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Abstract

We assess the feasibility, optimality, and policy implications of Environmental, So-
cial, and Corporate Governance (ESG)-linked or “green” lending in a credit market where
banks incorporate such non-financial data in credit allocation decisions. We identify an
asymmetric information problem: borrowers signal low financial risk to banks who are
uncertain about borrower risk levels by engaging in green investments. We derive con-
ditions under which banks segment the market into green and brown loan products and
evaluate market efficiency. We find borrowers prioritize signaling over the environmental
impact of green investments, and the market sustains only limited green lending, since if
all borrowers make green investments, no signaling value exists. The optimal carbon tax
policy replaces the signaling value of green investments with the marginal damage and
outperforms a brown reserve requirement aimed at discouraging brown lending. However,
both policies also can sustain only a limited amount of green investments. We conclude
that while green lending by banks can enhance welfare relative to an unregulated market,
the resulting market segmentation can make the social optimum infeasible, even with car-
bon tax regulation.
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1 Introduction

Large banks increasingly take into account non-financial information, including Environ-
mental, Social and Corporate Governance (ESG) disclosures when making credit allocation,
interest rate, and other lending decisions.1 Kim et al. (2023) find that lending that accounts
for ESG factors grew from $6 billion in 2016 to $322 billion in 2021.2

Bank regulators and policy makers are considering policies that account for environmental
risks for regulatory decisions that limit risk taking by banks. Acharya et al. (2023) find that
regulators in 23 countries have or plan to conduct scenario analysis to measure the effect of
climate change on bank portfolios, known as climate stress tests. The idea is that borrowers
with poor environmental performance may be at risk of defaulting in scenarios where environ-
mental regulation stringency increases (“transition risk”).3 While some central banks focus
solely on financial risks created by climate change,4 other central banks are using regulation
for climate mitigation. For example, the European Central Bank (ECB) is decarbonizing its
corporate bond holdings in order to reach the EU’s climate neutrality and Paris Agreement
goals (ECB, 2022).

We examine the feasibility, optimality, and policy implications of using such non-financial
information in the credit allocation process. In our framework, an asymmetric information
problem exists where banks are uncertain about the riskiness of a project for which a borrower
needs financing. Borrowers receive a private signal that conveys the probability that their
project is low risk, which is correlated with the expected cost of an investment technology
which reduces an externality (a “green investment”). Borrowers can thus signal to lenders
they received a low financial risk signal through observable green investments. We derive
conditions under which banks segment the market into a ESG-linked “green” loan product
which offers a lower rate but requires the borrower to undertake green investments directly or
achieve an ESG score or metric that the borrower can satisfy by undertaking green investments
and a “brown” loan product that does not require green investments.5

1Banks use a variety of terms for these programs, including sustainability-linked loans, green loans, and ESG
compliant loans.

2An empirical literature has established several reasons for the ESG-linked lending trend, including prefer-
ences of investors (e.g. Baker et al., 2002), mandatory disclosure rules for banks (Wang, 2023), and that ESG-
linked borrowers have lower credit risk (e.g. Danisman and Tarazi, 2024).

3Regulators also consider risks in bank lending to borrowers sensitive to climate impacts (e.g. the property
insurance industry), known as ”physical risks.”

4Acharya et al. (2023) notes that the Federal Reserve and Bank of England only focus on limiting climate
financial risk.

5We use the terms green and brown loan products as the most common ESG-linked loans require borrowers
to attain environmental metrics. However, our framework applies to any ESG activity which has social benefits
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Our framework applies to any environmental metric or ESG score which is negatively cor-
related with financial risk, has external benefits, and can be improved with a green investment
technology. For example, a firm might install solar panels which improve environmental met-
rics and reduce financial transition risks. Further, achieving a given emissions metric is more
costly for firms that use more energy and such firms also face greater transition risk absent
solar panel investments. In another example, community engagement is costly, but raises ESG
scores and can reduce financial risks from boycotts or negative press. Conversely, a prop-
erty insurer might be exposed to physical risks of hurricane damages which creates financial
risk. However, in this case no obvious green investment exists for the insurer to improve an
observable ESG metric with external benefits and reduce the physical risk.

We derive the equilibrium investment in green investment technologies by unregulated bor-
rowers for signaling purposes. Borrowers undertake green investments if their signal indicates
that expected green investment costs (the cost of achieving an environmental metric required
for a green loan) are sufficiently low. At the cutoff, the expected cost of green investment
equals the difference in interest cost between green and brown loan products. Competitive
banks then set green rates lower than brown rates because expected green investment costs are
negatively correlated with financial risk, and so the average type applying to green loans is
more likely to be low financial risk and thus low expected bankruptcy cost.

We find that (1) green investments are made based on how well such investments signal
low financial risk, which is generically not equal to the socially optimal green investment
which equates the marginal damage alleviated by green investments to the marginal cost, and
(2) the unregulated market can sustain only a limited amount of green lending, since if all
borrowers undertake green investments no signaling occurs.

We then consider two policies designed to achieve the social optimum, a standard carbon
tax and recent proposals by bank regulators to penalize banks for the higher risk inherent in
brown lending, which we model as a reserve requirement for brown loans. We find that the
optimal carbon tax is less than the marginal damage and in fact replaces the signaling value
of green investments with the marginal damage. The carbon tax can sustain higher levels of
green investment vs the unregulated economy but also can only sustain a limited amount of
green investment and may not be able achieve the social optimum. In effect, if the marginal
damages are too large, the social optimum eliminates the signaling value of green investments
since most firms in the regulated economy opt to undertake green investments to avoid the
large carbon tax. However, when the equilibrium shifts to pooling, where only a single loan
product is available, the optimal carbon tax also shifts as the signaling value no longer needs to

not captured by the borrower or lender.
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be accounted for. Put differently, the optimal carbon tax differs across equilibrium types, and
is no longer optimal when the equilibrium switches from separating to pooling equilibrium.

We also show that a Federal Reserve policy that raises the brown lending rate by requiring
more reserves cannot sustain as much green investment as the carbon tax, but a combined
policy which sets the carbon tax equal to the marginal damage and a subsidy for brown loans
which eliminates the signaling benefit of green lending can sustain more green lending than
either the carbon tax or reserve requirement in isolation. We conclude that unregulated green
lending products by banks and bank regulation which encourages green lending can improve
welfare relative to an unregulated economy with no green lending. However, unregulated
or regulated green lending by banks can be counter productive if the marginal damage is
sufficiently high as they cannot sustain enough green investments to maximize welfare. In
contrast, a carbon tax in a world where no green lending is possible can always maximize
welfare.

2 Related Literature

A nascent literature examines features of the sustainable banking market. Acharya et al.
(2023) provides a review but argues that more research is needed, including modeling the
response of banks to climate risks and how regulation affects the cost of capital for high
emission firms. We show here that banks raise the cost of capital by increasing the brown
lending rate, not only because a borrower that applies for a brown loan signals higher risk, but
also because market segmentation concentrates high risk firms in the brown lending market.
However, a pooling equilibrium with only brown loan products can also arise endogenously if
even very low risk borrowers find it costly to signal by investing in green technologies.

Within banking markets, the literature finds a small but significant premium (lower rate) for
green loans relative to conventional loans. Ehlers, Packer, and Greiff (2022) finds a firm with
carbon intensity one standard deviation above the mean pays a rate about 17 basis points higher
than the average firm after the Paris Accords. Similarly, Delis, Greiff, and Ongena (2018) find
a 16 basis point higher lending rate for a one standard deviation increase in their measure of
climate policy risk exposure and Shin (2021) finds a one standard deviation increase in ESG
scores results in a 10.67 basis point decrease in lending rates. Chava (2014) finds that firms
with environmental concerns in all categories considered pay 25 basis points higher rates vs
firms with an equal number of environmental concerns and strengths. Our results provide
theoretical support for this literature. We find that only equilibria with relatively low interest
rate spreads and a small green loan market are possible in our framework. If the spread and

3



thus the green market is too large, banks have an incentive to deviate and offer a pooled brown
market. Brown borrowers prefer the pooled market versus paying high rates in the segmented
market, and most green borrowers also prefer the pooled market over paying for costly green
investments to avoid the high brown rate in the segmented market.

Few theoretical papers exist in sustainable banking. Oehmke and Opp (2022) consider
a model in which banks are capital constrained and brown borrowers are more profitable.
They derive a separating equilibrium in which only some green borrowers receive funding
and that higher capital requirements for brown loans can decrease green lending, since banks
must allocate more scarce capital to the more profitable brown borrowers. Here we focus
instead on equilibria in which two lending rates arise endogenously, as borrowers signal higher
profitability by making green investments. Our model thus explains the empirical regularity
above of a lower rate for green loans.

In our model banks offer green loans at lower rates because borrowers making green in-
vestments signal lower risk. Other authors focus on other motivations for green lending. Baker
et al. (2002) argue that the small municipal green bond premium supports the idea that green
bonds provide non-pecuniary utility to investors. In Chang, Rhee, and Yoon (2024), non-
pecuniary utility is split between the bank and the borrower. Flammer (2021) finds evidence
consistent with corporate green bond issuers signaling their environmental commitments to
customers, employees, and equity investors (a “green halo”). Most likely, green banking
markets aggregate all of these motivations as well as the risk-signaling motivation we fo-
cus on here. We view the risk-signaling motivation as particularly important as it generates
a segmented market with a small rate premium seen in the data as well as a concentration of
financial risk in brown loans that is the motivation behind central bank policy proposals.

We focus on how ESG and green lending affects green investments by borrowers. An
emerging literature focuses on the ESG scores of the lenders (e.g. Basu et al., 2022). In par-
ticular, Wang (2023) shows that mandatory ESG disclosure rules for banks causes banks to
increase green lending and reduce brown lending and borrowers to improve ESG scores. Fur-
ther, Danisman and Tarazi (2024) show that banks with high ESG scores have lower declines
in profitability, credit risk, and access to capital during financial crises. In our model, compe-
tition ensures that both the green and brown bank have zero expected profits. Nonetheless, the
green bank has lower credit risk and therefore smaller losses during periods where defaults
are high. However, the green bank has a lower rate and thus lower profits if no defaults occur.

Our model relies on a negative correlation between environmental or ESG performance
and financial risk. This idea is supported by evidence primarily in equities and derivative secu-
rities markets. Albuquerque, Koskinen, and Zhang (2019) find that firm beta (non-diversifiable
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risk) is negatively correlated with a measure of ESG performance. Several papers (e.g. Albu-
querque et al., 2020; Lins, Servaes, and Tamayo, 2017) find that firms with high ESG scores
have better financial performance after negative marcoeconomic shocks, and thus less down-
side financial risk. The argument is that firms that address concerns of stakeholders such as
employees and suppliers are more likely to receive help during a negative shock (higher trust).
Hoepner et al. (2024) show that investor engagement in ESG issues reduce downside financial
value at risk, especially related to the environment and climate change, and that environmen-
tal incidents decrease after investor engagement. Ilhan, Sautner, and Vilkov (2021) find that
carbon intensive firms have more tail risk as measured via the cost of protection in the options
market.

Our model of banks offering a menu of loan types takes inspiration from a large literature
of competitive screening beginning with the seminal paper Rothschild and Stiglitz (1976). In
this literature, firms facing adverse selection offer an menu of contracts to induce agents to
sort into high and low risk groups. Low risk types use contract provisions such as deductibles
to separate from high risk types and obtain lower rates. This is welfare reducing relative to the
first best of full insurance. We add to this literature by considering green investments that are
privately costly but beneficial from society’s perspective as green investment provides benefits
that are external to the borrower and lender. We show that the aggregate green investments
depends on the signal value, which is generically not equal to the external marginal damages
alleviated by green investments. Thus, the market with green lending generically provides too
little or too much green investment, relative to the social optimum.

Our model of green lending draws on the foundational work of Burke, Taylor, and Wagman
(2012). They describe a banking equilibrium wherein borrowers apply for loans, and banks
engage in costly screening to assess borrower profitability. More intensive screening increases
the likelihood of identifying and rejecting low-profit applicants. In contrast, in our model high
profit borrowers use a signaling mechanism, green investments which improve observable
ESG metrics, to obtain favorable interest rates in credit markets.

We adopt a competitive screening approach to show how green investments which improve
ESG metrics can create the empirically observed separating equilibrium between green and
brown lending. Traditional frameworks mitigate banks’ adverse selection problems through
mechanisms such as collateral (e.g. Chan and Kanatas, 1985), partial self-financing (e.g.
de Meza and Webb, 1987), and bank investigations (e.g. Broecker, 1990; Burke, Taylor, and
Wagman, 2012). Banks use these techniques to deny credit to the lowest quality borrowers.
In contrast, the highest quality borrowers in our model use green investment to obtain lower
rates in a separating equilibrium. Loumioti and Serafeim (2022) find that approximately 17%
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of sustainability-linked loans in their sample are collateralized, indicating that banks likely
employ a combination of methods to mitigate adverse selection.

