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Abstract

Solar geoengineering (SGE) can offset climate change by directly reducing temperatures.

Both SGE and climate change itself are surrounded by great uncertainties. Implementing SGE

affects learning about these uncertainties. We model endogenous learning over two uncertain-

ties: the sensitivity of temperatures to carbon concentrations (the climate sensitivity), and the

effectiveness of SGE in lowering temperatures. We present both theoretical and simulation

results from an integrated assessment model, focusing on the informational value of SGE exper-

imentation. Surprisingly, under current calibrated conditions, SGE deployment slows learning,

causing a less informed decision. For any reasonably sized experimental SGE deployment, the

temperature change becomes closer to zero, and thus more obscured by noisy weather shocks.

Still, some SGE use is optimal despite, not because of, its informational value. The optimal

amount of SGE is very sensitive to beliefs about both uncertainties.
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1 Introduction

Under current trajectories of greenhouse gas emissions, there exists only about a 5% chance of

achieving the Paris Agreement’s goal of limiting the global mean surface temperature increase to

“well below” 2◦C above pre-industrial levels by 2100 (Raftery et al., 2017). Achieving this goal

through emissions abatement alone is a formidable challenge (Fitzpatrick and Kelly, 2017; Brown

et al., 2019). Hence solar geoengineering (SGE), which has the potential to slow global warming

relatively quickly, has gained popularity among some policy makers and researchers. Some SGE

techniques mimic the climate impact of major volcanic eruptions by injecting reflective particles into

the upper atmosphere to block and reflect solar radiation back into the space (Ramaswamy et al.,

2018). SGE presents a number of difficulties.1 Nonetheless, SGE is inexpensive and conceptually

attractive, and a significant part of the optimal policy in many integrated assessment models.2

Here we consider an aspect of SGE not previously studied in integrated assessment modeling:

the potential for endogenous learning over uncertainties surrounding SGE and the climate. We focus

on two sources of uncertainty. The first is uncertainty about SGE effectiveness, which determines

the temperature reduction from a given amount of SGE. The second is uncertainty about climate

sensitivity, which is the equilibrium temperature increase resulting from a doubling of atmospheric

carbon concentration. We model this as uncertainty in the climate feedback parameter. Both of these

uncertainties are endogenous, so active learning or experimentation is possible. We study optimal

experimentation with SGE, both theoretically and computationally with an integrated assessment

model.

Intuition suggests that implementing SGE can increase our knowledge about it, since implemen-

tation is a type of field experiment. However, given the calibrated current initial conditions, we find

a surprising result: implementing SGE actually slows learning about both SGE effectiveness and

climate sensitivity, resulting in a less-informed decision. We decompose SGE’s impact on learning

into two effects. A signal strength effect comes from the effect of SGE on the temperature signal.

If SGE makes the temperature change larger in magnitude and thus more visible amidst the noisy

weather shocks, then the signal strength effect is positive and SGE speeds learning. However, a

1For example, SGE performed via injecting sulfur particles causes harmful side effects (Keller et al., 2014; Proctor
et al., 2018; Abatayo et al., 2020), does not reduce impacts like ocean acidification that are caused directly by CO2,
and has a relatively short half life, necessitating frequent injections. See Klepper and Rickels (2014) and Heutel et al.
(2016a) for reviews of the economics of solar geoengineering. For a review of the science of SGE, see National Research
Council, et. al. (2015). For a broader review of the social science of SGE, see Flegal et al. (2019).

2For example, Heutel et al. (2018) shows that optimal SGE policy reduces up to 50% of the radiative forcing
(instantaneous warming effect) from CO2.
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small or medium-scale SGE deployment moves the temperature change closer to zero, and so the

signal strength effect is negative, slowing learning about both SGE effectiveness and climate sen-

sitivity. Only an unrealistically large SGE deployment causes a temperature change large enough

in absolute value to create a positive signal strength effect which speeds learning. Second, a noise

amplification effect causes the climate system to be more variable and slows learning about climate

sensitivity (though does not affect learning about SGE effectiveness). Because the effectiveness of

SGE deployment in reducing the temperature is uncertain, SGE causes the climate system to be

more subjectively variable, slowing learning.

We then compute optimal SGE and abatement policies in an integrated assessment model (IAM)

with endogenous learning. By “optimal,” we mean the policy path that maximizes the sum of

discounted utility, given the costs and benefits of SGE, abatement, and climate change. Our IAM

extends the well-known DICE model (Nordhaus, 2016) in several ways. First, in our model SGE is

available as an additional policy tool. Second, we model uncertainty over two features of the model:

climate sensitivity and SGE effectiveness. We calibrate SGE effectiveness and its uncertainty using

volcano eruption data. Third, the planner learns endogenously and updates beliefs over time as a

result of SGE deployment and greenhouse gas (GHG) abatement.3 The computational results show

that optimal SGE deployment is never large enough to produce informational gains, and in fact the

information loss acts as a disincentive to using SGE. Some SGE is still optimal because of its other

benefits. Thus, SGE is used despite of, not because of, its effect on learning. Optimal SGE is highly

sensitive to beliefs about climate sensitivity and SGE effectiveness. In the mean optimal simulation,

SGE usage offsets at most 4% of the radiative forcing from CO2. However, when beliefs are that

climate change is severe and can be effectively reduced via SGE, deployment increases to 14%. This

is consistent with the idea of using SGE as a last resort if climate change becomes severe, although

the planner still uses a small amount of SGE even when beliefs are that the climate sensitivity is

low.

The type of SGE experiment we consider is a planet-wide implementation. Our results show that

a large-scale, planet-wide implementation experiment speeds learning but is not optimal because of

the deployment costs and harmful side effects. Our results also show that a small-scale, planet-wide

implementation experiment slows learning but is nonetheless optimal. Other types of experiments

3In the terminology of LaRiviere et al. (2018), we model active adaptive management, since learning is taken into
account when making decisions.
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are also possible. For example, researchers may glean information from laboratory and/or localized,

rather than planet-wide, field experiments of the kind suggested by Keith et al. (2014). In reality

both types of experiments can be valuable. Laboratory experiments generate important predictions,

that ultimately must be tested in the uncontrolled, planet-wide environment. We model this process

by using volcano data to calibrate a distribution of prior uncertainty, which is then updated by

observing the temperature following the planet-wide implementation. Although our model does not

consider other types of experiments and thus reaches no conclusions about their optimality or effect

on learning, such experiments could be incorporated into our framework as modifications of the prior

distribution. In turn, we show how the prior distribution affects optimal planet-wide implementation

and learning through implementation.

A large body of literature examines optimal GHG abatement policy when climate processes

are uncertain and learning reduces uncertainty over time.4 Lemoine and Rudik (2017) provide an

overview of the literature and methods used in dealing with uncertainty and learning in IAMs.

For example, Kelly and Kolstad (1999) model Bayesian learning about climate sensitivity and find

that learning takes up to 100 years to become informative. Leach (2007) considers uncertainty

over a parameter governing the persistence of temperature, also finding that learning is very slow.

Jensen and Traeger (2013) incorporate Bayesian learning in the DICE model, and Lemoine and

Traeger (2014) add climate tipping points and allow for learning about the tipping point temperature

threshold. Other studies have extended the model to include fat-tailed uncertainty (Kelly and Tan,

2015; Shayegh and Thomas, 2015; Hwang et al., 2017).

In general, the literature finds learning is relatively slow.5 Therefore, near-term abatement policy

with learning is similar to policy without learning. Our paper builds upon this literature by showing

that, in an environment with multiple uncertainties, SGE experimentation can actually slow learning

by magnifying uncertainty in the climate system. Overall learning about SGE effectiveness is slow,

because optimal SGE levels are relatively small.

