fH,r −4 fL,r +α −

√
5 f 2

H,r −8 fH,r fL,r +4 f 2
L,r +4α∆ fr

4∆ fr
.

(165)

The above condition is (72) in Proposition 4.
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8.11 Remaining Parts of the Proof of Proposition 4

For the first result in the proposition, the case is fL,r ≥ cH . Following the steps in Section

8.10, the no-deviations condition become fH,r −3 fL,r −α > 0 and:

cH ≥ fL,r +g2,r ( fH,r, fL,r,α) . (166)

Given in this case fL,r > cH , condition (166) can hold only if g2,r < 0.

Imposing α = 0 implies fH,r = fH and fL,r = fL, and equation (165) implies α = 0 im-

plies g2,r = g2 > 0, where g2 > 0 is shown below equation (155). Further, taking the deriva-

tive of g2,r with respect to α holding fH,r and fL,r fixed and extensively simplifying reveals

the derivative is negative. Thus, g2,r < 0 is possible only if α > α∗ where α∗ is such that

g2,r ( fH,r, fL,r,α
∗) = 0. However, solving for α∗ using equation (165) reveals that either

α∗ = − fH,r + 2 fL,r or α∗ = fH,r − 3 fL,r. The first solution is not possible since α∗ < 0 and

the Proposition assumes α > 0. The second solution implies any α ≥ α∗ violates the stability

condition fH,r − 3 fL,r −α > 0. Therefore, g2,α > 0 for any feasible α . Thus, the region sat-

isfying both case 1 and (166) is empty. Thus, the candidate equilibrium with both brown and

green lending is not Bertrand in case 1.

An identical analysis reveals that case 2, cH = fL,r also has a candidate equilibrium which

is not Bertrand. We have thus shown result 1 in Proposition 4.

Result 2 is shown in Section 8.10 and results 3-5 were shown in the text.

For result 6, for α = τe > 0, g2,r ( fH,r, fL,r,α)< g2 ( fH,r, fL,r) since we have shown g2,r is

decreasing in α . Therefore, any policy τe = α such that g2,r < cH < g2 is Bertrand given tax

regulation but is not Bertrand given a reserve requirement. Note also that the other condition

fH,r > fL,r +α is more restrictive when α > 0. Thus, any policy τe = α such that 3 fL,r <

fH,r < 3 fL,r+α is also a Bertrand equilibrium with a tax policy but not with a required reserve

policy.
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