The use of ESG criteria in the capital allocation process is also becoming common in non-
bank debt financing. Flammer (2021) and Tang and Zhang (2020) study the corporate green
bond market and find no significant difference between green and brown rates. Zerbib (2019)
finds that green bonds rates are about two basis points lower than similar conventional bonds
and Caramichael and Rapp (2002) find green bonds yields are eight basis points lower than
conventional bonds, with the difference concentrated in large issuers in developed economies.
While we focus on bank lending, most of our results carry over to a segmented market with
green and brown bonds with similar intuition.

3 Model

Consider a model in which perfectly competitive banks offer loan products to entrepreneurs
or firms (hereafter borrowers) seeking funding for investment projects.6 The timeline begins
with banks posting take it or leave it prices for the loan products. Next, borrowers receive pri-
vate signals about the value, and thus the default risk, of their investment projects. These sig-
nals also convey information about the expected cost of investments that improve the projects’
ESG scores (hereafter “green investments”). Borrowers then apply for a single loan product
at a single bank. Banks then allocate funding specified by the loan product contract to the
borrowers. Borrowers then invest in projects. Investing in the project reveals the true value
of their investment projects and the true cost of green investments. Finally, borrowers either
default and return the residual project value to the bank, or fulfill the contract returning the
interest and principle to the bank and engaging in green investments if the contract requires.7

3.1 Borrowers

Borrowers require x dollars to fund their investment projects. One can view the project as
a new investment that requires startup funding, or as an established firm investing in a new

6The model is loosely related to Burke, Taylor, and Wagman (2012), but adds multiple loan types and an
externality, among other features.

7An alternative timeline is for borrowers to undertake green investments up front. This formulation is less
realistic in most cases as the loan contract typically requires the borrower satisfy ESG metrics after the loan
is granted. Up front green investments would not change the set of equilibria we derive, but would make the
equilibria exist under much weaker conditions than we find below.
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project with uncertain value.8 Investment projects ex post generate profits net of operating
expenses which are either high (vH − x) or low (vL − x). Projects are thus either high value or
low value types. We assume that vL−x < 0 < vH −x so that only high value projects generate
positive returns.

Each borrower i receives an unbiased private signal, λi, such that the investment project
is the low value type with probability λi, that is vi = vL with probability λi. The signal is
unobserved by banks and regulators. We assume that λi ∼ U [0,1], where U is the uniform
distribution. Each borrower decides which loan product to apply based on the borrower’s
expected payoff driven by the given λi. The signal distribution is common knowledge.

Borrowers can also make green investments. The bank may specify in the loan contract
that the borrower undertake observable green investments or can require borrowers to achieve
an observable environmental metric or ESG score. We assume that borrowers that undertake
green investments achieve this metric or ESG score. For convenience, we denote such con-
tracts as “green loan” products, noting that the loan contract may additionally or instead be
an ESG-linked loan that specifies social and governance metrics or ESG scores. We denote
conventional loan contracts with no required green investments as “brown loans.” The green
loan contract specifies that failure to achieve the specified environmental metrics constitutes
a default, in which case the bank claims the residual value of the investment project.9 Let
fi denote the cost of green investments for borrower i. The cost of green investment satis-
fies fi ∈ { fL, fH}, with fH > fL.10 We assume that vH > x+ fH , so that high value projects
generate enough profits to fund green investments. This assumption also ensures that it is
sequentially rational for a borrower with a high value project to comply with the contract and
make green investments rather than default.

The probability that green investments are high cost depends on the project type. In par-
ticular, prob( f = fH |λi) = λi. Because projects that are likely low value (high λi) also likely
have high green investment costs, a negative correlation exists between project value and green

8A variety of funding sources exist, including green bonds, green private equity, and angel investing. We
do not model the choice of funding source, noting only that banks are often preferred due to the different tax
treatment of debt versus equity, among other considerations.

9Kim et al. (2023) defines ESG and sustainability linked loans as specifying environmental or ESG metrics
whereas green loans specify that loan funds are used for a green investment. Either fits into our framework.

10An equivalent interpretation is that the green investment cost for a borrower receiving signal λi is λi fH +
(1−λi) fL with certainty. It is also equivalent to a model in which the cost per unit of externality reduction is
known, and borrowers receive signals about how much of the externality will be generated from the project (for
example, the cost is fi = f · ei, i ∈ {H,L}, where ei is either high or low pollution emissions). Kim et al. (2023)
find that observable ESG scores are similar for conventional and green loans, prior to the loan. This supports our
idea that the cost of complying is private information, especially since only some borrowers with similar ESG
scores apply for green loans.
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investment costs. In fact, it is straightforward to show the correlation is −1/3. This assump-
tion can be modified to allow the correlation to vary without affecting the results.

The assumption that financial risk and the cost of green investments are negatively corre-
lated is motivated by the empirical literature in Section 2 which finds a negative correlation
between financial risk and ESG scores (Lins, Servaes, and Tamayo, 2017; Albuquerque, Kosk-
inen, and Zhang, 2019; Albuquerque et al., 2020; Ilhan, Sautner, and Vilkov, 2021; Hoepner
et al., 2024). In particular, since firms can reduce financial risk through green investments that
improve ESG scores, the existence of firms with low ESG scores indicates that green invest-
ments are more costly to such firms. The negative correlation is also consistent with the con-
cern of policy makers of transition risk and stranded assets (Martinez-Diaz and Keenan, 2020,
e.g.), where potentially more stringent future environmental regulation can cause low ESG
firms to suffer financial distress. Finally, a common argument (e.g. PwC, 2023) is that green
lending reduces risk in the value of collateral attached to the loan. For example, green invest-
ments might reduce the likelihood of an environmental accident which not only bankrupts the
firm, but also reduces the value of the land used for collateral. Although we do not specifically
model collateral, this idea supports the idea that green investments lower risk.

3.2 Banks

In the supply side of the market, banks are competitive and make zero expected profits.
Banks receive loan applications from borrowers. Loan provision is costly banks. Banks incurs
a net dollar cost of funds for all loans equal to c to obtain x dollars for lending. For example,
a bank may borrow x dollars in the Federal Funds market repaying x+ c after the borrower
repays the loan, for a Federal Funds Rate of c/x. Alternatively, c/x could be the cost per dollar
of attracting and maintaining deposits used to fund the loan or the interest rate the FED pays
on bank reserves (and thus the opportunity cost of the loan). If default occurs the bank incurs
a processing cost of k, as well as some loss of principal. We assume that banks always repay
depositors and/or creditors in the Fed Funds market. Thus, bank stockholders incur any losses
from default through reduced profits.

Initially, banks announce dollar prices, pg, pb ∈ R+, for two different loan products.11

Loan product g requires the borrower to undertake green investments and loan product b is
the brown loan which does not. At these two prices, the bank commits to loan x dollars to
a borrower in exchange for x+ pg or x+ pb dollars after the project is completed.12 Price

11Offering the same price, but a higher probability of approval for green loans would work in a similar way.
12The implied interest rates offered are thus pg/x and pb/x.
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announcements are made publicly and simultaneously. Then, borrowers apply to banks for
one of the two loan products to start their projects.

Since green investments are more costly in expectation for low value projects, banks will
obtain information about signals received by firms by observing which loan products borrow-
ers apply to, which implies different equilibrium interest rates for green and brown loans.

3.3 Externality

We model the external impact of projects through a damage function D. In particular,
projects that are funded cause damages of D(e), where e is the level of the externality, and D

is strictly increasing. These damages are incurred by third parties, not the bank or borrower.
13 Green investments reduce externality levels to eg < e. We normalize the damage of project
with green investments to zero, D(eg) = 0.

Note that projects without green investments that turn out to be low value also cause dam-
age, since borrowers complete the project before deciding whether or not to default. To make
the problem non-trivial, let fL < D(e) < fH . This ensures that it is socially optimal for a
project that for certain has low (high) green investment costs to in fact undertake (not under-
take) green investments.

For example, let e denote uncontrolled carbon emissions and D(e) damage from higher
temperatures and sea level rise. A green investment in solar panels results in eg = 0 and the
green loan product is either an ESG-linked loan which requires e = 0 or a green loan which
requires investment in observable solar panels. Achieving the metric e = 0 with solar panels
is more costly for firms that use more energy, which are exposed to more transition risk in
the absence of solar panels. In another example, e is plastic use and D(e) as the external
harm from plastic use. A social example is where e is the probability of an accident from
unsafe working conditions and D(e) the expected external health costs associated with unsafe
working conditions.

3.4 Payoffs

The payoffs to the banks and borrowers depends on the type of loan and the value of the
project. For high value brown loans, borrower profits are vH − x− pb, and bank profits equal
pb − c. For low value brown loans, the borrower defaults, so borrower profits are zero and
bank profits are −cH ≡ vL − x− c− k. That is, the lender incurs a loss of principle equal to

13In Chang, Rhee, and Yoon (2024), banks and borrowers split a non-pecuniary benefit, which motivates banks
to offer lower green rates.
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x− vL plus the cost of funds and extra processing costs of a default, k. For high value green
loans, borrower profits are vH − f j − x− pb, j ∈ {L,H}, and bank profits equal pg − c. For
low value green loans, the borrower defaults so borrower profits are zero and lender profits are
−cH . Notice that if the project is low value, the borrower defaults prior to undertaking green
investments, as green investments do not improve profits in this state.

Finally, the assumption made earlier that vH is large enough to fund high cost of green in-
vestments, vH > x+ fH , implies vH − fH > x> vL. Hence, the payoffs net of green investments
costs satisify vH > vH − fL > vH − fH > vL > vL − fL > vL − fH .

4 Unregulated Market Equilibrium

4.1 Borrower Decision

Here we derive a set of conditions under which perfectly competitive and unregulated
banks offer both green and brown loan products. We anticipate that the green rate is strictly
less than the brown rate, otherwise no borrower would incur the extra cost required for a green
loan.

After receiving their signal, a borrower applies for a green loan product if the savings
from choosing the lower green rate outweighs the expected green investment cost. Given our
assumptions, a borrower defaults if and only if the project is low value. Hence the borrower
applies for a green loan if and only if:

(1−λi)(vH − pg −E [ f |λi])≥ (1−λi)(vH − pb) . (1)

Since the borrower defaults and receives zero for low value projects, the loan decision depends
only on the difference in prices and the expected green investment costs given the project turns
out to be high value. Condition (1) follows since, conditional on λi, vi and f are independent
(unconditionally, v and f are correlated as both distributions depend on the random variable
λi). Equation (1) implies borrowers apply for green loans if they are sufficiently confident that
the green investment cost is low:

λi ≤ λ
∗ ≡

pb − pg − fL

∆ f
, ∆ f ≡ fH − fL. (2)

The cutoff type for applying to green loans, λ ∗, is increasing in the interest difference. As
the differential rises, green loans become more attractive and so firms with marginally higher
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risk of high green investment costs are willing to apply for green loans to save the interest
difference.

All borrowers apply for a loan, even if the expected social value of the loan is negative.
Even a borrower with very high λi applies since a small probability exists that the project is
high value and profitable, whereas the borrower faces no bankruptcy costs if the project is low
value.

4.2 Bank Decision

Banks can specialize in either green or brown loans or offer both. We assume N ex ante

identical banks. Let n j denote the number of banks offering loan product j ∈ {g,b}. If n j > 1
then a borrower in market j applies to the bank offering the lowest rate. If all banks offer the
same rate, then the borrower applies randomly to one of the banks and so the probability of
a bank of type j receiving an application is 1/n j. Given this structure, Bertrand competition
between banks of the same type ensures that banks offer the same rate and profits are zero for
each type of loan (see Appendix 8.1). Given zero profits we can without loss of generality
assume that one bank of each type exists.14

Banks anticipate that borrowers that are low risk (λi ∈ [0,λ ∗]) will apply for green loans
as such borrowers have low expected green investment costs. Hence the zero profit condition
for green loans is:

E [πG] =
∫

λ ∗

0

[
λi (−cH)+(1−λi)(pg − c)

]
dλi = 0. (3)

Solving for the green loan price results in:

pg (λ
∗) = c+

λ ∗

2−λ ∗ cH . (4)

The second term on the right hand side spreads the expected losses from the fraction of bor-
rowers that opt for green loans and default, λ ∗ · (λ ∗/2) across the profits from the fraction of
the borrowers that choose green loans and repay, λ ∗ ·(1−λ ∗/2). The second term on the right
hand is the default risk premium. An important complication in the model is that λ ∗ not only
affects the probability of default, but also the measure of borrowers over which the default
premium is spread.