Several studies introduce SGE into IAMs. Bickel and Lane (2009), Gramstad and Tjøtta (2010),

Goes et al. (2011), and Bickel and Agrawal (2013) modify the DICE model to incorporate SGE,

but without allowing for epistemic uncertainty. Emmerling and Tavoni (2018) use a different IAM,

4See Pastor et al. (2020); LaRiviere et al. (2018) for literature reviews of uncertainty in climate economic modeling.
5Hwang et al. (2019) shows that active learning through knowledge acquisition (e.g. investment in more accurate

climatic observations) can reduce uncertainty more rapidly than passive learning.
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WITCH, and incorporate SGE, with uncertainty modeled as a binary probability outcome.6 Heutel

et al. (2016b) analyze the use of SGE with a risk of tipping points, and Helwegen et al. (2019)

add the possibility of solar radiation management failure in their analysis. Most closely related to

this paper, Heutel et al. (2018) modify the DICE model and allow for general forms of epistemic

uncertainty. They demonstrate how uncertainty over climate sensitivity and SGE damages affects

optimal policy. Our paper advances this literature by (1) considering a previously unexplored uncer-

tainty, SGE effectiveness,7 in addition to climate sensitivity, (2) calibrating SGE effectiveness and

uncertainty using volcano data, (3) considering the effect of endogenous learning on SGE policy,

and (4) considering SGE when the climate sensitivity is uncertain. Under these extensions, optimal

SGE deployment falls considerably relative to the prior literature, from a maximum of about 50%

of radiative forcing to where the mean simulation has a maximum SGE of about 10% of radiative

forcing over time.

Our paper is also related to an emerging literature on learning, experimentation, and R&D

on SGE. One can learn about SGE through costly R&D (e.g. Quaas et al., 2017), small-scale field

experiments (e.g. Keith et al., 2014), and/or learning via planetary-wide experimentation considered

here. Much of this literature explores the moral hazard issue of whether or not learning about SGE

will reduce the likelihood of abatement (e.g. Barrett et al., 2014; Quaas et al., 2017). Like Quaas

et al. (2017), our results show that experimentation with SGE may reduce future abatement, but

is nonetheless optimal. However, our model advances this literature by considering endogenous

learning about multiple uncertainties within an IAM, yielding important new insights on how the

size of the experiment affects learning and the interplay between SGE experimentation and learning

about the climate sensitivity. For example, in Quaas et al. (2017) R&D about SGE exogenously

speeds learning about the climate sensitivity, whereas here a planetary wide experiment with SGE

endogenously slows learning about the climate sensitivity.

6Other papers study uncertainty over SGE but not in the framework of IAMs. Moreno-Cruz and Keith (2013)
model uncertainty with a binary outcome using an analytical model. See Kravitz and MacMartin (2020) for a review
of key uncertainties in SGE.

7Some research (e.g. Quaas et al., 2017) refer to effectiveness as a general theoretical uncertainty which could
represent SGE damage uncertainty, uncertain ability to reduce temperatures, or other uncertainties. Here effectiveness
is calibrated specifically as the ability of SGE to reduce temperatures.
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2 Model

Our IAM is based on the Dynamic Integrated Climate-Economy (DICE) model (Nordhaus, 2016).

Heutel et al. (2018) modified DICE to include SGE; here we extend that modification of DICE to

also include endogenous learning about climate sensitivity and SGE effectiveness. We adopt the

methodology of Traeger (2014), which reduces the dimension of the state space. In particular, we

update the parameters given in Traeger (2014) to match the 2016 version of DICE. We further

modify this calibration to match the speed at which the climate adjusts to CO2 shocks emphasized

by Dietz et al. (2020). More details about the original DICE model and its modification to include

SGE are included in the above-cited papers. The full model is detailed in the online appendix. In

this section we focus on the introduction of endogenous learning to the model.

2.1 Overview

DICE is a representative agent model of the global economy and climate. The economic portion

of the model is a standard aggregate growth model, with an endogenously evolving capital stock,

exogenous growth in total factor productivity and in population, and an endogenous choice of the

optimal amount of consumption and investment to maximize the net present value of the sum of

utility based on per-capita consumption. This economic portion is integrated with a climate model,

in which the carbon emissions generated from economic production affect the carbon stock of the

atmosphere and oceans, and the atmospheric carbon stock in turn affects average temperatures.

Finally, temperature affects the economy through a damage function, in which net output deviates

from gross output based on the loss from temperature impacts. The climate policy choice variable

in the original DICE model is abatement α, which is a number between 0 and 1 representing the

fraction of total carbon emissions abated.8

The extension of DICE to allow SGE adds a second climate policy variable, solar geoengineering

g. This policy variable is defined so that g takes values between 0 and 1 and represents the intensity

of SGE use. Radiative forcing is the difference between the incoming solar heat energy and outgoing

energy radiated from Earth. When radiative forcing is positive, the planet will warm because more

8In DICE, α is allowed to be greater than one only after the year 2160, reflecting the availability of carbon dioxide
removal (CDR) technologies. Other studies, in line with the IPCC Special Report, have proposed a much earlier
timeline for CDR deployment (Hänsel et al., 2020). As speculation about CDR timeline would have a direct impact
on the optimal levels of abatement and SGE deployment, we impose α ≤ 1 to avoid unnecessary distractions from
the main objective of our study. We use α to denote abatement, rather than µ, which was used in the original DICE
model.
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energy is entering than is leaving. When g = 0, the radiative forcing is unchanged by SGE. When

g is positive, radiative forcing is reduced by a fraction φg, where φ measures how effective SGE is

at reducing radiative forcing. Unlike the abatement policy variable α which must be between 0 and

1, SGE g can take any value greater than 0. If g > 1/φ, then SGE more than offsets the warming

effect caused by greenhouse gases, and the planet will cool even faster than if GHG concentrations

immediately return to pre-industrial levels.

2.2 SGE Costs and Damages

Following Heutel et al. (2018), we posit the following model of costs and damages:

Y = (1− Λ−D)Q, (1)

Λ = θ1 (t)αθ2 + θGEg
θ3 , (2)

D = πTT
2
AT + πm (M −M1750)

2
+ πgg

2, (3)

where Q is gross world output, Y is world output net of damages, D, and spending on emissions

abatement and SGE, Λ. The cost function Λ gives the percentage of output spent on emissions

abatement and SGE. The cost of a backstop technology which eliminates all carbon emissions,

α = 1, is θ1 (t), which falls exogenously over time. In our notation, functions of time are variables

that evolve exogenously over time. We suppress the time dependence of endogenous variables, and

use primes to denote next-period values.

Nordhaus (2016) combines damages associated with higher carbon stocks and temperatures into

a single function of atmospheric temperature. However, since SGE directly affects temperature

while abatement directly affects the carbon stock, we use the damage function (3), which is a

function of both the deviation of atmospheric temperature from recent averages, TAT , and the stock

of atmospheric carbon M above preindustrial levels M1750.9 Following Heutel et al. (2018), we also

include damages caused directly by SGE g in the damage function (for example, warming of the

tropical cold-point tropopause leading to the depletion of the ozone layer Heckendorn et al., 2009).

9Traeger (2014) replaces the endogenous stock of carbon in the ocean with an exogenous function that determines
carbon absorption by the ocean and biosphere. Hence, we combine the damages from ocean and atmospheric carbon
into just a function of atmospheric carbon.



Learning and Geoengineering 7

2.3 Carbon Cycle, Radiative Forcing, and Temperature

Following Traeger (2014), the carbon cycle evolves according to:

E = σ (t) (1− α)Q+ ELAND (t) , (4)

M ′ = M1750 + (1− δm (t)) (M −M1750) + E, (5)

Here E is carbon emissions, σ (t) is the emissions intensity of output, and ELAND (t) are exogenous

emissions from land use changes. In equation (5), δm (t) is the fraction of atmospheric carbon

absorbed by the biosphere and deep ocean. The exogenous absorption rate declines over time as the

oceans become more saturated with carbon.

Radiative forcing F is given by:

F ′ =

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(1− φg) , (6)

Here η is the forcing coefficient for carbon and FEX (t) is exogenous forcing from other greenhouse

gasses and aerosols. Let φ ∈ [0, 1] denote the parameter which determines how effective SGE is at

reducing radiative forcing.10

Atmospheric temperature evolves according to:

T ′AT = TAT + ξ1

{
F ′ − ξ2TAT − ξ3 [TAT − TLO] (t)

}
+ ε′. (7)

Here ξ1 governs the speed at which the temperature adjusts to changes in radiative forcing. The tem-

perature differential between the ocean and atmosphere, [TAT − TLO] (t) is exogenous as in Traeger

(2014). The parameter ξ2 measures the magnitude of feedback effects. For example, as the tem-

perature rises, ice melts, reducing the albedo effect, causing still higher temperatures (a positive

feedback). We thus call ξ2 the feedback parameter. Finally, ε is an iid random weather shock.

The climate sensitivity ∆T2× is defined as the equilibrium increase in temperature that would

arise from a doubling of the pre-industrial carbon stock, without any SGE. Combining equations (6)

and (7) at the steady state implies the climate sensitivity is ∆T2× = η/ξ2. As described below, we

10Here SGE affects radiative forcing through a multiplicative effect, as modeled in Heutel et al. (2018). Other
papers instead model SGE as affecting radiative forcing through an additive term. Heutel et al. (2018) demonstrate
that this modeling choice has little effect on optimal policy outcomes (see their Figure 6 and Appendix Figure A12).
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model uncertainty in the climate sensitivity through uncertainty in the feedback parameter.

The timing is such that both CO2 and SGE affect radiative forcing in t + 1, and therefore the

temperature in t+ 1.

2.4 Uncertainty

We model two sources of uncertainty, one over SGE and one over the climate system. First, we allow

the SGE effectiveness parameter, φ, to be uncertain. The planner treats φ as a random variable φ̃.

A given quantity of SGE g has an uncertain effect on forcing due to uncertainties in how long the

sulfur particles will remain in the stratosphere, how well sulfur particles mix across the globe, and

effects on cloud formation. We do not explicitly model uncertainty in the parameter representing

damages from SGE, πg. This is analogous to the choice of learning over the climate sensitivity rather

than over the climate damages.11

Second, we model uncertainty in the climate sensitivity by allowing the feedback parameter, ξ2,

to be uncertain. The planner treats ξ2 as a random variable ξ̃2. Because climate sensitivity ∆T2×

is η/ξ2, which is a function of ξ2, treating the feedback parameter ξ2 as uncertain implies that

climate sensitivity ∆T2× is also uncertain. While much of the literature models climate sensitivity

uncertainty through uncertain feedbacks (e.g. Roe and Baker, 2007; Kelly and Tan, 2015), this is not

the only way to model uncertainty in climate sensitivity. Kelly and Kolstad (1999) and Heutel et al.

(2018) model climate sensitivity uncertainty by assuming that the forcing parameter η is uncertain,

not the feedback parameter ξ2. When the feedback parameter is distributed normally, the climate

sensitivity is a function of the reciprocal of a normally-distributed random variable and therefore has

a reciprocal normal distribution. Roe and Baker (2007) and Kelly and Tan (2015) derive analytical

approximations of this distribution which are asymptotically equivalent to a Pareto distribution

with infinite mean and variance (see Kelly and Tan, 2015, for a detailed discussion). A common

alternative is to treat the climate sensitivity itself as the uncertain parameter, and assume a log-

normal distribution (Spafford and MacDougall, 2020; Wagner and Weitzman, 2018). Quantitatively,

the Pareto has a fatter tail and thus the tail of the distribution is more important for the results.

Further, an upper limit to the climate sensitivity must be specified to make the problem finite (see

11See the 2013 IPCC report for a discussion of the extensive uncertainty with respect to SGE effectiveness. To our
knowledge, this paper is the first to analyze uncertainty over SGE effectiveness. It is possible that SGE effectiveness
and damages are linked in that if SGE is more (less) effective, then SGE is more (less) damaging. We do not consider
this possibility for computational reasons.
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the online appendix).

We assume that radiative forcing net of SGE, F ′

(1−φg) , is not observed, which prevents the planner

from instantly learning the effectiveness of SGE by inverting the forcing equation (6).12 Further-

more, the random weather shock prevents the planner from immediately learning the true feedback

parameter by inverting the temperature equation (7). Equation (6) shows that the uncertainty over

SGE effectiveness φ affects forcing from carbon (the first term in parentheses) in the same way that

it affects exogenous forcing FEX .13

A change of variables simplifies the above equations. Let H ′ denote the residual after removing

the known influences on next-period temperature T ′AT .

H ′ ≡ T ′AT − ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
+ ξ1ξ3 [TAT − TLO] (t) .

= −ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
gφ̃+

(
1− ξ1ξ̃2

)
TAT + ε′. (8)

Let F̂ ′ denote gross forcing before SGE

F̂ ′ ≡ ξ1
(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(9)

and β̃ denote the inertia of the temperature, which we call the net feedback parameter :

β̃ ≡ 1− ξ1ξ̃2. (10)

Equation (7) then simplifies to:

H ′ = β̃TAT − φ̃F̂ ′g + ε′. (11)

This implies that the climate sensivity is

∆T2× =
ηξ1

1− β̃
. (12)

Equation (11) is a linear regression equation in which the planner tries to determine for example,

12It is possible that in the future that governments will measure radiative forcing if SGE is deployed. In this
case, learning speed could be increased by using equation (6) to estimate φ and equation (7) to estimate feedbacks
separately. However, this presumes that all other parameters in equation (6) are known with certainty. If not, then
the problem of SGE slowing learning about other uncertainties remains.

13Strictly speaking, FEX includes the radiative forcing from aerosols such as SO2, which is governed by the uncertain
parameter φ. However, in the interests of simplification, we assume all components of FEX are certain.
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whether an unusually high temperature (relative to the known underlying carbon forcing and ocean

effects) occurs because the feedback effects are stronger than expected, SGE is less effective than

expected, or the weather shock was unusually high.

An assumption about learning here is that the average global temperature (contained in H ′ and

TAT ) and forcing (contained in F̂ ′) are the only data that can be used to learn about either type

of uncertainty. More generally, it may be possible to learn using other information, for example,

regional temperature changes in response to SGE (Ricke et al., 2012). However, the use of regional

data does not necessarily imply faster learning as the advantage of a larger panel data set is offset

by spatial correlation, greater variability of regional shocks, and other issues.

2.5 Learning

The weather shock is normally distributed, ε′ ∼ N
(
0, ρ−1

ε

)
, where ρε is the precision (inverse of

the variance). The planner has prior beliefs that the true net feedback parameter is drawn from a

normal distribution (Roe and Baker, 2007), and the same for the SGE effectiveness parameter:

 β̃

φ̃

 ∼ N [µ, P−1
]
, µ ≡

 β

φ

 , P ≡

 P1 P2

P2 P3

 . (13)

Here β and φ are the means of the prior distributions and P is the precision of the prior beliefs (the

inverse of the variance-covariance). We assume P is positive definite, which is the case if the priors

are formed using a variance-covariance matrix.

Bayes’ theorem implies that, after observing H ′, the posterior distribution remains bivariate

normal, with mean and precision:

P ′ = P + ρεX ·Xtr, (14)

µ′ = (P ′)
−1

(Pµ+ ρεXH
′) (15)

X ≡

 TAT

−F̂ ′g

 (16)

Here tr denotes the transpose operator. The planner can manipulate the second element of X

directly through the SGE policy choice, g and indirectly through the abatement policy choice, α.14

14F̂ ′ is a function of M ′ via equation (6) which is a function of emissions E via equation (5) and abatement α via
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Thus, learning is endogenous. However, the first element of X, TAT , is already determined at the

start of period t and thus unaffected by the choice of SGE and abatement in period t. It is natural

to assume P1 > 0, P3 > 0, and P2 ≤ 0 given that P2 evolves over time as the sum of observations

on −TAT F̂ g, which is negative.

Finally, a critical feature of the model is that T ′AT and H ′ are sums of normal random variables

and are therefore also normally distributed.

H ′ ∼ N
[
µH , P

−1
H

]
(17)

µH = Xtr · µ (18)

P−1
H = Xtr · P−1 ·X + ρ−1

ε (19)

Therefore, a single numerical integration with respect to the normal random variable H is sufficient

for computing the expectation of the value function. More importantly, the variability of the climate

as perceived by the planner (i.e. considering both stochasticity and uncertainty) is a function of SGE

deployment. We will show that this magnification of variability caused by SGE can slow learning.

3 Theoretical Predictions

Before presenting the numerical simulation results, we present some theoretical propositions about

learning that illuminate the model’s predictions. Proofs of all propositions are in the online appendix.

While the specification of learning in the previous section is most clearly presented by using the

precision matrix P , the predictions in this section are more conveniently expressed with the prior

variance-covariance, W . Let:

W = P−1 ≡

 W1 W2

W2 W3

 . (20)

Evaluating the posterior variance-covariance, W ′, of the belief distribution over the uncertain vari-

equation (4).
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ables β̃ and φ̃ after observing H ′ reveals that:15

W ′ =
1

1 + ρεXtrWX

 W1 + ρε |W |X2
2 W2 − ρε |W |X1X2

W2 − ρε |W |X1X2 W3 + ρε |W |X2
1

 . (21)

SGE, g, directly affects X2 = −F̂ ′g, and abatement, α, indirectly affects X2. Therefore equation

(21) shows both current-period policy variables affect the posterior variance of the estimates for both

β̃ and φ̃ through their effect on X2. By contrast, the policy choices g and α do not affect X1 = TAT ,

which is already determined at the start of the period.