14Thus the green bank has lower risk of default but also a lower rate and thus lower profits if no default occurs.
The lower risk of default matches the findings of Danisman and Tarazi (2024), who show that high ESG banks
suffer less credit risk declines during financial crises.
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The zero profit condition for the brown loan market is identical except borrower quality is
lower:

E [πB] =
∫ 1

λ ∗

[
λi (−cH)+(1−λi)(pb − c)

]
dλi = 0. (5)

Solving for the brown interest rate results in:

pb (λ
∗) = c+

1+λ ∗

1−λ ∗ cH . (6)

The default premium for brown borrowers is larger since brown borrowers are more likely to
default.

4.3 Separating Candidate Equilibria

A candidate equilibrium consists of prices pg and pb and a cutoff signal λ ∗ which solve
equations (1), (4), and (6), and for which pb > pg. That is, the equilibrium requires optimal
borrower decisions and zero profits for both types of loan products. A candidate equilibrium
thus accounts for Bertrand competition between ex ante identical brown banks and ex ante

identical green banks. However, zero profits is necessary, but not sufficient, for an equilibrium.
In particular, even at zero profits a bank that cuts prices might still increase profits. This could
occur if the price cut results in an increase in borrower quality which lowers bankruptcy costs
enough to offset the lower margin from the lower price.

It is easiest to proceed in two steps. First, we derive candidate equilibria which have zero
profits for both types of banks (and thus banks offering both types of loans). We will then
consider whether or not a profitable deviation exists in the form of a price cut that increases
borrower quality sufficiently to offset the loss of margin from the price cut. We refer to a
candidate equilibrium with no profitable deviations as a Bertrand equilibrium. A Bertrand

equilibrium is thus an equilibrium with zero profits (candidate equilibrium) such that neither
a brown or green bank can profitably reduce prices.

Existence of candidate equilibria is best understood intuitively through a graphical anal-
ysis. We will also show existence rigorously through a proposition. We begin by showing
some properties of the brown and green loan product prices, which are the components of the
graphical analysis.

Appendix 8.2 establishes that the green loan price (4) satisfies:

pg (0) = c, pg (1) = c+ cH , p′g (λ
∗)> 0. (7)
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First, if only borrowers who never default apply for green loans (λ ∗ = 0) then perfect com-
petition drives the loan price equal to the cost of funds, pg (0) = c. If all borrowers apply
for green loans (λ ∗ = 1), then the loan price equals the cost of funds plus the unconditional
default premium, pg (1) = c+ cH . Unconditionally, in expectation half of borrowers default,
each costing the bank cH . This cost is spread over the fraction one half of borrowers that re-
pay, hence the unconditional default premium is ((1/2)cH)/(1/2). Finally, as λ ∗ increases,
expected green borrower quality decreases, causing the bank to increase the price p′g (λ

∗)> 0.
Appendix 8.2 shows that the brown loan price (6) satisfies:

pb (0) = c+ cH , lim
λ ∗→1

pb (λ
∗) = ∞, p′b (λ

∗)> 0. (8)

If all borrowers except the probability zero set of borrowers that never default apply for brown
loans (λ ∗ = 0), then the loan price equals the cost of funds plus the unconditional default
premium. If expected brown borrower quality deteriorates in that the fraction of borrowers
applying for brown loans approaches zero (λ ∗ → 1), no borrowers who repay exist to spread
the default cost over, and so the default premium, diverges. Finally, as λ ∗ increases, expected
brown borrower quality also decreases, causing the price to increase, p′b (λ

∗) > 0. Surpris-
ingly, an increase in λ ∗ decreases borrower quality for both brown and green loans, since the
highest quality brown borrower becomes the lowest quality green borrower.

Next, we subtract equation (4) from equation (6):

pb (λ
∗)− pg (λ

∗)≡ ∆p1 (λ
∗) =

2cH

(1−λ ∗)(2−λ ∗)
. (9)

The price difference is the benefit of applying for green loans. The price difference has prop-
erties:

∆p1 (λ
∗)> 0, ∆p1 (0) = cH , lim

λ ∗→1
∆p1 (λ

∗) = ∞, ∆p′1 (λ
∗)> 0, ∆p′′1 (λ

∗)> 0. (10)

If λ = 0, all green borrowers repay with probability one, and hence the difference in prices
is the unconditional default premium. As the quality of brown borrowers deteriorates, the
difference in prices diverges since the default premium for brown borrowers diverges and the
default premium for green borrowers is finite. The difference in prices is positive, since green
borrowers are higher quality than brown borrowers. The difference in prices increases at an
increasing rate with λ ∗. Both green and brown prices increase with λ ∗, but the increase in
prices is less in the green market. A marginal borrower switching from brown to green (higher
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λ ∗) means there are more borrowers in the green market to spread the default costs across, but
less borrowers in the brown market. So the effect on the brown market is larger.

Next, rewriting equation (2) yields:

∆p2 (λ
∗)≡ fL +∆ f λ

∗, (11)

= λ
∗ fH +(1−λ

∗) fL. (12)

Equation (12) gives the expected cost of green investments for a borrower with signal λ ∗.
A candidate separating equilibrium is a price difference ∆p = ∆p1 = ∆p2 and λ ∗ that

satisfy (9) and (11). These two equations equate the price difference (benefit of a green loan),
with the expected green investment cost of a green loan for a borrower who is indifferent
(λi = λ ∗) between the two loan products.

Although conceptually straightforward, existence is complicated because an increase in
λ ∗ has a nonlinear effect on the price difference, because the default premium must be spread
over fewer borrowers. In addition, corner solutions can result if investment costs are too small
or too large.

Existence of candidate equilibria with two loan products depends on two conditions:

cH ≤ fL +g1 ( fL, fH) , (13)

where g1 > 0 is a function defined in Appendix (8.3) and

fH >
5
2

fL. (14)

Appendix 8.3 shows:

Proposition 1. Existence of candidate equilibria.

1. If fL > cH then a unique candidate separating equilibrium exists with both brown and

green lending, λ ∗ ∈ (0,1).

2. If fL = cH then a unique candidate pooling equilibrium exists with both brown and green

lending, λ ∗ ∈ (0,1), if and only if condition (14) holds, otherwise no equilibrium exists

with both brown and green lending.

3. If fL < cH and

• condition (13) holds strictly and condition (14) holds, then two candidate equilib-

ria exist, both with brown and green lending.
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• condition (13) holds with equality and condition (14) holds, then a candidate pool-

ing equilibrium exists with both brown and green lending.

• if either (13) or (14) does not hold, no equilibrium exists with both brown and

green lending.

The function g1 is defined in the appendix and is increasing in fH . Therefore, although
three cases exist, Proposition 1 implies at least one candidate separating equilibrium exists
with both brown and green lending for fH sufficiently large.

Figure 1 shows the equilibrium geometry.
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Figure 1: Equilibrium Geometry. The three lines in the right panel are for increasing values
of fH .

In Figure 1, the curve with circles is the difference in prices between brown and green
loans, which is the benefit of choosing green loans for the borrower. The convexity reflects that
the interest charged on brown loans increases as the default costs are spread across relatively
few repaid loans when λ ∗ is high. The lines are the expected cost of green investments for a
borrower with λi = λ ∗. Equilibrium requires the price difference to be equal to the expected
cost of green investment for a borrower with λi = λ ∗.

The right panel shows that for fL < cH , if fH is large enough, two candidate equilibria
exist, both with green and brown loan products. In the first separating equilibrium, λ ∗

1 , a
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small price difference exists and so only very high quality borrowers have expected green
investment costs low enough to justify applying for green loans. Since borrowers of moderate
quality apply for brown loans, the average quality of brown borrowers is good and the brown
price is relatively low. Thus, the price difference is also relatively low. In turn, only high
quality borrowers apply for green loans given the small price difference.

If fH is large, a second candidate separating equilibrium also exists where the price differ-
ence is large enough to attract moderate quality borrowers to green loans. Because only low
quality borrowers are applying for brown loans, the brown loan price is high, and thus so is
the price difference. Because the price difference is large, low and moderate quality borrowers
have expected green investment costs which are low enough to apply for green loans.

As fH decreases, the right panel shows that eventually the economy reaches a knife edge
with only one candidate pooling equilibrium (condition 13 holds with equality) and then fur-
ther decreases result in no equilibrium (condition 13 does not hold). In this case, the expected
cost of green investments increases more slowly than the price difference. Therefore, a bor-
rower with λi = λ ∗ strictly prefers a green loan for any λ ∗, violating the separating equilibrium
indifference condition.

The left panel shows that if fL > cH , a single candidate separating equilibrium exists with
both brown and green lending. The equilibrium is similar to the separating equilibrium with
fL < cH where low and moderate quality borrowers apply for green loans and the price dif-
ference is large. However, no equilibrium exists where only high quality borrowers apply for
green loans. Since fL is large, even high quality borrowers prefer brown loans if the price
difference is small.

4.4 Pooling Candidate Equilibria

Additional candidate equilibria where all borrowers apply for only one type of loan product
also exist. Consider first a pooling equilibrium where all borrowers apply for brown loan
products. In such an equilibrium,

pb (0) = c+ cH , (15)

is the brown loan price since all borrowers are applying for brown loans. Further, λ ∗ ≤ 0 so
that even borrowers who are certain their green investment costs are low (λi = 0) apply for
brown loans because the price difference does not cover the lowest cost of green investments:

λ
∗ ≤ 0 →

pb − pg − fL

∆ f
≤ 0, (16)
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pg ≥ c+ cH − fL. (17)

We restrict the equilibrium set to where equation (17) holds with equality, since all values of
pg which satisfy (17) result in the same equilibrium allocations with probability one.15

Hence, a pooling candidate equilibrium with single brown satisfies:

pb (0) = c+ cH ,

pg = c+ cH − fL,

λ
∗ = 0 (18)

Using identical logic, a candidate pooling equilibrium with a single green loan product
satisfies:

pb = c+ cH + fH ,

pg = c+ cH ,

λ
∗ = 1. (19)

In this case, the price difference, fH , is large enough so that even a firm that for certain has
high green investment costs applies for a green loan.

4.5 Bertrand Equilibria

Multiple candidate equilibria exist in the model because the relative prices affects the
quality of loan applicants. If higher quality borrowers apply for a loan product, the likelihood
of default falls, which lowers the price, which justifies more borrowers applying for the loan
product. To refine the set equilibria, we impose Bertrand competition so that a bank cannot
deviate by lowering a loan price and make positive profits. Bertrand competition is reasonable
in a modern banking market, since typical features that lead to non-Bertrand competition
are absent. Borrowers can shop a loan via internet service providers at low search cost and
capacity constraints are minimal given that banks have large excess reserves and can borrow
from other banks easily to increase capacity if necessary. Brown and green loan products are
homogeneous across banks.

15Throughout the paper, we consider an equilibrium with λ ∗ = 0 to be a pooling equilibrium with a single
brown loan product as the probability of a green loan application is zero, given only a borrower with λi = 0 is
indifferent between brown and green loans and no borrower prefers green loans.
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4.5.1 Green Pooling Candidate Equilibria

Consider first the candidate pooling equilibrium with only green loan products. Suppose a
brown bank deviates by lowering the price to:

p̃b = pb − ε∆ f , (20)

λ̃ =
p̃b − pg − fL

∆ f
= 1− ε. (21)

A bank making such a deviation will have a lower price than the brown banks offering the
equilibrium price and will thus capture all green borrowers of quality [1− ε,1] as the lower
brown price makes green loans less attractive. As ε increases, the deviating brown bank
captures more borrowers and borrower quality improves.

In fact, Appendix 8.6 shows that the gain in market share and borrower quality outweighs
the lower price and so a brown bank which deviates by setting ε = 1 captures the entire market
with positive profits. Hence, no Bertrand equilibrium exists with only green loan products.

4.5.2 Brown Pooling Candidate Equilibria

Consider next a candidate pooling equilibrium with only brown loan products. A green
bank with zero market share deviates by lowering the price to:

p̃g = pg − ε∆ f , (22)

λ̃ =
pb − p̃g − fL

∆ f
= ε. (23)

As the deviating price falls, the green bank begins to attract brown borrowers starting with the
highest quality brown borrowers.

Increasing ε attracts more borrowers, but lowers both the price and average borrower qual-
ity. Hence, the best chance of a profitable deviation occurs for small ε , where the price de-
crease is small and only the highest quality brown borrowers switch to the deviating green
bank. In fact, Appendix 8.7 shows that if:

fL ≥ cH , (24)

then no profitable deviation exists. Further, if condition (24) does not hold then a profitable
deviation exists near ε = 0. Hence, a pooling equilibrium with only brown loan product exists
if and only if condition (24) holds.
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4.5.3 Separating Candidate Equilibria

Proposition 1 shows that for separating equilibria with both green and brown loan products,
either zero, one, or two candidate equilibria exist, depending on the parameter values. The
next proposition establishes which of the candidate equilibrium are Bertrand equilibria. Two
conditions are required so that a bank cannot deviate and earn positive profits.

cH ≤ fL +g2 ( fL, fH) , (25)

where g2 < g1 is a function defined in Appendix (8.8) and

fH > 3 fL. (26)

Proposition 2. Existence of Bertrand equilibria.