We want to identify conditions under which SGE use unambiguously increases information, and

likewise for the use of abatement. To do so, we first establish conditions under which the terms in the

variance-covariance matrix (21) are decreasing over time. This result also creates natural bounds for

the variance states in the computational algorithm and signs the elements of P and W for the later

propositions. Replace the prime notation W and W ′ with Wt and Wt+1 subscripts, respectively,

where Wt represents the variance-covariance matrix of beliefs at time t, and W0 represents it at the

initial period. Let Wi,t represent the value of the ith element of Wt. We restrict the prior variance-

covariance matrix W0 to be positive-definite. Starting from a diffuse prior, P0 = 0, (as would be the

case in an OLS regression), equation (14) implies that Pt and therefore Wt are positive-definite for

all t. Without this restriction, it is possible to construct examples where the variances can become

negative or unbounded. With this assumption, we can show:

PROPOSITION 1 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then: 0 ≤ W1,t ≤ W1,0,

0 ≤ W3,t ≤ W3,0, 0 ≤ W2,t ≤ (W1,0W3,0)
1
2 and |Wt| > 0 for all finite t. Further, Wi,t+1 ≤ Wi,t for

i = 1, 3. That is, the planner gains information after each observation.

Proposition 1 shows the variance-covariance matrix terms remain on finite intervals, which is nec-

essary for convergence of the computational algorithm. More importantly, Proposition 1 shows

that, regardless of the decisions, the planner gains information each period (W1,t+1 < W1,t and

W3,t+1 < W3,t).

15See equation (1.49) in the online appendix.
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3.1 Learning from SGE

Although the planner gains information with each observation over time, the policy decisions affect

the amount of information gained. In fact, whether an increase in SGE speeds or slows learning

about either of the two unknown variables β̃ and φ̃ depends on the level of SGE relative to the

current information state.16 We will show below that there are two threshold values of SGE, defined

as I1 and I2, that determine the direction of the effect on SGE on learning.

First, consider the effect of SGE on the posterior variance of belief over the SGE effectiveness

parameter φ. This variance in period t+ 1 is W3,t+1, which we will now denote as W ′3. An increase

in SGE speeds learning about SGE effectiveness if the partial derivative of W ′3 with respect to g is

negative. We show in Appendix section 2 that:

∂W ′3
∂g

=
F̂ ρε2W

′
3

1 + ρεXtrWX
(W2TAT −W3F̂ ′g) (22)

∂W ′3
∂g

< 0, ⇔ g > I1 ≡
W2

W3
· TAT

F̂ ′
. (23)

SGE g increases learning about SGE effectiveness if and only if the level of SGE exceeds the

threshold value I1. To understand the intuition, it is helpful to view equation (11) (H ′ = β̃TAT −

φ̃F̂ ′g + ε′) as an OLS regression equation.17 Suppose a given set of past decisions results in a

data set which is used to estimate β and φ using equation (11), with associated variance-covariance

matrix (20). Now the planner has the opportunity to alter the current SGE and thus the current

X2 (−F̂ ′g), and then re-run the regression with the past and current data. How does changing g

affect the variance of the parameter estimates?

Suppose SGE begins from a low baseline close to zero, or even at zero.18 At the baseline, little

SGE is being used, and so changes in temperature are more easily attributed to changes in the

previous temperature through the feedback parameter β. A warm year is unlikely to be caused

by ineffective SGE, since SGE is minmal, but very likely to be caused by strong feedbacks. The

observation thus provides relatively more information about the feedback parameter β. Further, if

W2 > 0 then being more certain about β means that all prior information about SGE effectiveness is

16Compare this to Quaas et al. (2017), which exogenously and unambiguously assumes SGE R&D increases learning
over climate sensitivity (p. 10 in their paper).

17In fact, it is straightforward to show that (21) is identical to the variance-covariance matrix of the OLS parameter
estimates with known σ2

ε , for appropriately chosen priors P1 = σ2
ε

∑t−1
i=0 X1,i and analogously for P2 and P3.

18Even at zero SGE (g = 0), the distribution of beliefs is well-defined, as is the derivative given in equation (22).
To see this, replace X2 with zero in equations (21) and (22).
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more useful, as prior information on temperature and SGE is more easily correlated given feedback

effects are now more certain.19 Note that I1 = 0 (any SGE speeds learning about effectiveness) if

the prior is diffuse and no prior information about effectiveness exists to improve upon, W3 =∞.

Now suppose SGE is increased from the low/zero baseline. The increase in SGE has a negative

effect on temperature which cancels with the positive feedback effect (βX1). The resulting signal H ′

is smaller relative to the noisy weather shock. The planner has low confidence that the temperature

change resulted from SGE (and also low confidence the temperature change resulted from feedbacks).

Hence, as SGE increases, the signal becomes smaller, the new information is less informative, and

W ′3 changes less.

Suppose instead that SGE is increased from a high baseline. In this case, the planner expects

a large temperature reduction due to SGE, and further increases in SGE start to make the tem-

perature signal H ′ larger in magnitude (more negative). It is then increasingly unlikely that the

temperature change is the result of a large negative weather shock. The planner attributes the

change in temperature to SGE with high confidence, and thus the data point is highly informative,

and the variance falls as SGE rises.

We denote the nonlinear effect of SGE on H ′ as the signal strength effect. The signal strength

effect is quadratic in g: an increase in g from a small baseline cancels with the feedback effects

weakening the signal. Increasing g from a large baseline (more than the threshold I1) swamps the

feedback effect, strengthening the signal.20 Equation (22) shows that increasing SGE strengthens

the signal for a baseline g > I1. The cutoff I1 depends on temperature since if the temperature

is larger, so is the feedback effect which must be overcome. Conversely, if forcing is large, then

SGE has a large effect on temperature which more easily swamps the feedback effect. The cutoff

I1 also depends on the pre-existing uncertainty, for example, if W2 is small it is easier to separate

the feedback and SGE effects, and so a smaller temperature change is more easily attributed to the

change in SGE.

Next, consider the effect of SGE on the posterior variance W ′1, which is the variance of beliefs

19Note that aerosols create uncertain feedbacks, especially through effects on cloud formation Forster et al. (2021),
creating a correlation between the priors (W2). It follows that a more precise estimate of CO2 feedbacks improves
prior information about SGE effectiveness.

20Mathematically, in (21), 1 + ρεXtrWX is quadratic in g, and so g has a quadratic effect on W ′.
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about the net feedback parameter β. We show in Appendix section 2 that:

∂W ′1
∂g

=
F̂ ρε2W

′
2

1 + ρεXtrWX
(W1TAT −W2F̂ ′g), (24)

∂W ′1
∂g

< 0, ⇔ g > I2 ≡
W1

W2
· TAT
F̂ ′

. (25)

SGE g increases learning about the net feedback parameter if and only if the level of SGE exceeds

the threshold value I2. SGE affects the signal strength H ′ in an identical, quadratic way. The signal

strength effect on learning about feedbacks is proportional to the signal strength effect on learning

about SGE effectiveness. However, SGE has an additional effect on learning about feedbacks, which

we call the noise ampliflication effect. Increasing SGE from any baseline increases the subjective

noise in the climate system when trying to estimate the feedback effect. In particular, the effect

of feedbacks on temperature is now obscured not only by the noisy weather shock, but also by an

uncertain SGE effect. The planner is now uncertain if (say) a warm year was caused by stronger

than expected feedbacks, weather noise, or SGE being less effective than expected. This noise

ampliflication effect slows learning about feedback effects, all other things equal.21

The appendix shows I2 > I1. That is, the noise amplification effect implies the baseline g must

be larger for SGE to speed learning about feedbacks relative to SGE effectiveness, as the signal

strength effect must not only be positive, but also overcome the noise amplification effect.

The following proposition summarizes the above discussion on the role of SGE on learning:

PROPOSITION 2 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then I1 ≤ I2 for all finite

t ≥ 0 and up to three regions exist:

• Region 1: g < I1. In this region an increase in SGE increases posterior uncertainty for both β̃

and φ̃.

• Region 2: I1 ≤ g < I2. In this region an increase in SGE decreases uncertainty over φ̃ but

increases uncertainty over β̃.22

• Region 3: g ≥ I2. In this region an increase in SGE decreases uncertainty for both β̃ and φ̃.

21Mathematically, the noise amplification effect is the second term in the numerator of W ′1 given in equation (22).
22Region 2 can be further decomposed into two subregions where SGE has differential effects on the covariance W ′2.