1. If fL ≥ cH then the unique candidate separating equilibrium that exists with both green

and brown loan products is not a Bertrand equilibrium.

2. If fL < cH then

(a) if conditions (25) and (26) hold, two candidate equilibria exist, both with green

and brown loan products, λ ∗
1 and λ ∗

2 , such that 0 < λ ∗
1 < λ ∗

2 < 1 and λ ∗
1 is a

Bertrand equilibrium and λ ∗
2 is not.

(b) if condition (25) and/or (26) do not hold, then no Bertrand equilibrium exists with

separating equilibrium.

Proposition 2 shows that, under Bertrand competition, if an equilibrium exists it is always
unique. Both pooling and separating candidate equilibria exist, but at most one equilibrium
has no profitable deviations. The appendix shows that g2 is increasing in fH . Thus, for fH

sufficiently large we have only two cases. Either fL ≥ cH and the unique Bertrand equilib-
rium is a pooling equilibrium with only brown lending, or fL < cH and the unique Bertrand
equilibrium is a separating equilibrium with both green and brown lending.

Corollary 1. For fH sufficiently large:

1. if fL ≥ cH then in the unique Bertrand equilibrium, banks offer a single brown loan

product.
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2. if fL < cH then the unique Bertrand equilibrium, λ ∗
1 ∈ (0,1), has both green and brown

loan products.

If fH is large relative to fL, a Bertrand equilibrium always exists and is unique. The result
that, for some parameter values, the Bertrand equilibrium consists of a single brown bank is in
contrast to Rothschild and Stiglitz (1976), where pooling equilibria never exist. The difference
is that in their paper insurance companies are free to adjust deductibles to cream skim low risk
types. Here, the cost of a green investment like a solar panel cannot be manipulated by the
bank and so parameter values exist where the signaling cost for low risk types is too high for
cream skimming to take place.

Corollary 1 (see also Figure 8.2) provides a theoretical explanation for the empirical result
that the green banking market has small interest rate premia and comprises a relatively small
share of the overall banking market (Chava, 2014; Delis, Greiff, and Ongena, 2018; Ehlers,
Packer, and Greiff, 2022; Shin, 2021): a large interest rate differential creates the opportunity
for a brown bank to deviate and capture the market as brown borrowers prefer the lower rate
and moderate quality green borrowers prefer not to undertake expensive green investments.

5 Welfare

Welfare in the model depends on the surplus accruing to banks and borrowers as well as
green investment costs and environmental damage. Here we show that welfare in the unregu-
lated market is not socially optimal, as the signaling value of green investments does not equal
the net benefit from alleviating the externality.

Ex-ante expected welfare equals the sum of borrower surplus (WB) and bank surplus,
less external damages to third parties. Bertrand competition ensures bank surplus is zero in
expectation (ex-post surplus can be positive or negative depending on if the investment project
turned out to be high or low value) and all expected private surplus from the projects accrues
to the borrowers. Thus:

W = E [borrower surplus]+E [bank surplus]−E [environmental damages to households]

= E [WB]+0−E [D] . (27)

Parameter changes affect welfare directly, and potentially indirectly if the type of Bertrand
equilibrium changes (pooling with only brown loan product vs separating with both products).
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5.1 Welfare, Brown Loan Pooling Equilibrium

Corollary 1 shows that a region of the parameter space exists where banks offer a single
brown loan product that doesn’t require any green investment. Banks accept all loan appli-
cants at pb = c+ cH (refer to equation 18), and borrowers have no incentive to make green
investments. Therefore, damage D(e) is generated by all projects.

The borrower surplus in the region of the parameter space with a single brown loan prod-
uct, WBb, is:

WBb =
∫ 1

0
[λi ·0+(1−λi)(vH − x− pb)] f (λi)dλi, (28)

=
1
2
(vH − x− pb) (29)

In equation (28), with probability λi the project is low value and so the borrower defaults
and gets zero. With probability 1−λi the project is high value, in which case the borrower
repays the loan principle and interest with the income generated from the project. Given that
all loan applications are accepted and the signals are uniform on the unit interval, the project
is unconditionally high value with probability 1/2, and so the borrower expected welfare in
(29) is the probability that the project is high value times the borrower surplus for a high value
project.

Total environmental damages to households are D(e), because no green investments occur
and all projects generate damages, as the project must be implemented to learn the true value.

Substituting in the price (18), borrower surplus (29), and the externality cost into the wel-
fare function implies welfare for a pooling equilibrium with single brown loan product, Wb,
is:

Wb =
1
2
(vH − x)− 1

2
(c+ cH)−D(e) , (30)

=
1
2
· (vH − x− c)︸ ︷︷ ︸

gain from high value

−1
2
· (x− vL − c)︸ ︷︷ ︸

loss from low value

− k
2︸︷︷︸

transaction cost

− D(e)︸︷︷︸
environment damage

(31)

Here the second equation follows from the definition of cH . The assumption vL − x < 0 <

vH − x ensures banks generate enough profits from good projects to cover the default and
bank funding costs, otherwise the market would not exist. However, Wb might be negative
if the project has negative net social benefits (if the external damages exceed the private net
benefits).
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5.2 Separating Equilibrium

With brown and green lending, green borrowers who do not default make green invest-
ments, which reduce total expected damages. The expected bank surplus is zero for both loan
types and borrower surplus, WBgb, is the sum of expected green and brown borrower surplus:

WBgb =
∫

λ ∗

0
[(1−λi)(vH −E [ f |λi]− x− pg)]dλi +

∫ 1

λ ∗
[(1−λi)(vH − x− pb)]dλi

=
1
2

λ
∗ (2−λ

∗)(vH − x− pg)+
1
2
(1−λ

∗)2 (vH − x− pb)

−(λ ∗)2
(

1
2
− λ ∗

3

)
fH −λ

∗ (
λ
∗,2 −3λ

∗+3
)

fL. (32)

The second equality in equation (32) states that borrower surplus is the probability the loan is
green and high value, times the borrower profits from a high value green loan excluding green
investment costs, plus the probability that the loan is brown and high value, times the borrower
profits from a high value brown loan, less the probability that the loan is green and high value,
and then either higher or low green investment costs are realized. The complications arise
since all of these probabilities depend crucially on λ ∗.

Next, using the separating equilibrium green (4) and brown (6) prices, equation (32) sim-
plifies to:

E
[
WBgb

]
=

1
2
(vH − x− c− cH)− (λ ∗)2

(
1
2
− λ ∗

3

)
fH − λ ∗

3
(
λ
∗,2 −3λ

∗+3
)

fL. (33)

Recall, all loan applications are eventually funded and the unconditional probability that the
loan is high value is 1/2. Thus, with probability 1/2 we have a high value loan generating
profits exclusive of green investment costs equals vH −x−c. Conversely, with probability 1/2
we have a low value loan which generates profits of −cH . The last two terms of (33) reflect
the green investment costs which only occur given a green loan that turns out to be high value.

Total environmental damages to households from both loan types are:

E [D] =
∫

λ ∗

0
[(1−λi) ·0+λiD(e)]dλi +

∫ 1

λ ∗
[(1−λi)D(e)+λiD(e)]dλi

=D(e)
[

λ ∗,2

2
+1−λ

∗
]
. (34)

Damages occur in all cases except for a high value green loan. Total welfare when banks offer
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two loan products is expected borrower surplus (33) less expected damages (34).

Wgb (λ
∗) =

1
2
(vH − x− c− cH)− (λ ∗)2

(
1
2
− λ ∗

3

)
fH − λ ∗

3
(
λ
∗,2 −3λ

∗+3
)

fL

−D(e)
[

λ ∗,2

2
+1−λ

∗
]
. (35)

Welfare in the two loan product case reflects the private benefits of lending plus the expected
green investment costs and environmental damages. The green investment costs arise from
borrowers sending signals to banks. In a typical screening model (Rothschild and Stiglitz,
1976, e.g.), low risk agents do not fully insure to signal low risk, which is welfare reducing
relative to full information. Here signaling has a private cost but a social benefit in reducing
damages. The amount of green lending in equilibrium depends on the signaling value of
green investment. However, here the net social benefit of signaling depends on the expected
reduction in damages and the expected green investment costs.

5.3 Optimal Green Lending

A benevolent social planner that possesses perfect information about the borrower signals
could choose which borrowers undertake green investment. Note that if it is socially optimal
for a borrower with signal λi to make green investments, then it is optimal for any borrower
with signal λ j < λi to also make green investments as the expected cost is lower while the
expected avoided damages is the same. Thus, given perfect information about the signals,
the planner would set a cutoff λ̄ and require green investment for all borrowers with signals
λi ≤ λ̄ . In the next section, we show how such a welfare maximum can be implemented
via government policy (e.g. a carbon tax). Even though the regulator does not in fact know
the borrower signals, it can alter the payoffs of green vs brown loans to borrowers and then
rely on the signaling equilibrium created by banks to get the correct borrowers to make green
investments.

A social planner with perfect information might not allow borrowers with sufficiently high
λi to invest in their projects at all, in particular if the expected damages are high enough to
make the project have negative expected social value. In fact, this over-investment problem
is worse than in de Meza and Webb (1987), since some borrowers have expected positive
financial return, and yet have negative social return due to the externality. However, absent
knowledge of λi, the planner cannot prevent these loans.16 Therefore, we will compute the

16In de Meza and Webb (1987), borrowers must use some of their own wealth in the project. Thus, in their
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value λ̄ which maximizes social welfare and show this optimum is implementable via policy
in the next section.

Let λ̄ denote the second best optimum fraction of borrowers that make green investments.
Maximizing welfare (35) results in:

W
(
λ̄
)′
=
(
1− λ̄

)(
D(e)− fL −∆ f λ̄

)
= 0 (36)

To find the local maximum value of λ̄ , we calculate second order condition:

W
(
λ̄
)′′

= 2∆ f λ̄ −D(e)+ fL −∆ f (37)

Here, W (1)′′ < 0 holds only if fH < D(e), which we have ruled out by assumption.17 Next,

W
(

D(e)− fL
∆ f

)′′
< 0 since fH > D(e). Thus, the social optimum satisfies:

D(e) = λ̄ fH +
(
1− λ̄

)
fL ↔ λ̄ =

D(e)− fL

∆ f
. (38)

The social planner maximizes welfare by incentivizing borrowers who receive a signal such
that expected green investment costs are less than damages to undertake green investments.
The assumption fL < D(e)< fH also implies λ̄ ∈ (0,1).

Since λ̄ > 0, any regulation which induces the social optimum generates a separating
equilibrium with both brown and green lending. Therefore, the pooling equilibrium with only
brown lending does not maximize welfare. In the next section we show how regulation can
cause the equilibrium to generate the optimal amount of green investment.

6 Optimal Regulation

Many regulation options exist including Pigouvian taxation (e.g. a carbon tax), subsidizing
green lending, or taxing brown lending. Here we focus on carbon taxes and penalizing brown
lending by requiring more reserves.

framework regulators can raise the safe rate of interest, so that low expected return borrowers invest their wealth
at the safe rate of interest and do not apply for loans. Here we assume borrowers do not have any wealth in the
project to focus on the externality that is important for green lending.

17Recall fL < D(e) < fH , so that it is socially optimal for a firm with for sure low (high) green investment
costs to undertake (not undertake) green investments.
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6.1 Carbon Tax

Consider a tax τ per unit of e such that total tax payments are τe. To fix ideas, we will
refer to τ as a carbon tax and e as carbon emissions. An important assumption is what priority
carbon tax payments receive as a creditor during bankruptcy. Although the law is not set-
tled on the matter and often bankruptcy judges have some discretion, Appelbaum (2021) and
others argue that the government is an unsecured creditor and thus ranks somewhere below
secured creditors and even bankruptcy fees and costs. We therefore treat the bank as a secured
creditor with first claim given bankruptcy. Since we have assumed low value projects generate
revenues that are insufficient to make the secured creditor (bank) whole, no carbon taxes are
paid in the event of bankruptcy. The borrower decision (1) becomes:

(1−λi)(vH − pg,t −E [ f |λi])≥ (1−λi)
(
vH − pb,t − τe

)
, (39)

and so the condition for applying for a green loan becomes:

λi ≤ λτ ≡
pb − pg − fL + τe

∆ f
. (40)

Since banks do not directly pay the tax, the loan prices at which banks earn zero profit is
unchanged up to λ . Equations (4) and (6) imply:

pg,t = c+
λτ

2−λτ

cH , (41)

pb,t = c+
1+λτ

1−λτ

cH , (42)

∆p1 =
2cH

(1−λτ)(2−λτ)
(43)

∆p2,τ = fL − τe+∆ f λτ . (44)

So, in Figure 1, the line ∆p2 shifts down if the tax is positive. For small shifts starting from a
region of the parameter space where two equilibria exist with both loan products, λ1,τ > λ ∗

1 and
λ2,τ < λ ∗

2 . The equilibrium with the smaller green lending share continues to be a Bertrand
equilibrium. But if the shift is too much, a single brown bank can profitably deviate and
undermine the equilibrium. If the shift is larger still, the economy can enter a region where no
equilibrium exists.
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The equilibrium with a carbon tax is a solution to:

∆p1 (λτ) = ∆p2,τ (λτ) . (45)

Further, an equilibrium with taxes is socially optimal if λτ = λ̄ .18

∆p1
(
λ̄
)
= ∆p2,τ

(
λ̄
)
,

2cH(
1− λ̄

)(
2− λ̄

) = fL − τ̄e+∆ f λ̄ , (46)

τ̄e = fH λ̄ +
(
1− λ̄

)
fL −

2cH(
1− λ̄

)(
2− λ̄

) , λ̄ =
D(e)− fL

∆ f
. (47)

The optimal tax first removes the signaling incentives, which is the third term after the equality
in (47) and equals the price difference. Then, the first two terms of the optimal tax makes a
borrower with expected green investment costs equal to expected damages indifferent between
a green loan which has no tax costs and a brown loan which does.19

Equation (47) can also be written as:

τ̄ =
D(e)−0

e−0
− 1

e
2cH(

1− λ̄
)(

2− λ̄
) . (48)

The tax equals the equivalent, in our discrete framework, to the marginal damage less the
correction which removes the signaling value.