See the appendix.



Learning and Geoengineering 16

Proposition 2 shows that sufficiently small SGE experiments slow learning, whereas sufficiently

large SGE experiments speed learning. To understand the magnitude of the SGE experiment re-

quired to speed learning, we can use the calibrated initial values to recover the current period I1

and I2. Details on the calibration of the initial conditions of the model are presented in Section 4

and Appendix section 4. Given those calibrated parameters, we calculate the initial values of the

variables defining the cutoff regions: I1 = 7.65, and I2 = 17.85.23 Hence only for g > I1 = 7.65

will experimentation with SGE speed learning about the net feedback parameter. Since g is normal-

ized so that g = 1 corresponds to about 5MT of sulfur, to speed learning would require a massive

experiment of about 38.25MT of sulfur.24 Thus, for any reasonably-sized implementation of SGE

experiment, on the scale of what is being proposed by policy makers and IAMs, SGE will slow

learning about both the net feedback parameter, β̃, and the effectiveness of SGE, φ. There is no

justification for small-scale, planet-wide SGE experimentation based on reducing uncertainties, at

least at the current calibrated conditions. Later, in the numerical simulation results, we explore

whether this result holds over time as conditions change.25

3.2 Learning from Abatement

Consider now the effect of abatement on learning. The next proposition shows that abatement policy,

α and SGE policy, g have opposite effects on information gain – whenever more SGE decreases

posterior uncertainty over an unknown variable, more abatement increases uncertainty over that

variable. That is, whenever
∂W ′i
∂g < 0, we will have

∂W ′i
∂α > 0.

PROPOSITION 3 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0. Then

• Region 1: g < I1. In this region an increase in abatement decreases uncertainty for both β̃ and

φ̃.

23This comes from the fact that T
F̂ ′

= 0.85
0.54

= 1.56, and W1 = 0.132, W2 = 0.03852, and W3 = 0.01742. Thus
W2
W3

= 4.89 and W1
W2

= 11.41.
24For reference, the Mount Pinatubo eruption in 1982 injected an estimated 20MT of sulfur and significantly cooled

global temperatures.
25We also consider alternative calibrations for the initial conditions. First, we use the calibration based on Heutel

et al. (2018), which starts in an earlier period with a lower temperature T0 = 0.8 and a smaller initial forcing of

F̂ ′ = 0.21. Both changes increase the thresholds so that I1 = 18.35 and I2 = 42.82. Second, we begin with a higher
initial state of atmospheric carbon concentrations, corresponding to about a 600 ppm (1278 GTC) world, yielding
values of I1 = 3.76 and I2 = 8.78. Both alternative calibrations show how the threshold level of SGE for which SGE
speeds learning decreases with atmospheric CO2 concentrations. However, the alternative parameters are still such
that any reasonably-sized implementation of SGE will slow learning.
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• Region 2: I1 ≤ g < I2. In this region an increase in abatement decreases uncertainty over β̃

but increases uncertainty over φ̃.

• Region 3: g ≥ I2. In this region an increase in abatement increases uncertainty for both β̃ and

φ̃.

Increasing SGE decreases X2 (makes X2 = −F̂ ′g more negative), while increasing abatement in-

creases X2 (brings it closer to zero).

Increasing abatement reduces the amount of forcing available for a given level of SGE to act

on. SGE becomes less efficient in this sense. Therefore, if SGE is high enough so that SGE speeds

learning (g > I1), then abatement weakens the positive signal strength effect of SGE, slowing

learning. Conversely, if SGE is low enough so that SGE slows learning (g < I1), then abatement

weakens the negative signal strength effect of SGE, speeding learning.26 It is useful to contrast

Proposition 3 with the results of Kelly and Kolstad (1999). That paper had only one uncertainty, the

forcing parameter, ξ1η. From equations (9), (11), and (16), uncertainty about the forcing parameter

and uncertainty about SGE effectiveness are both equivalent to uncertainty about the net forcing

X2. (More gross forcing is equivalent to more net forcing after SGE.) In Kelly and Kolstad (1999),

abatement always slowed learning. Here, we have uncertainty about the net feedback parameter in

addition to uncertainty about forcing through SGE. Suppose W1 = W2 = 0, so that only net forcing

is uncertain. Then it is straightforward to show that W ′1 = W ′2 = 0. Since the feedback effect is

certain, no further learning takes place about it regardless of abatement. Further, I1 = 0, so region

2 holds for all g. In this region, an increase in abatement α slows learning about SGE effectiveness

or equivalently net forcing. Thus, the result of Kelly and Kolstad (1999) emerges as a special case

when the prior uncertainty over the net feedback parameter is sufficiently small. When the net

feedback parameter uncertainty is large, abatement may speed learning.

Quantitatively, experimentation with abatement is less fruitful than experimentation with SGE.

Changes in abatement have only small effects on the current stock of CO2, which has built up over

centuries. Therefore, changes in abatement have little effect on X2. Consider again the calibrated

initial condition described in the previous section. If α = 0, then, from equation (9), F̂ ′ = 0.5496,

and if α = 1, F̂ ′ = 0.5333. Thus, I1 varies between 7.56 and 7.79, so the planner does not create

26Note that abatement reduces forcing by a known amount contained in H′ in equation (17), which does not matter
for learning. Abatement has a second effect which is the unknown reduction in the ability of SGE to reduce forcing,
X2, which is what matters for learning.
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additional regions by changing α. Consider the effect of increasing abatement α from 0 to 1 for a

given value of g. For example, when g = 0.1:

W ′ (g = 0.1, α = 1)−W ′ (g = 0.1, α = 0)

W ′ (g = 0.1, α = 0)
=

 −0.0171% −0.0394%

−0.0394% −0.0168%

 , (26)

With g in region 1, moving from α = 0 to α = 1 speeds learning as indicated by Proposition 3, but

the effect is small: the variance terms decrease by less than two hundredth of one percent despite

the large increase in abatement.

Thus, the justification for experimentation with abatement to reduce uncertainties is quanti-

tatively small, though of course abatement yields other benefits. The numerical simulations below

determine optimal abatement and SGE including all costs and benefits, informational and otherwise.

3.3 Value of Information

In region 2, SGE increases information over SGE effectiveness φ̃ but decreases information over the

net feedback parameter β̃. Ignore for the moment all of the other costs and benefits associated with

an SGE experiment, and consider only the effect on uncertainty. Is the information gain worth the

information loss? That is, is the value of information from SGE experimentation positive, and does

it result in more accurate decision making and higher utility?

The concept of Blackwell informativeness answers this question. If an SGE experiment results in

an uncertainty distribution such that temperature can be predicted more accurately than without

such an experiment, then the more accurate prediction leads to higher utility. In this case, the SGE

experiment is said to be more Blackwell informative, or has a positive value of information.27

The next proposition demonstrates that for g > I1, the information gain about SGE effectiveness

is worth the information loss about the net feedback parameter, or that Blackwell informativeness

is increasing in g.

PROPOSITION 4 Let W1,0 > 0, W2,0 > 0, W3,0 > 0, and |W0| > 0.

1. Consider two posterior distributions Φ1 = N [µ′ (g1) ,W ′ (g1)] and Φ2 = N [µ′ (g2) ,W ′ (g2)],

produced from experiments g1 and g2, with g2 > g1. Then experiment 2 is more Blackwell

27See for example de Oliveira (2018).
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informative than experiment 1 for a given X if:

(
µ′ (g2)

tr
X
)2

XtrW ′ (g2)X + ρ−1
ε

>

(
µ′ (g1)

tr
X
)2

XtrW ′ (g1)X + ρ−1
ε

. (27)

2. Consider two posterior distributions Φ1 = N [µ′,W ′ (g)] and Φ2 = N [µ′,W ′ (g + ∆g)], where

∆g > 0. Then for ∆g sufficiently small, experiment 2 is more Blackwell informative than

experiment 1 for a given X if g > I1.

Consider an experiment of increasing SGE policy, g. Given the normally-distributed prior uncer-

tainty and weather shocks, the problem can be condensed into a single random variable (H ′ or

T ′AT ).28 Thus, the posterior distribution is more Blackwell informative if it produces a more accu-

rate prediction of T ′′ in the next period. Further, a more accurate prediction necessarily results in a

more informed decision and therefore higher utility. An increase in SGE makes X2 (= −F̂ ′g) more

negative, which affects W ′ through equation (21). Considering this effect only, the second part of

Proposition 4 shows that the information gain regarding φ̃ is more valuable than the information

loss regarding β̃ in region 2. Therefore, in regions 2 and 3, SGE experimentation on net produces

valuable information that leads to more informed decisions.29

A change in SGE also affects the mean of the posterior distribution.30 The first part of Proposi-

tion 4 shows that the overall effect on information depends on how SGE affects both the mean and

variance of the prior. We can rewrite equation (27) as:31

µH (g2)
2

varH (g2)
>

µH (g1)
2

varH (g1)
. (28)

Hence, increasing SGE is more Blackwell informative if doing so increases the signal-to-noise ratio.

SGE experimentation can produce a stronger or a weaker signal. Indeed, since µ′ depends on the

random variable ε′, the effect of experimentation on the signal varies across periods. Nonetheless,

from Bayes’ theorem, E [µ′] = µ regardless of X, so in expectation experimentation has no effect

on the signal. Thus, the effect of experimentation on the noise shown in part 2 of Proposition 4 is

28See equation (17).
29The information value of SGE experimentation must be weighed against the cost and damage of implementing

SGE, and the benefit in terms of less forcing. This is addressed in the next section.
30See equation (15)
31From Appendix equations (1.48) and (1.55), the signal for T ′ is E [T ′] = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) + µtrX, of

which only the last term matters since only the last term depends on g. Further, Appendix equation (1.56) indicates
the noise with respect to T ′ is varH .
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likely to be quantitatively more important. Finally, the value of X matters and the informativeness

of experimentation varies over time.

4 Calibration

We now turn to the computational simulations, beginning with the calibration of the model. Ap-

pendix section 4 gives the details of our calibration, except for the calibration of SGE effectiveness

and short run temperature response which are discussed here. Notably, we use a novel strategy

to calibrate SGE effectiveness and uncertainty using data on aerosol optical depth (AOD) from

historical volcanic eruptions.

4.1 SGE Effectiveness

4.1.1 Data

We use two sources of information. For volcanoes, our independent variable, we use VolcanEESM:

Global volcanic sulphur dioxide (SO2) emissions database from 1850 to present - Version 1.0.32 We

use the Volcanic Explosively Index (VEI) of each emission based on the Global Volcanism Program

Database and select the volcanoes with V EI ≥ 4 which have the capacity to reach the stratosphere.

We also have the total emission of SO2 in TgS that we use to approximate the amount in the

stratosphere in each period. The dependent variable is the global and hemispheric mean Aerosol

optical depth at 550 nm, collected from NASA.33 The frequency of data is monthly between 1850

and 2012.

Figure 1 plots the data. The top panel shows each volcanic eruption date and SO2 emissions,

while the bottom panel shows monthly AOD. After each eruption there is a clear increase in AOD,

which we match to the amount of sulfur associated to each volcano to the whole year following the

explosion.

32This dataset is available at http://dx.doi.org/10.5285/76ebdc0b-0eed-4f70-b89e-55e606bcd568.
33These data are available at https://data.giss.nasa.gov/modelforce/strataer/.

http://dx.doi.org/10.5285/76ebdc0b-0eed-4f70-b89e-55e606bcd568.
https://data.giss.nasa.gov/modelforce/strataer/.
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Figure 1: Volcanic Eruptions, SO2 emissions, and Aerosol Optical Depth

4.1.2 Methodology

The timing of the model is such that sulfur injected into the stratosphere in year t causes temper-

atures to fall in year t + 1, after which sulfur must be re-injected (that is, gt is a flow variable).

Thus, we mechanically assume the effect of the volcano ends one year after the eruption.34 The

model does not take a stand on when within the current year the injection takes place, so we are

free to assume the sulfur enters the stratosphere z < 12 months after the eruption. We are thus

calibrating a discrete model to what is in fact a continuous process whereby a volcanic eruption for

which stratospheric sulfur levels slowly build up and then decay in a few months to a year or more.

After choosing z, we step-wise interpolate the sulfur data from the eruption in month/year t such

that the stratospheric sulfur level equals the recorded emissions in the data in months t+z to t+12.

Figure 2 shows the interpolated data for Mt Pinatubo for several values of z. The top left panel

shows the interpolation for z = 0 so the interpolated data has a sulfur level of approximately 18Tg

immediately after the eruption date and remains at this level for one year. The top right panel shows

the interpolation assuming the effect starts z = 3 months after the eruption; the bottom left shows

6 months after the eruption, and the bottom right 11 months after. All end 12 months after the

eruption, so that the interpolated stratospheric sulfur level is zero for any month that has not seen

34While this assumption is purely for simulation and calibration purposes, the sharp cut-off could be achieved
technically using self-levitating particles (Keith, 2010).
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an eruption in the previous 12 − z months. The regression coefficient is the average effect over all

months. We can see from this example that lower values of z result in regression coefficients which

underestimates the effect of solar geoengineering while starting later can, in principle, overestimate

the effect.
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Figure 2: Interpolated data for Mt Pinatubo eruption. The dotted line is the eruption date, the
rectangular line is the interpolated data (right scale), and the curve is the AOD (left scale).

For calibrating the prior distribution of uncertainty over SGE effectiveness, φ, we first estimate

the AOD response to stratospheric sulphur dioxide injections. The estimating equation is

AODt = ζ1 + ζ2sulfurt + εt, (29)

where sulfurt is the interpolated monthly volcanic eruption data, ζ1 is a constant, and ζ2 is the

parameter of interest. In addition, εt is the error term at year/month t. To account for the possibility

of autocorrelation in the errors, we use the Newey estimator in Stata that returns the Newey-West

standard errors. Calibrating the effectiveness of SGE using volcanic eruptions comes with at least

three important caveats (Robock et al., 2013, explains that there are substantial differences between

SGE and volcanic eruption). First, most SGE proposals are designed to have a relatively even pole-
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to-pole radiative forcing while volcanoes are highly localized producing an asymmetric radiative

forcing depending on the latitude of the volcano and the time of the eruption (Jones et al., 2016).

Second, the response of the climate to a volcanic eruption is transient and expected to be very

different response to the relatively continuous application of aerosols that would be associated with

solar geoengineering (Haywood et al., 2013). Both of these caveats suggest we are underestimating

the effectiveness of solar geoengineering using volcanoes. Third, we are using interpolated data

since actual stratospheric sulfur levels are unobserved, which may mean our estimates understate

the uncertainty with respect to SGE effectiveness.

Table 1 shows the estimated effects of sulfur from volcanic eruptions on AOD. The rows represent

different values of time after the eruption until the sulfur reaches the stratosphere, z, while the

columns represent errors autocorrelated up to a given lag. As expected from the examples above,

we see an increase in the estimated effect as the window focuses on the maximum impact within a

year. The error terms, in turn, increase with the number of lags, but plateau at around 3-6 months.

Error Lag

z Estimate 0 3 6 9 12

0 0.0041 0.0004 0.0007 0.0008 0.0008 0.0008

3 0.0051 0.0004 0.0006 0.0007 0.0007 0.0007

6 0.0059 0.0003 0.0005 0.0006 0.0006 0.0006

9 0.0063 0.0004 0.0006 0.0007 0.0007 0.0007

11 0.0064 0.0007 0.0008 0.0008 0.0008 0.0008

Table 1: Regression results for different assumptions about the time from eruption until the sulfur
reaches the stratosphere and different error lags. Each cell is a different regression with the estimates
of ζ2 given in the second column and the standard errors of ζ2 given in columns 3-7. The units of
ζ2 are AOD per TgS.

For our calibration, we decided to use a middle of the road assumption that the sulfur enters

the stratosphere 6 months after the eruption and an error structure with 3 lags. This assumption

also matches the estimated effect of maximum dispersion across the stratosphere, but minimizes the

time of achieving that maximum effect. The result is ζ2 = 0.0059± 0.0005. The results correspond

to a two standard deviation confidence interval of approximately plus or minus 10.2% of the mean

estimate. Each eruption generates a very strong effect on AOD relative to the years without an
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eruption, which allows for a more precise estimate.

We use the estimated effect of sulfur on AOD to predict the effect of sulfur on radiative forcing.