Note from Figure 1, ∆p1 > (<,=)∆p2 for λ < (>,=)λ ∗
1 . Hence:

λ̄ > λ ∗
1 τ̄e > 0

λ̄ = λ ∗
1 τ̄e = 0

λ̄ < λ ∗
1 τ̄e < 0.

(49)

That is, if the signaling value generates too little (too much) green investment, the optimal
carbon tax is positive (negative) to create more (less) green investment.

It remains to determine whether profitable deviations exist at λτ = λ̄ . As shown in Propo-
sition 2, if the separating equilibrium fraction of green lending (in this case λ̄ ) is too large,
then a brown bank can deviate and make positive profits. Consider the following change of

18We assume that tax revenue is rebated back to households so that tax revenue does not affect welfare. Only
the change in incentives created by the tax matter.

19Further, the optimal loan product price difference depends only on the external damages, not the signal value.
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variables:

fL,τ ≡ fL − τe, (50)

fH,τ ≡ fH − τe, (51)

∆ fτ ≡ fH,τ − fL,τ = ∆ f . (52)

Then:
λτ ≡

pb − pg − fL,τ

∆ fτ

. (53)

The problem with a tax is identical to the unregulated problem except fH and fL change by
identical amounts. So can use all of the results in Propositions 1 and 2. In particular, λτ is a
Bertrand equilibrium with two loan products if and only if:

fH,τ > 3 fL,τ , (54)

fL,τ < cH ≤ fL,τ +g2 ( fH,τ , fL,τ) . (55)

Suppose that the unregulated signaling economy generates too little green investment and the
optimal tax is positive, so that fL,τ < fL and fH,τ < fH . Then condition (54) and the first
inequality in condition (55) become less restrictive. Further, in the right inequality of (55)
the first term decreases and g2 increases relative to the unregulated problem. The tax means
it is more difficult for a brown bank to deviate and profitably offer a lower rate given that a
borrower switching from a green to brown loan must now pay the tax (g2 increases). However,
the term fL,τ also decreases, which reflects that the optimal tax creates more green lending,
and too much green lending creates an opportunity for a brown bank to profitably deviate.

Next, suppose that either (54) or (55) is violated at the optimal tax, so that the optimal tax
does not result in a Bertrand equilibrium. From equations (36) and (37), welfare is increasing
(decreasing) in λ for λ < (>)λ̄ . The best the regulator can do is choose a tax to get the highest
λ such that no deviations are possible.

Consider now a carbon tax where the equilibrium consists of a single brown loan product.
The borrower still decides whether or not to pay the carbon tax. The borrower considers only
the tax vs the cost of reducing carbon emissions. The borrower reduces if and only if:

E [ f |λi]≤ τe,

λi ≤
τe− fL

∆ f
. (56)
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Next, in any equilibrium where pb ≥ pg, any borrower with λi satisfying (56) will also apply
for a green loan since they are making green investments already. Thus, any pooling equi-
librium with one brown loan product satisfying pb ≥ pg must also satisfy τe ≤ fL, so that no
borrower chooses to reduce and therefore also chooses a green loan. Modifying (18) results
in:

pb = c+ cH ,

pg = c+ cH − fL + τe = c+ cH − fL,τ

λτ = 0. (57)

The equilibrium results in no green lending and has the same no deviation condition, up to fL,
fL,τ ≥ cH . Such an equilibrium is sub-optimal since it is efficient for at least some borrowers
to make green investments (recall D > fL). The regulator can improve welfare by increasing
τe above fL and shifting to a separating equilibrium with two loan products.

Proposition (3) summarizes the above analysis:

Proposition 3. Regulated economy with a tax τ per unit of e.

1. If fL,τ ≥ cH (which implies τe < fL), then (57) is a sub-optimal Bertrand equilibrium

with no green investment and only brown lending.

2. If (54) and (55) hold, a Bertrand equilibrium λ1,τ with two loan products exists satisfy-

ing (45).

3. Equation (47) gives the socially optimal tax, which is less than the marginal damage.

4. The socially optimal tax results in a Bertrand equilibrium if (54) and (55) hold, where

equation (47) gives the tax.

5. If the socially optimal tax does not result in a Bertrand equilibrium, the highest welfare

that is a Bertrand equilibrium, the constrained social optimum, is a tax which creates

the highest possible λτ such that no deviations are possible.

Proposition 3 points to several subtleties with regard to carbon tax policy given a green
banking market. First, if in the absence of a carbon tax the parameter values generate a pool-
ing brown market, then a tax smaller than the marginal damage is optimal. The tax shifts
the equilibrium to a separating equilibrium which provides private motivation for green in-
vestment. In this sense, a small carbon tax can have a relatively large effect by shifting the
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equilibrium from pooling to separating. Although the US does not have a national carbon tax,
carbon is priced in some regions through cap and trade systems. Thus, one could empirically
test whether or not the green banking market developed in response to an increasing price of
carbon.

Surprisingly, Proposition 3 states that green lending can create a problem: if the optimum
requires too much green investment, an an equilibrium does not exist. Notice that if no green
lending were possible, then the optimal carbon tax equals the marginal damage and the social
optimum results.

6.2 Reserve Requirement

Central banks have proposed including climate risks as part of their overall assessment
of financial risk at banks and in the banking system (Acharya et al., 2023). Often, central
banks specify that such regulation be designed to reduce financial risk at banks related to
climate change. The environmental benefits are ancillary. However, the ECB is aligning
policy with “the objectives of the Paris Agreement and the EU’s climate neutrality objectives”
(ECB, 2022). Taking this statement as given, here we consider bank regulation designed to
induce the welfare maximizing level of green investment. A straightforward way to model
such regulation is to impose a reserve requirement for brown loans.20

In particular, suppose regulators impose a required reserve ratio of rr =α(1−λr)/2=R/x

on brown loans, where α is a policy parameter, λr is the cutoff such that borrowers with λi > λr

apply for brown loan given the reserve requirement, and R is the dollar amount of required
reserves.

The functional form of the required reserve ratio is chosen for ease of analysis but in fact is
not a restriction, because we will show the optimal required reserve ratio depends on λr = λ̄ .21

The bank now requires x+R dollars to make a brown loan of x. The rate of interest the bank
pays the depositor or other funding source is c/x, and so the dollar cost of funds for a brown
loan becomes (1+ rr)c.

In the event of bankruptcy by the borrower, the bank has some reserves. We assume that
the bank losses are paid by the bank stockholders through negative profits, rather than having
the bank default and not repay the depositors. In this case, bank profits on a defaulted brown

20A number of other options are possible but all would generate similar results, including subsidizing green
loans through establishment of a green bank that provides credit enhancements for green loans (recommended
in a CFTC report, see Martinez-Diaz and Keenan, 2020, p. 109) or prioritizing green bonds in central bank
corporate bond holdings (announced by the European Central Bank, ECB, 2022).

21The optimal carbon tax also depends on λ̄ .
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loan are −cH,r = vL − x− (1+ rr)c− k = −cH − rrc, and bank profits on a successful brown
loan are pb − (1+ rr)c.

The equilibrium outcomes in the model with a reserve requirement are:

pg,r = c+
λr

2−λr
cH = pg, (58)

pb,r = c(1+ rr)+
1+λr

1−λr
cH,r

= pb +
2rr · c
1−λr

, (59)

λr =
pb,r − pg,r − fL

∆ f
(60)

The price difference rises to:

∆p1,r =
2cH

(1−λr)(2−λr)
+

2rr · c
1−λr

,

=
2cH

(1−λr)(2−λr)
+α (61)

and the line governing borrower behavior is unchanged up to λ :

∆p2,r = fL +∆ f λr. (62)

In Figure 1, the line is unchanged and the curve which is the price difference shifts up by α .
The functional form for the reserve ratio was in fact chosen so that α shifts the price difference
upward equally for all λ . Assuming the new candidate separating equilibrium with two banks
remains a Bertrand equilibrium, we have λ1,r > λ ∗

1 and λ2,r < λ ∗
2 .

Combining equations (58)-(60) generates the equilibrium condition for the economy with
a required reserve ratio:

∆p1,r =
2cH

(1−λr)(2−λr)
+α = ∆p2,r = fL +∆ f λr. (63)

Further, λ̄ is an equilibrium in the economy with a reserve requirement if:

α = D(e)− 2cH(
1− λ̄

)(
2− λ̄

) , (64)
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which is identical to the optimal carbon tax (τe = α at the optimum).22 As with the tax, the
optimal reserve policy replaces the signaling value of green investments with the marginal
damage. The implied optimal required reserve ratio is:

rrc =
1− λ̄

2

(
D(e)− 2cH(

1− λ̄
)(

2− λ̄
)) . (65)

As damage and λ̄ increase, the price difference widens as brown borrowers are increasingly
likely to default, and so the brown rate becomes large to maintain zero profits. The optimal
reserve requirement decreases as borrowers already have a strong signaling incentive for green
loans.

It remains to find the range of parameter values such that a Bertrand equilibrium exists.
Consider the change of variables:

fL,r ≡ fL −α, (66)

fH,r ≡ fH −α, (67)

∆ fr ≡ fH,r − fL,r = ∆ f . (68)

The equilibrium condition then becomes:

2cH

(1−λr)(2−λr)
= fL,r +∆ frλr. (69)

Thus the equilibrium equation and conditions for the existence of candidate equilibria are
unchanged up to fH and fL.

The conditions for existence of a candidate equilibrium are identical under tax and required
reserve regulations, but the no-deviation conditions are different. To see which regulation
system has the largest range of λ with no profitable deviations, consider the case where the
reserve requirement and the tax are set so that the equilibrium is the same: λr = λτ . Then:

λr =
Pb,r − pg,r − fL

∆ f
= λτ =

Pb,τ − pg,τ − fL + τe
∆ f

,

⇔pb,r = pb,τ + τe (70)

The brown loan product price is higher with the reserve requirement versus the tax. The tax

22Note that the cost of holding reserves is accounted for in the welfare function. The borrowers pay for the cost
of holding extra reserves through the higher brown rate, which accounts for the welfare loss of the opportunity
cost of using these funds elsewhere, c.
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is placed on the borrowers which discourages brown borrowing. In contrast, the reserve re-
quirement relies on increasing the price difference to discourage brown borrowing. However,
the high price difference given required reserve regulation makes deviating more attractive. A
deviating brown bank induces green borrowers to switch which is more profitable when the
brown price is already high and very few repaying brown borrowers exist to spread the default
costs over.23

Graphically, Figure 1 shows that the price difference increases in a convex way with λ . As
the quality of borrowers decreases in the brown loan market, an increasingly high brown rate
is required to spread the default costs over the relatively few brown borrowers that repay their
loan. As λ increases and the price difference widens, it becomes increasingly attractive for
a brown bank to lower the rate slightly, gaining green borrowers who, if they repay, generate
large profits. This is why in the unregulated economy high values of λ ∗ are not Bertrand. The
same principle holds in the regulated economy. The higher reserve requirement increases the
price difference and makes deviations more attractive.

In fact, we show in the appendix that the new no deviation conditions become:

fH,r > 3 fL,r +α (71)

fL,r < cH < fL,r +g2,r ( fL,r, fH,r,α) (72)

Here g2 ( fL,r, fH,r) = g2,r ( fL,r, fH,r,0) and g2,r is decreasing in α . Then if the optimal policy is
to increase green lending (α > 0), parameter values exist such that λ̄ is a Bertrand equilibrium
given the carbon tax, but is not an equilibrium with the optimal reserve policy.