Following Ricke (2011), we assume a change of 0.1 AOD is equivalent to a reduction in radiative

forcing of 2.5 Wm−2. This implies based on our results that 1 TgS (= 1 MT sulfur) reduces radiative

forcing by 0.15± 0.013Wm−2. In the estimation above we assume the climate effects of the volcano

dissipate after one year. Our calibration suggests a 20TgS (Pinatubo) eruption reduces forcing by

3Wm−2. This is larger than the usually assigned value of 2 Wm−2, but follows from our assumption

of a more effective date the sulfur enters the stratosphere of six months after eruption that captures

most of the peak effect of these volcanic eruptions. Using a window that starts at zero months after

the eruptions, we would find the effect of a Pinatubo-like explosion to be 2.05Wm−2, very much

aligned with the estimates in the literature. Our calibration is aligned with an engineered approach

to SGE that increases the effectiveness of SO2 relative to a natural explosion.

The calibration of the damage parameter πg follows Heutel et al. (2018) in that g = 1 is normal-

ized such that 5MT sulfur causes a decrease in radiative forcing of φηf when carbon concentrations

are twice preindustrial. Since ζ2 = 0.15 has units of forcing per MT of sulfur, we multiply by 5/ηf

to get φ = 0.2± 0.0174 CO2 equivalent forcing per 5 MT sulfur.

Finally, we consider the calibration of the initial covariance, W2,0. The covariance comes from

the passive learning model, in which x1,t, x2,t and Ht+1 are observed, generating new information to

update the parameter estimates (see equations 11 and 21). However, the priors are actually formed

from two different sources. The feedback prior comes from GCMs (Roe and Baker, 2007) and the

effectiveness prior comes from the volcano/optical depth regressions above. One way to resolve this

is to generate a prior for the covariance as if the other priors were generated from a regression using

historical data on x1 and x2 via equation (11). If so, then:

W0 = ρ

 ∑2015
t=0 x2

1,t

∑2015
t=0 x1,tx2,t∑2015

t=0 x1,tx2,t

∑2015
t=0 x2

2,t

 = ρ

 0.132 W2,0

W2,0 0.01742

 . (30)

Note that x2,t = 0 except for the m = 60 years with volcanic eruptions noted above and x1,t is the

n = 140 year temperature record. Under the further simplifying assumption that x1 and x2 are
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constant when not zero,35 it follows that:

W2,0 =
√

(m/n)W1,0W3,0 = 0.03852. (31)

Hence if W1,0 and W3,0 were generated from historical data consisting of a small number of years

with volcanic eruptions and a larger number of years, without an eruption, then W2,0 = 0.03852.

4.2 Initial Feedback Uncertainty and Calibration of Temperature Speed

of Adjustment

For the initial uncertainty, Roe and Baker (2007) find that a normal prior distribution of β̃ with

prior mean β0 = 0.65 and variance W1,0 = 0.0169 implies a climate sensitivity distribution which

matches the distribution of climate sensitivities from various global circulation models (GCMs). We

adopt these priors as initial conditions. Following the arguments of Weitzman (2009) and Roe and

Baker (2007), we assume the net feedback parameter is uncertain but the forcing effect of CO2 (η)

is known with certainty.36 We thus follow DICE-2016 and calibrate η = 3.613.

It remains to calibrate the parameter ξ1, which governs the response of temperature to radiative

forcing from CO2 in equation (7). We would like the temperature change to reflect certain stylized

facts. In particular (1): the best estimate of the climate sensitivity is approximately 3◦C (Solomon

et al., 2007), (2) temperatures respond quickly to changes in CO2 concentrations (Dietz et al., 2020),

and (3) the short run feedbacks generate a temperature increase as in Dietz et al. (2020), and the

temperature increases in the medium term as long run feedbacks begin to take hold (Dietz et al.,

2020). Typically, GCMs have both short and long term feedbacks, which allows for temperature

responses that feature (1)-(4). In contrast, almost all IAMs including this paper have only a single

short run feedback effect, β. The calibration thus cannot replicate all of these effects and some

compromises must be made (see Conte and Kelly, 2021, for a discussion of short and long run

feedbacks and fat tails).

Consider first the climate sensitivity, equation (12). Given the above calibration of η and the

prior uncertainty of β̃, the calibration of ξ1 determines the prior beliefs about the climate sensitivity

35This assumption can be relaxed and the result is quantitatively similar in that I1 will still be well above one and
the optimal policy is largely independent of W2,0 in any event.

36Still, some debate exists in the literature here. For example, Kelly and Kolstad (1999) assume the forcing effect
of CO2 is unknown.
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through equation (12). In particular, a value of ξ1 = 0.2852 results in the best estimate value

of ∆T̄2× = 3. However, this value substantially exceeds the value given in Nordhaus (2016) of

ξ1 = 0.1005. In addition, such a large value of ξ1 is inconsistent with recent temperature fluctuations

in the sense that imposing ξ1 = 0.2852 causes the temperature to increase discretely in the first period

(see equations 6 and 7). The problem is that the best guess GCM value of the climate sensitivity

reflects in large part long run feedback effects, whereas the model has only short run feedback effects.

Therefore, to match the long run climate sensitivity requires an unrealistic short run response of

temperature to forcing.

Next, consider the short run response of temperature to radiative forcing, illustrated by the short

run response of temperature to a 100GT carbon impulse given in Dietz et al. (2020). Given our best

guess initial feedback parameter, β0 = 0.65, the model fits the relatively fast response of temperature

to the 100GT carbon impulse well, getting to within 0.01 of the peak in 16 years, as compared to

the peak of the best fit of GCMs which occurs after 14 years. However, to match the magnitude of

the impulse response, a maximum temperature difference of 0.225◦C, requires imposing ξ1 = 0.0742.

This implies a climate sensitivity of only 0.78◦C. Because no separate long run feedback mechanism

exists in the model, matching exactly the short run feedbacks implies that the climate sensitivity

is too low because the long run feedbacks are absent. Conversely, assuming ξ1 = 0.2852 matches

the 3◦C climate sensitivity but implies an unrealistically large short run temperature response to

a 100GT carbon impulse equal to 0.87◦C. As a compromise, we follow Kelly and Tan (2015) and

impose ξ1 = 0.2624. This implies that if β̃ = β0 = 0.65 that (1) the climate sensitivity is 2.76◦C,

close to the IPCC best estimate, (2) the short run temperature response peaks in 16 years, close to

the best fit of about 14 years, (3) the magnitude of the short run response is 0.77◦C, which exceeds

the best fit of GCMs. Although not perfect, our view is that this calibration is an improvement over

the DICE 2016 calibration, which has ξ1 = 0.1005 and β0 = 0.8807, which has a realistic climate

sensitivity of 3.1◦C, but is a poor match for the short run impulse response (Dietz et al., 2020),

which given discounting is likely more important (Roe and Bauman, 2013).

5 Simulation Results

Propositions 2 and 3 in Section 3 give conditions under which deployment of either SGE or abatement

increases the speed of learning over climate sensitivity and/or SGE effectiveness. Given initial
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conditions, we can say whether there is information value in experimentation with either policy

instrument. The theoretical results, however, do not give the optimal paths for both policies, taking

into account their informational values as well as all other costs and benefits. To answer that

question, we turn to a set of numerical simulations.

The computational solution method is provided in Appendix section 3. We run 10,000 simulations

of the solved model, each simulation lasting 185 years. We choose 185 years since by the end of that

period (the year 2200), all policy values have roughly leveled off for all simulations. All of the certain

parameter values are identical across each of the 10,000 simulations, and each simulation has the

same prior distribution of beliefs about the two uncertain parameters in the initial year. For each

simulation, we draw a new true value of β̃ and a new true value of φ̃ from that prior distribution.

These true values are unknown to the planner, though the planner learns endogenously over time.

We also draw a new weather shock εit for each simulation i in each year t. We report the mean value

of the policy variables across the 10,000 simulations. These results are the means conditional on the

identical initial (period zero) prior across simulations. These mean values will differ from assuming

β̃ = β0 and φ̃ = φ0, which would give only the values conditional on the unlikely event that the

initial mean belief was exactly correct.

5.1 Optimal Policy

Figure 3 plots the mean optimal SGE for each period over the 10,000 simulations (line with the plus

symbol). We also plot the mean SGE across just the simulations where the planner’s current beliefs

about the values of the uncertain parameters βit and φit are in the top ten percentiles of the belief

distribution (line with circles), and the mean SGE across just the simulations where the planner’s

current beliefs βit and φit are in the bottom ten percentiles (line with squares).37 The curve with

circles thus represents optimal SGE policy conditional on the planner believing that SGE is very

effective and climate sensitivity is very high, while the blue curve represents optimal SGE policy

conditional on the planner believing that SGE is very ineffective and climate sensitivity is very low.