Proposition 4 summarizes the above analysis:

Proposition 4. Required reserve regulation. Suppose a required reserve ratio rr =α (1−λr)/2
per dollar of brown loans and α > 0.

1. If fL,τ ≥ cH (which implies α < fL), then a sub-optimal Bertrand equilibrium exists with

no green investments and only brown lending.

2. If (71) and (72) hold, a Bertrand equilibrium λ1,r with two loan products exists satisfying

(58), (59), and (63).

3. Equation (65) gives the socially optimal required reserve policy, which is less than the

marginal damage.
23The deviating brown bank also loses more if the borrower that switches from green to brown does not repay,

since the reserve requirement must also be repaid. However, this is outweighed by the higher price if the borrower
does repay and the spreading of the default costs.
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4. The socially optimal required reserve policy results in a Bertrand equilibrium if (71)

and (72) hold, where equation (65) gives the required reserve ratio.

5. The optimal reserve policy parameter α equals the optimal tax policy.

6. There exists an open set of parameter value such that the optimal tax policy is a Bertrand

equilibrium and the optimal reserve policy is not.

Both the carbon tax and the reserve requirement can be set so that the socially optimal
fraction of green investment, λ̄ is a candidate equilibrium. However, if the social optimum
is too large, brown banks may deviate and enter the market, causing λ̄ to be not a Bertrand
equilibrium.

6.3 Combined Regulation

If the efficient amount of green investment is not too high, either a carbon tax or a reserve
requirement on brown loans can induce the efficient allocation by replacing the signaling
incentive with the marginal damage. However, one of the virtues of the traditional carbon tax is
that the efficient carbon tax is independent of the economic financing structure. The regulator
need only set the carbon tax equal to the marginal damage to get the efficient outcome.24 The
information requirement of the carbon tax rises considerably if the tax varies depending on if
the project is bank financed or not.25

An appealing alternative is to set the carbon tax equal to the marginal damage, and then use
the reserve requirement on brown loans to remove the signaling benefit of green loans in the
lending market. This reduces the information required for the carbon tax. The required reserve
ratio on brown loans can then be set at the Federal Reserve where banks submit information
that might allow the FED to learn the signaling value (e.g. cH).

Consider then a combined optimal policy:

τe = D(e),

α =− 2cH(
1− λ̄

)(
2− λ̄

) , (73)

24Note that other market characteristics which vary by industry may affect the optimal carbon tax. For exam-
ple, Simpson (1995) shows that the optimal carbon tax in a duopoly is less than the optimal carbon tax given
perfect competition.

25Indeed, the expected bankruptcy costs, cH , and thus the optimal carbon tax, likely varies from borrower to
borrower.
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Policy (73) yields the efficient allocation, assuming no profitable deviations exist. Notice that
the optimal required reserve policy subsidizes brown loans. Given the signaling value of green
investments, the reserve requirement must be negative to equalize the attractiveness of brown
versus green lending, after which a carbon tax equal to the marginal damage resolves the
externality.

To determine whether profitable deviations exist, consider the change of variables:

fL,τr ≡ fL −α − τe, (74)

fH,τr ≡ fH −α − τe, (75)

∆ fτr ≡ fH,r − fL,r = ∆ f . (76)

The conditions for existence are unchanged, up to fL,τr and fH,τr. Further, the condition for
no-deviations is unchanged up to fL,τr, fH,τr, and α . Thus an equilibrium exists with no
profitable deviations if:

fH,τr > 3 fL,τr +α (77)

fL,τr < cH < fL,τr +g2,r ( fL,τr, fH,τr,α) (78)

Finally, at the efficient allocation, fH,r = fH,τr = fH,τ and the same for fL. Thus, the no-
deviation conditions given the combined regulation (77) and (78), differ from the no-deviation
conditions given the required reserve ratio regulation (71) and (72) only because the reserve
requirement on brown loans is larger αr > ατr. Recall, g2,r is decreasing in α so the range of
values cH such that no-deviations are possible is larger when using the combined regulation.
Further, since α = 0 when the carbon tax is used in isolation, we have ατ = 0 > ατr and so:

fL,τr < cH < fL,τr +g2,r ( fL,τr, fH,τr,αr)

< fL,τ +g2 ( fL,τ , fH,τ ,0)

< fL,τr +g2,r ( fL,τr, fH,τr,ατr) . (79)

Further, the condition fH,τr > 3 fL,τr +α is most strict with required reserve regulation and
least strict with the combined regulation.

Proposition (5) summarizes the above analysis:

Proposition 5. Consider a regulated economy with a required reserve ratio of rr =α (1−λr)/2
per dollar of brown loans and a tax τ per unit of carbon emissions.

1. If (77) and (78) hold, a Bertrand equilibrium λ1,τr with two loan products exists.
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2. Equation (73) gives the socially optimal policy.

3. If (77) and (78) hold at the socially optimal policy (73), then the social optimum is a

Bertrand equilibrium.

4. There exists an open set of parameter value such that the optimal combined policy is a

Bertrand equilibrium and the optimal reserve and tax policies in isolation are not.

The combined policy thus has two advantages. First, the tax is set equal to the marginal
damage and so the tax does not have to vary by funding source or by borrower, and can be set
by the EPA or other regulator with knowledge of the damages. The required reserve ratio does
require knowledge of the borrower risk (cH), but is set by the bank regulator who presumably
has better access to such information. Second, the combined policy can support a higher level
of green investment with no-deviations than either the carbon tax or required reserve ratio in
isolation. Thus, the combined policy is particularly attractive if damages are large.

7 Conclusions

The Federal Reserve and other public and private organizations argue that bank lending to
borrowers with poor environmental metrics, or more generally poor ESG scores, have risks.
These risk include transition risk (the risk of stricter environmental regulation imposing addi-
tional compliance costs), reputation risk, and others. In turn, banks have responded by offering
lower lending rates to borrowers that satisfy environmental or ESG performance metrics. Here
we take these risks as given, and examine the implications for welfare and environmental pol-
icy.

We find that borrowers engage in costly effort to improve environmental performance
(green investments) based their ability to signal low risk. Therefore, green lending may in-
crease welfare relative to an unregulated economy, but will not result in the social optimum as
the marginal signaling value does not equal the marginal value of environmental damage alle-
viated. A carbon tax or a reserve requirement on brown loans can achieve the social optimum
by replacing the signaling value with the marginal damage. However, if the optimal green
lending is too large so that most or all borrowers make green investments, then the signaling
value vanishes and the equilibrium unravels as banks are no longer willing to give lower rates,
which in turn changes the optimal regulation. Thus, if the marginal damage is too high, carbon
taxes or reserve requirements are unable to achieve the social optimum. Finally, a combined
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carbon tax equal to the marginal damage and a subsidy for brown loans which removes the
incentive to signal with green investments achieves the highest level of green investments.

Our results come with several caveats. First, our model assumes banks rely only on public
information to set loan product prices. An interesting extension is to allow banks to investi-
gate borrowers for credit worthiness. We leave this possibility for future research, noting that
investigating can result in more efficient lending. We have assumed only a single motive for
green lending, which is the risk associated with poor environmental metrics. Other motiva-
tions, including stockholder and employee preferences, likely also increase green lending, but
do not incentivize socially optimal green lending. We also leave other motivations for future
research.

Across the economy, firms are undertaking activities to improve environmental, social, and
governance metrics. Firms have a variety of private motivations for these activities which align
only partially with the public interest. Regulators seeking to achieve welfare improvements
by regulating activities that cause external harm, must now consider the interaction between
regulation and private ESG activities. Given the trend in the size of green investments by
firms, this coordination will only become more important in the future.
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8 Appendix

8.1 Zero Profits

Here we show that Bertrand competition ensures banks of the same type offer identical
rates and earn zero profits. Consider any set of prices such that a bank l′ offers a rate p j,l′ > p j,l

in market j ∈ {g,b}, which exceeds that of n j bank(s) which offer the lowest rate in market
j, p j. Then bank l′ has no customers and earns zero profits. Further, banks offering price
p j earn non-negative profits

(
1/n j

)
π j ≥ 0 to offer a loan in market j. Thus, bank l′ can

weakly improve profits from πl′ = 0 to
(
1/
(
n j +1

))
π j ≥ 0 by lowering its price to match the

lowest price among competing banks. Thus all banks in the same market offer the same rate
in equilibrium.

Next, suppose that there exists N > 1 banks offering the lowest price in market j, p j, with
corresponding profits (1/N)π j

(
p j
)
> 0. Note that if only n j < N banks are in market j,

then a bank that is not participating can enter at the same price and increase profits from zero
to
(
1/(n j +1)

)
π j
(

p j
)
> 0. Suppose that participating bank l′ deviates and offers a slightly

lower rate, p j − ε . Since bank l′ now has the lowest price, it captures the entire market. The
deviation is profitable if and only if:

(1/N)π j
(

p j
)
< π j

(
p j − ε

)
, (80)

1/N <
π j
(

p j − ε
)

π j
(

p j
) . (81)

Since the profit function is continuous (refer to equations 5 and 3) and we have assumed
π j(p j)> 0, the right hand side approaches one for ε small and the left side is at most 1/2. It
follows that (81) holds for ε sufficiently small and thus an incentive to deviate and cut prices
exists whenever π j(p j)> 0.

Thus, we have shown that profits are zero and all banks in market j ∈ {g,b} charge the
same price.

8.2 Graphical Analysis

A candidate equilibrium is a solution [λ ∗, pg, pb] that satisfies pb > pg and solves equations
(1), (4), and (6). To find the equilibrium we show each equation satisfies certain properties.

The properties of pg and pb follow from substituting in λ ∗ = 0 and λ ∗ = 1, and by taking
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the derivatives of equations (4) and (6) to get:

p′g =
2cH

(2−λ ∗)2 > 0,

p′b =
2cH

(1−λ ∗)2 > 0, (82)

Next, we combine equations (4) and (6) to form:

∆p1 (λ
∗)≡ pb − pg =

2cH

(1−λ ∗)(2−λ ∗)
. (83)

Equation (83) implies ∆p1 (λ
∗)> 0, ∆p1 (0) = cH , and limλ ∗→1 ∆p1 (λ

∗) = ∞. The remaining
properties follow from:

∆p′1 (λ
∗) =

2(3−2λ ∗)cH

(1−λ ∗)2 (2−λ ∗)2 > 0, (84)

∆p′′1 (λ
∗) =

4
(
7−9λ ∗+3λ ∗2)cH

(1−λ ∗)3 (2−λ ∗)3 . (85)

Denote the numerator of (85) as M (λ ∗). Then:

M (λ ∗)≡ 7−9λ
∗+3λ

∗2,

M′ (λ ∗) =−9+6λ
∗ < 0,

M (0) = 7 , M (1) = 1. (86)

Hence the numerator of (85) is function which strictly decreases from seven to one over the
interval [0,1], and so the second derivative of ∆p1 is positive.

Next, rewriting equation (2) results in:

∆p2 (λ
∗)≡ pb − pg = fL +∆ f λ

∗, (87)

which is an increasing function which satisfies ∆p2 (0) = fL and ∆p2 (1) = fH .
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8.3 Proof of First Proposition

It is convenient here to work with a different version of the equilibrium condition. For any
interior (both brown and green lending) candidate equilibrium λ ∗:

DP1 (λ
∗) = DP2 (λ

∗) , (88)

2cH

(1−λ ∗)(2−λ ∗)
= fL +∆ f λ

∗, (89)

which holds for interior λ ∗ if and only if:

H (λ ∗)≡ ∆ f λ
∗,3 − (3 fH −4 fL)λ

∗,2 +(2 fH −5 fL)λ
∗−2(cH − fL) = 0. (90)

Any equilibrium with both brown and green lending λ ∗ satisfies H (λ ∗) = 0. We now establish
several properties of H:

H (0) =−2(cH − fL) . (91)

H (1) =−2cH < 0. (92)

H ′ (λ ) = 3∆ f λ
2 −2(3 fH −4 fL)λ +2 fH −5 fL. (93)

H ′ (0) = 2 fH −5 fL. (94)

H ′ (1) =− fH < 0. (95)

H ′′ (0) =−2(3 fH −4 fL) . (96)

H ′′ (1) = 2 fL > 0. (97)

Consider first the quadratic derivative H ′. Since H ′ (1) < 0, H ′ is increasing at λ = 1, and
H ′′′ > 0, H ′ has a global minimum which is less than one. Further, if H ′ (0) > 0, then the
global minimum is on the (0,1) interval and there exists a unique λ̃ ∈ (0,1) such that H ′ (λ )>

(=,<)0 for λ < (=,>)λ̃ . Note further that H ′ (0)> 0 if and only if 2 fH > 5 fL from (94). If
2 fH ≤ 5 fL, then H ′ (λ )≤ 0 for all λ ∈ [0,1] (either H ′′ (0)< 0 and the minimum is negative,
or H ′′ (0)> 0 and the minimum is positive).

Figure 2 shows the possible cases.
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Figure 2: Derivative of candidate equilibrium condition, with fL = 1 and values of fH which
correspond to the three possible cases.

Consider now the equilibrium condition (90). We consider three cases, fL > (<,=)cH .
Case 1: fL > cH

Consider first fL > cH , so that H (0) > 0 from (91). From equations (92) and (95), H is
negative and decreasing at λ = 1. Thus, since H is continuous on λ ∈ (0,1) there exists at
least one candidate equilibrium λ ∗ such that H (λ ∗) = 0.

Next, H ′ is either strictly negative or is negative on the interval (λ̃ ,1) (refer to Figure 2). If
H ′ is strictly negative, it is immediate that λ ∗ is unique because H is monotonically decreasing
for λ ∈ (0,1). If H ′ is negative on the interval (λ̃ ,1) then H has a unique maximum on (0,1)
at λ̃ . Since H is positive and increasing at 0 and negative and decreasing at 1, it follows that a
unique λ ∗ ∈ (λ̃ ,1) exists such that H (λ ∗) = 0. Thus, for the case fL > cH , a unique candidate
equilibrium exists on the interval (0,1).

Case 2: fL = cH

For the knife-edge case where fL = cH , equation (90) implies λ ∗ = 0 is a candidate equi-
librium. However, λ ∗ = 0 means no green lending exists. Dividing equation (90) by λ when
fL = cH yields:

H̃ = H (λ ; fL = cH)/λ = ∆ f λ
2 − (3 fH −4 fL)λ +(2 fH −5 fL) = 0. (98)

H̃ (1) =−2 fL < 0, (99)
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H̃ (0) = 2 fH −5 fL, (100)

H̃ ′ = 2∆ f λ −3 fH +4 fL → λmin =
3 fH −4 fL

2∆ f
, (101)

H̃ ′ (1) =− fH +2 fL, (102)

H̃ ′ (0) =−3 fH +4 fL, (103)

All of these conditions depend on how large is fH relative to fL:

1. fL < fH < 4/3 fL: H̃ is negative and increasing at zero and negative and increasing at
one, and the global minimum is negative. Thus, H̃ is negative on (0,1), and no root
(candidate equilibrium) exists.

2. 4/3 fL < fH < 2 fL: H̃ is negative and decreasing at zero and negative and increasing
at one, and the global minimum is positive. Thus, H̃ is negative on (0,1) and no root
(candidate equilibrium) exists.

3. 2 fL < fH < 5/2 fL: H̃ is negative and decreasing at zero and negative and decreasing
at one, and the global minimum is positive. Thus, H̃ is negative on (0,1) and no root
exists.

4. 5/2 fL < fH : H̃ is positive and decreasing at zero and negative and decreasing at one.
By continuity, a unique root exists on (0,1).

Thus we see that for the knife edge case of fL = cH , a unique equilibrium with brown and
green lending exists if and only if fH > 5/2 fL.

Case 3: fL < cH

Consider next the case where fL < cH . The above properties then show that H (1) <
H (0) < 0. Thus if H ′ < 0 on (0,1), H is strictly negative on the interval (0,1) and thus no
equilibrium exists with both brown and green lending. It follows that 2 fH > 5 fL is necessary
for existence in this case. Given 2 fH > 5 fL, we have H ′ (0) > 0 and H ′ (1) < 0. It follows
that H has a unique maximum exists at λ̂ on the interval (0,1). Thus H has two roots on the
interval (0,1) if and only if H

(
λ̂

)
> 0.

Figure 3 shows the possible cases.
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Figure 3: Candidate equilibrium condition, with fL = 1, cH = 2, and values of fH which
correspond to the three possible cases. The black line is positive at the maximum (H

(
λ̂

)
> 0)

and thus has two equilibrium candidates with both brown and green lending (λ ∗
1 and λ ∗

2 ).

The other two lines are negative at the maximum, (H
(

λ̂

)
< 0) and thus have no candidate

equilibria with both brown and green lending.

It remains to derive a condition such that H
(

λ̂

)
> 0. Note also that H

(
λ̂

)
= 0 is the

knife edge case with a single equilibrium. We must show that:

∆ f λ̂
3 − (3 fH −4 fL) λ̂

2 +(2 fH −5 fL) λ̂ −2(cH − fL)> 0, (104)

given:
3∆ f λ̂

2 −2(3 fH −4 fL) λ̂ +2 fH −5 fL = 0. (105)

Multiplying the above two equations by 3 and λ and then subtracting simplifies the condition
to:

−(3 fH −4 fL) λ̂
2 +2(2 fH −5 fL) λ̂ −6(cH − fL)> 0 (106)

Note also that the solution to (105) is:

λ̂ =
3 fH −4 fL −

√
3 f 2

H −3 fH fL + f 2
L

3∆ f
. (107)
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Substituting the solution for λ̂ into (106) and extensively simplifying gives:

2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

9∆ f 2 > 6(cH − fL) . (108)

cH < fL+
2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

54∆ f 2 ≡ fL+g1 ( fH , fL) . (109)

Since in Case 3 cH > fL, the set of parameter values with two candidate equilibria is non-empty
if g1 ( fH , fL) > 0. This can be verified by squaring both sides and simplifying extensively.
It follows that two candidate equilibria with green and brown lending exist if and only if
condition (109) and 2 fH −5 fL > 0 hold. If either does not hold, then no candidate equilibria
with both brown and green lending exist.

8.4 Candidate Equilibrium, Single Brown Bank

Consider the candidate equilibrium for a single brown bank. We show that the prices in
(18) must hold. By definition, a single brown bank services the entire market, thus λ ∗ = 0.
Thus, from (5) brown bank profits are:

E [πB] =
∫ 1

0

[
λi (−cH)+(1−λi)(pb − c)

]
dλi = 0. (110)

Solving for the brown interest rate results in:

pb (0) = c+ cH . (111)

Next, from (2):

0 ≥ λ
∗ =

pb (0)− pg − fL

∆ f
. (112)

pg ≥ c+ cH − fL. (113)

Any green loan price satisfying (113) is large enough so that even the highest quality borrowers
prefer brown loans. Given λ ∗ = 0, from (3), the green bank has no customers and thus earns
zero profits. Thus, the prices satisfying (18) result in a one brown bank candidate equilibrium.
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8.5 Candidate Equilibrium, Single Green Bank

Consider the candidate equilibrium for a single green bank. We show that the prices in
(19) must hold. By definition, a single green bank services the entire market, thus λ ∗ = 1.
Thus, from (3) green bank profits are:

E [πG] =
∫ 1

0

[
λi (−cH)+(1−λi)(pg − c)

]
dλi = 0. (114)

Solving for the green interest rate results in:

pg (1) = c+ cH . (115)

Next, from (2):

1 ≤ λ
∗ =

pb − pg (1)− fL

∆ f
. (116)

pb ≥ c+ cH + fH . (117)

Any brown loan price satisfying (117) is large enough so that even the lowest quality borrowers
prefer green loans. Given λ ∗ = 1, from (5), the brown bank has no customers and earns
zero profits with probability one. Thus, the prices satisfying (19) result in a one green bank
candidate equilibrium.

8.6 Bertrand Equilibrium, Single Green Loan Product

We first derive a general deviation condition that can be used in both one product and
two product equilibria, then apply the condition to the single green loan product candidate
equilibrium. Consider any candidate equilibrium pb, pg, and λ ∗. A brown bank that deviates
by lowering the price to p̃b = pb −∆ f ε captures all of the brown borrowers and some green
borrowers according to:

λ̃ =
p̃b − pg − fL

∆ f
= λ

∗− ε. (118)

Profits of the deviating brown bank are:

π̃b =−cH

∫ 1

λ ∗−ε

λdλ +(p̃b − c)
∫ 1

λ ∗−ε

(1−λ )dλ ,

=
1
2
(1−λ

∗+ ε)

[
− cH (1+λ

∗− ε)+(p̃b − c)(1−λ
∗+ ε)

]
. (119)
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The single green loan product equilibrium (19) satisfies λ ∗ = 1 and p̃b = c+ cH + fH −∆ f ε .
Imposing these conditions results in:

π̃b =
1
2

ε

[
− cH (2− ε)+(cH + fH −∆ f ε)ε

]
. (120)

Choosing for example ε = 1 results in:

π̃b =
1
2

[
− cH +(cH + fH −∆ f )

]
=

1
2

fL > 0. (121)

Hence in any single green loan product equilibrium, a brown bank can deviate by offering a
price low enough to attract the entire market and make positive profits. Therefore, no single
green loan product equilibrium candidate is a Bertrand equilibrium.

8.7 Bertrand Equilibrium, Single Brown Bank

We first derive a general deviation condition that can be used in both one product and
two product equilibria, then apply the condition to the single brown loan product candidate
equilibrium. Consider any candidate equilibrium pb, pg, and λ ∗. A green bank that deviates
by lowering the price to p̃g = pg −∆ f ε captures all of the green borrowers and some brown
borrowers according to:

λ̃ =
pb − p̃g − fL

∆ f
= λ

∗+ ε. (122)

Profits of the deviating green bank are:

π̃g =−cH

∫
λ ∗+ε

0
λdλ +(p̃g − c)

∫
λ ∗+ε

0
(1−λ )dλ ,

=
1
2
(λ ∗+ ε)

[
− cH (λ ∗+ ε)+(p̃g − c)(2−λ

∗− ε)

]
. (123)

The single brown loan product equilibrium (18) satisfies λ ∗ = 0 and p̃g = c+ cH − fL −∆ f ε .
Imposing these conditions results in:

=
ε

2
(−εcH +(cH − fL − ε∆ f )(2− ε)) . (124)

The second term of condition (124) is decreasing in ε since p̃g > c, so it is sufficient to show
(124) is non-positive for ε small. Consider a deviation of ε → 0. If the limit of green bank
profits remains positive as ε → 0, then by continuity an interval 0 < ε < ε̂ exists such that
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profits are positive and a profitable deviation exists. The second term in (124) approaches
2(cH − fL) as ε → 0. Thus no profitable deviations exist if and only if:

cH ≤ fL (125)

8.8 Bertrand Equilibrium with Green and Brown Lending

Green Bank Deviations
We first show that no green bank can profitably deviate by lowering the green price in a

separating equilibrium. Equation (123) gives the profits of a deviating green bank regardless
of the equilibrium type. Evaluating the deviation profits of a green bank (123) in a separating
equilibrium given by equations (4) and (6) results in:

p̃g =
1
2
(λ ∗+ ε)

[
− cH (λ ∗+ ε)+

(
λ ∗

2−λ ∗ cH − ε∆ f
)
(2−λ

∗− ε)

]
,

=
ε

2
(λ ∗+ ε)

[
− 2cH

2−λ ∗ − (2−λ
∗− ε)∆ f

]
< 0. (126)

Hence any decrease in price by a green bank at zero profits decreases profits below zero.
Hence no profitable deviation exists for the green bank in a separating equilibrium with two
loan products.

Brown Bank Deviations
Next, we derive conditions such that no brown bank can profitably deviate by lowering the

brown price in a two loan product candidate equilibrium. Equation (119) gives the profits of a
deviating brown bank regardless of the equilibrium type. Evaluating the deviation profits of a
deviating brown bank (119) in a two bank equilibrium given by equations (4) and (6) results
in:

π̃b =
1
2
(1−λ

∗+ ε)

[
− cH (1+λ

∗− ε)+

(
1+λ ∗

1−λ ∗ cH −∆ f ε

)
(1−λ

∗+ ε)

]
,

=
ε

2
(1−λ

∗+ ε)

[
2cH

1−λ ∗ −∆ f (1−λ
∗+ ε)

]
(127)

The term inside the large brackets is decreasing in ε . Hence deviation profits increase as ε

approaches zero. Therefore, if the term inside the large brackets is non-positive at ε = 0, no
profitable deviations exist for all ε . Therefore no profitable deviations exist if and only if:

2cH ≤ ∆ f (1−λ
∗)2 . (128)
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Condition (128) is in terms of the endogenous variable λ ∗. In the remaining analysis,
we use the equilibrium condition to convert condition (128) to a condition that depends only
on the parameters. Recall that any equilibrium λ ∗ ∈ (0,1) satisfies (90). Substituting this
equilibrium condition into (128) to eliminate cH results in:

2cH = ∆ f λ
3 − (3 fH −4 fL)λ

2 +(2 fH −5 fL)λ −2 fL ≤ ∆ f (1−λ )2 , (129)

∆ f λ
3 − (3 fH −4 fL)λ

2 +(2 fH −5 fL)λ −2 fL ≤ ∆ f (1−λ )2 , (130)

(1−λ )
(
∆ f λ

2 − (3 fH −4 fL)λ + fH −3 fL
)
≥ 0. (131)

Since we are considering interior solutions, we need only show the second term is non-negative
at λ ∗ to ensure no profitable deviations exist:

J (λ ∗)≡ ∆ f (λ ∗)2 − (3 fH −4 fL)λ
∗+ fH −3 fL ≥ 0. (132)

The key properties are:
J (0) = fH −3 fL, (133)

J (1) =− fH < 0, (134)

J′ (λ ) = 2∆ f λ −3 fH +4 fL, → λmin =
3 fH −4 fL

2∆ f
, (135)

J′ (0) =−3 fH +4 fL, (136)

J′ (1) =− fH +2 fL, (137)

Note that fH < 3 fL means J (0) < 0 and since J (1) < 0 and J is quadratic, it follows that
fH < 3 fL implies J < 0 for all λ ∈ (0,1), including λ ∗. Thus profitable deviations exist in this
case and fH > 3 fL is necessary for no deviations. Given fH > 3 fL, we have three cases.

Case 1 ( fL > cH)
From Proposition (1), a single candidate equilibrium exists. Recall, fH > 3 fL is necessary,

in which case J′ (0)< 0, J′ (1)< 0, J (0)> 0, and J (1)< 0. Since further the global minimum
is greater than one, J is monotonically decreasing over (0,1) with a single root λ ∗∗ ∈ (0,1).
Further, J is positive for λ ∗ < λ ∗∗ Thus, no deviations exist if λ ∗ ≤ λ ∗∗.

Given case 1, H (0) > 0, H (1) < 0, and H (λ ∗) = 0. Since exactly one root exists, it
follows from continuity and H ′ < 0 that λ ∗ < λ ∗∗ if and only if H (λ ∗∗)< H (λ ∗) = 0. Thus
we need only show that H (λ ∗∗) < 0 to establish that λ ∗ < λ ∗∗. If so, then λ ∗ is a Bertrand
equilibrium.
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We wish to show:

H (λ ∗∗) = ∆ f (λ ∗∗)3 − (3 fH −4 fL)(λ
∗∗)2 +(2 fH −5 fL)λ

∗∗−2(cH − fL)< 0, (138)

where
J (λ ∗∗) = ∆ f (λ ∗∗)2 − (3 fH −4 fL)λ

∗∗+ fH −3 fL = 0. (139)

Multiplying J by λ ∗∗ and subtracting results in:

( fH −2 fL)λ
∗∗−2(cH − fL)< 0, (140)

Next, equation (139) has solution:

λ
∗∗ =

3 fH −4 fL −
√

5 f 2
H −8 fH fL +4 f 2

L

2∆ f
. (141)

Notice we use the smaller root since given the necessary condition that fH > 3 fL, the smaller
root satisfies λ ∗∗ ∈ (0,1). Substituting the solution into (140) results in:

cH > fL +g2 ( fH , fL) , (142)

g2 ( fH , fL)≡ ( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
. (143)

We have already assumed fL > cH however, and it is straightforward to verify that g2 > 0. It
follows that H (λ ∗∗)> 0 and thus λ ∗∗ < λ ∗ and thus J (λ ∗)< 0 and so a profitable deviation
exists. Thus no Bertrand equilibrium exists for fL > cH .

Case 2 ( fL = cH)
The analysis here is identical as case 1. Since H (0) = 0, we have H (λ ) > (<)0 for

λ < (>)λ ∗. As in case one, H (λ ∗∗)> 0, and so λ ∗∗ < λ ∗ and the deviation results in positive
profits. The candidate equilibrium is not a Bertrand equilibrium.

Case 3 ( fL < cH)
Given that fH > 3 fL is a necessary condition, J (0) > 0, J′ (0) < 0, J′ (1) < 0, Since the

global minimum is occurs at λmin > 1, J has a single root λ ∗∗ on (0,1), with J (λ ∗) ≥ 0 for
λ ∗ ≤ λ ∗∗. Thus, we need to show whether or not the two candidate equilibria λ ∗

1 and λ ∗
2 are

less than λ ∗∗.
In this case, H (0) < 0, H (1) < 0, H (λ ∗

1 ) = 0, and H (λ ∗
2 ) = 0. Since exactly two roots

exist, it follows from continuity that H (λ )> 0 if and only if λ ∈ (λ ∗
1 ,λ

∗
2 ). Thus we need only
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show that H (λ ∗∗)> 0 to establish that λ ∗
1 < λ ∗∗ < λ ∗

2 . If so, then λ ∗
1 is a Bertrand equilibrium

and λ ∗
2 is not.

Using an identical logic as the case 1, we must show:

( fH −2 fL)λ
∗∗−2(cH − fL)> 0, (144)

where equation (141) gives λ ∗∗. Substituting equation (141) into (144) results in:

cH < fL +g2 ( fH , fL) , (145)

g2 ( fH , fL)≡ ( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
. (146)

We have already made a similar assumption for existence. We now show this condition
is more restrictive than the previous assumption, cH < fL +g1 ( fH , fL). That is, we show that
g2 < g1, or:

( fH −2 fL)
3 fH −4 fL −

√
5 f 2

H −8 fH fL +4 f 2
L

4∆ f
< g1 (147)

=
2
(
3 f 2

H −3 fH fL + f 2
L
) 3

2 − fL (3 fH −4 fL)(15 fH −13 fL)

54∆ f 2 , (148)

where the equality follows from (109). Multiplying all this out verifies that g2 < g1 and so the
condition for a Bertrand equilibrium is stricter than the condition for existence.

Thus we have three cases:

1. cH < fL +g2 < fL +g1: two candidate equilibria exist and λ ∗
1 is a Bertrand equilibrium

and λ ∗
2 is not.

2. cH > fL +g1: no candidate equilibria exist.

3. fL + g2 < cH < fL + g1. We show below that in this case λ ∗∗ < λ ∗
1 < λ ∗

2 and so two
candidate equilibria exist but neither is a Bertrand equilibrium.

First, it is straightforward to verify that λ ∗∗ < λ̂ and neither depends on cH . Now consider
the boundary case where cH = fL +g1. In this case H

(
λ̂

)
= 0 and λ̂ is the unique candidate

equilibrium (that is, the maximum of H over (0,1) is zero and occurs at λ̂ ). In this case, λ̂ is
not a Bertrand equilibrium since λ ∗∗ < λ̂ .
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Next, consider an arbitrarily small decrease in cH . It follows from the above calculation
of g1 that H

(
λ̂

)
> 0 and 2 roots exist. Given the arbitrarily small decrease, λ ∗

1 < λ̂ < λ ∗
2 is

an arbitrarily small interval, and so λ ∗∗ < λ ∗
1 < λ̂ < λ ∗

2 and neither of the candidate equilibria
are Bertrand equilibria.

Next, continuing to decrease cH until cH = fL + g2, we see that λ ∗∗ = λ ∗
1 < λ ∗

2 . At this
point, λ ∗

1 becomes a Bertrand equilibrium. Thus, over the interval fL + g2 < cH < fL + g1,
both roots are not Bertrand equilibria.

The figure below summarizes these cases.

0.25 0.3 0.35 0.4 0.45 0.5
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Figure 4: Stability Geometry. Increasing cH moves H from the green to the magenta curve.
The black curve is positive when no deviations are possible (λ ≤ λ ∗∗ or 2cH/(1− λ ∗)2 ≤
∆ f ). The green curve is a value of cH for which the smaller candidate equilibrium, λ ∗

1 , is a
Bertrand equilibrium since no profitable deviations exist. The red curve satisfies cH = fL +
g2, the maximum value of cH for which the smaller candidate equilibrium has no profitable
deviations. The blue curve is a value of cH for which neither of the candidate equilibria are
Bertrand equilibria. The magenta curve is the maximum value of cH for which a candidate
equilibrium exists, cH = fL+g1. At this knife edge, only a single candidate equilibrium exists
which is not a Bertrand equilibrium.

This completes the proof as all cases have been analyzed.
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8.9 Proof of No-Deviation Condition with Required Reserves

We begin by repeating the analysis starting with equation (119), while adding in the reserve
requirement. The deviating brown bank profits become:

π̃b,r =
1
2
(1−λr + ε)

[
− (cH + rrc)(1+λr − ε)+(p̃b − c(1+ rr))(1−λr + ε)

]
. (149)

The analysis differs only in added opportunity cost of holding reserves and that the equilib-
rium fraction of borrowers that chooses green loans changes. Substituting in the two bank
equilibrium given by equations (58) and (59) results in:

π̃b =
1
2
(1−λr + ε)

[
− (cH + rrc)(1+λr − ε)+

(
1+λr

1−λr
(cH + rrc)−∆ f ε

)
(1−λr + ε)

]
,

=
ε

2
(1−λr + ε)

[
2(cH + rrc)

1−λr
−∆ f (1−λr + ε)

]
(150)

Deviating profits are decreasing in ε and so the largest deviation profits occur as ε approaches
zero. Thus deviation profits are non-positive if and only if:

2(cH + rrc)≤ ∆ f (1−λr)
2 . (151)

Note that ∆ f = ∆ fr, and the equilibrium condition is unchanged up to fH,r and fL,R. Hence,
substituting the equilibrium condition into (151) and repeating the same simplification gives a
no deviation condition that is identical except for a single term:

J (λr)≡ ∆ f (λr)
2 − (3 fH −4 fL)λr + fH −3 fL +2rrc ≥ 0. (152)

Next, recall 2rrc = (1−λ )α , which implies:

J (λr;α)≡ ∆ f (λr)
2 − (3 fH −4 fL +α)λr + fH −3 fL +α ≥ 0. (153)

Analyzing the modified quadratic function reveals similar cases as in the unregulated case.
In particular J has a positive region (0,λ ∗∗

r ) if and only if fH − 3 fL +α > 0. Note that this
necessary condition is identical to fH,r −3 fL,r −α > 0, which is condition (71) in Proposition
4. Note also that λ ∗∗ is the smaller root of (151).

Next, we need to derive the condition under which λr ∈ (0,λ ∗∗
r ). Analogous to the unreg-

ulated case, we have λr < λ ∗∗
r if and only if H (λ ∗∗

r ) < H (λr) = 0, where H is defined using
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fH,r and fL,r. Following the steps in the unregulated case, this holds if and only if:

cH ≤ fL,r +( fH,r −2 fL,r +α)λ
∗∗
r . (154)

Substituting in for λ ∗∗
r as the smaller root of (151) gives the second condition:

cH > fL +g2,r ( fH,r, fL,r,α) , (155)

g2 ( fH,r, fL,r,α)≡ ( fH,r −2 fL,r +α)
3 fH,r −4 fL,r +α −

√
5 f 2

H,r −8 fH,r fL,r +4 f 2
L,r +4α∆ fr

4∆ fr
.

(156)

The above condition is (72) in Proposition 4.

8.10 Remaining Parts of the Proof of Proposition 4

For the first result in the proposition, the case is fL,r ≥ cH . Following the steps in Section
8.9, the no deviation conditions become fH,r −3 fL,r −α > 0 and:

cH ≥ fL,r +g2,r ( fH,r, fL,r,α) . (157)

Given in this case fL,r > cH , condition (157) can hold only if g2,r < 0.
Imposing α = 0 implies fH,r = fH and fL,r = fL, and equation (156) implies α = 0 im-

plies g2,r = g2 > 0, where g2 > 0 is shown below equation (146). Further, taking the deriva-
tive of g2,r with respect to α holding fH,r and fL,r fixed and extensively simplifying reveals
the derivative is negative. Thus, g2,r < 0 is possible only if α > α∗ where α∗ is such that
g2,r ( fH,r, fL,r,α

∗) = 0. However, solving for α∗ using equation (156) reveals that either
α∗ = − fH,r + 2 fL,r or α∗ = fH,r − 3 fL,r. The first solution is not possible since α∗ < 0 and
the Proposition assumes α > 0. The second solution implies any α ≥ α∗ violates the stability
condition fH,r − 3 fL,r −α > 0. Therefore, g2,α > 0 for any feasible α . Thus, the region sat-
isfying both case 1 and (157) is empty. Thus, the candidate equilibrium with both brown and
green lending is not Bertrand in case 1.

An identical analysis reveals that case 2, cH = fL,r also has a candidate equilibrium which
is not Bertrand. We have thus shown result 1 in Proposition 4.

Result 2 is shown in Section 8.9 and results 3-5 were shown in the text.
For result 6, for α = τe > 0, g2,r ( fH,r, fL,r,α)< g2 ( fH,r, fL,r) since we have shown g2,r is

decreasing in α . Therefore, any policy τe = α such that g2,r < cH < g2 is Bertrand given tax
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regulation but is not Bertrand given a reserve requirement. Note also that the other condition
fH,r > fL,r +α is more restrictive when α > 0. Thus, any policy τe = α such that 3 fL,r <

fH,r < 3 fL,r+α is also a Bertrand equilibrium with a tax policy but not with a required reserve
policy.
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