37We require that both βit and φit are in the top ten percentiles of their respective distributions. By definition,
1,000 of the 10,000 simulations have βit in its top ten percentile, and likewise for φit. Given the prior beliefs imply
the true β̃ and φ̃ are positively correlated, in most simulations if βit is in the top 10 percentile then so is φit. A
similar result holds for the simulations of the bottom ten percentiles.
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Figure 3: SGE policy, gt, 10,000 simulations. Markers are every 5 years for clarity, but the data are
annual in all figures.

For the overall mean, in 2015 the geoengineering rate g is 0.10 (offsetting 10% of radiative forcing)

and then falls over the next nine years. We will show that initially the planner is concerned about

the possibility that the climate sensitivity might be much higher than the initial prior. In most

simulations, the planner is able to rule out these worst-case scenarios relatively quickly, and so SGE

declines. Hence, initially, a moderate amount of SGE is optimal for precautionary reasons.

The upper and lower quantiles also begin in 2015 at about g = 0.10, since all simulations

start with the same initial beliefs and thus the same SGE policy. However, when beliefs are that

climate sensitivity and SGE effectiveness are high, optimal SGE rises, peaking at around g = 0.46

(offsetting 46% of radiative forcing). Conversely, when beliefs indicate SGE effectiveness and the

climate sensitivity are likely to be low, the optimal SGE plummets to less than 0.01. Optimal SGE

is thus highly sensitive to beliefs about the SGE effectiveness and climate sensitivity. SGE is largely

a policy used quite sparingly, and only under extraordinary beliefs is SGE deployed at anything
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more than about g = 0.10. However, for most beliefs in the first few years there is some SGE for

precautionary purposes.

Over time, the mean SGE increases and then stabilizes around its peak as rising carbon con-

centrations and wealth makes SGE more attractive. The mean optimal SGE is closer to the 10%

quantile than the 90% quantile. The climate sensitivity distribution is bounded below by zero but

is unbounded above, and the prior distribution is asymmetric and fat-tailed (Kelly and Tan, 2015).

We next compare our results on optimal SGE policy with those of Heutel et al. (2018) (see their

Figure 4f). In our model, the initial beliefs (prior mean) of the net feedback parameter and SGE

effectiveness are β0 = 0.65 and φ0 = 0.201, respectively. In their model, the mean value of the net

feedback parameter is β0 = 0.87 and SGE effectiveness is fixed at φ0 = 0.5. As a result, although

in their model optimal geoengineering has a similar shape as in our model, SGE rises to about

g = 0.32 before declining. In our model in contrast, SGE rises to only g = 0.13 and then declines

more modestly. SGE is used less here relative to the prior literature for three reasons. First, our

calibration has an initial belief that effectiveness is only 0.201. Second, SGE effectiveness is uncertain

in our model. Third, SGE at these levels slows learning, leading to less informed decision-making.

Even if we solve our model assuming the mean of the prior beliefs of SGE effectiveness is 0.5,

SGE peaks at g = 0.23. Therefore, uncertain effectiveness and slower learning are quantitatively

significant deterrents for SGE deployment, reducing the optimal SGE by about 28% relative to

Heutel et al. (2018).

Figure 4 plots the mean optimal abatement policy α, as well as the mean abatement policy when

beliefs about the net feedback parameter and SGE effectiveness are in the 10th and 90th quantiles.
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Figure 4: Abatement policy αt, 10,000 simulations.

The initial abatement rate is about 40% in 2015. Like SGE, mean abatement is initially high

for precautionary reasons. Mean optimal abatement subsequently falls to about 35% as learning

rules out some of the worst climate sensitivity cases. However, after a few years mean abatement

begins to rise again, as the cost of abatement falls to near zero and growth in capital, population,

and productivity quickly raise emissions gross of abatement. Eventually abatement is so inexpensive

that 100% abatement becomes optimal. This result is consistent with the prior DICE literature.

When beliefs about the climate sensitivity and SGE effectiveness are in the 90th percentile,

abatement rises more quickly. Because beliefs are that the climate is very sensitive to carbon, the

planner expects that emissions cause higher temperatures and more damage, so higher abatement is

optimal. Thus, when beliefs about the climate sensitivity rise, the planner uses more of both SGE

and abatement. SGE has a number of advantages, including (1) a linear effect on forcing versus

the logarithmic effect of abatement, (2) an immediate, flow effect on forcing whereas abatement

can only slowly lower the CO2 stock, and (3) an initial cost advantage. Despite the advantages
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of SGE in terms of cooling temperatures more quickly and cheaply than abatement, the efficient

policy portfolio still includes a substantial role for abatement. This is because (1) SGE does not

directly reduce damages from CO2, (2) SGE creates damages itself, (3) SGE slows learning, and (5)

the cost of abatement falls over time. Further, the advantages and disadvantages change over time.

However, regardless of the current magnitude of each, the cost of both SGE and abatement are

convex. Hence, it is less expensive to use some of each rather than one or the other exclusively. SGE

does not eliminate the need for abatement, a concern expressed in some of the prior literature.38

5.2 Effect of Learning on Optimal Policy

We explore how uncertainty and learning affect policy by comparing three sets of simulations. First,

in the learning case, we present the optimal policy simulations under our full model where there

is both uncertainty and endogenous learning over two parameters (these are the results presented

earlier in Figures 3 and 4). Second, in the certainty case, we present analogous optimal policy

simulations without uncertainty. That is, we again simulate optimal policy for 10,000 simulations,

each of which lasting 185 years, where at the start of each simulation we draw a true value of each

uncertain parameter β and φ from the prior distribution. But, the prior mean belief is set equal to

this true value and the variance of the prior is set equal to zero, so that there is certainty over these

values at the start and thus no learning.39 Third, in the no-learning case, we present analogous

optimal policy simulations under uncertainty but without learning. To do this, we solve the model

such that the planner knows no learning will take place in the future (W is no longer a state, and

beliefs over β and φ are fixed at the means of the prior distribution). We again simulate the optimal

policy for 10,000 simulations, where at the start of each simulation we draw a true value for β and

φ, unobserved by the planner. We average 10,000 such paths without learning, to get the expected

path conditional on the prior information and no learning.

Figures 5 and 8 present the simulation results for optimal SGE policy. Figure 5 contrasts the

certainty and learning simulations, and Figure 8 contrasts the learning and no-learning simulations.

In each figure, we present the mean optimal policy, and the mean optimal policy when the feedback

and SGE effectiveness beliefs are in the 10th and 90th percentile, both for the simulations with

38In Appendix section 5, we show how the forecast errors over the uncertain variables evolve, which illuminates how
the speed of learning differs across the variables.

39However, a random weather shock is drawn in each period of each simulation, so that even in the certainty case
future weather shocks are unknown.
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learning (replicating Figure 3) and for the simulations under either certainty or no-learning.
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Figure 5: SGE policy, gt, 10,000 simulations, learning and certainty cases.

Figure 5 shows that uncertainty matters initially. In 2015 the mean SGE policy is g = 0.10, yet

if the planner knew the climate sensitivity and SGE effectiveness were in the 90% quantile, mean

SGE policy would be g = 0.46 and if the planner knew the climate sensitivity and SGE effectiveness

were in the 10% quantile, mean optimal SGE would be less than one percent (g = 0.0087). Since

the prior distribution is normal, with Bayesian learning forecast errors are unbiased (see Figures

A1-A3 in Appendix section 5). In the 90% quantile in Figure 5, the true values are higher than

the prior, and so βt < β̃ and φt < φ̃ and the planner is revising beliefs upward. Similarly, in the

lower 10% cases the planner is revising estimates downward. However, SGE policy is much more

sensitive to beliefs when beliefs are that the climate sensitivity is very high. In this case, small

differences in feedbacks magnify over time into very large temperature changes, and so the planner

makes a much bigger policy adjustment. Hence the difference between learning and certainty in
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the 90% quantile in Figure 5 represent more a difference in policy sensitivity than a difference in

forecast errors. Appendix Figures A1-A3 also show that after the first couple of decades further

learning about SGE effectiveness and the climate sensitivity proceed slow enough so that there is

little further convergence in the next 100 years.

Since in the 90% quantile beliefs increase from below the true value, the optimal policy given

learning uses less SGE than is optimal given certainty, as the planner believes SGE is not as effective

as it actually is. Conversely, when SGE is not very effective (10% quantile), beliefs are slow to decline,

and the learning policy uses more SGE than is optimal under certainty as the planner believes SGE

is more effective than it actually is.

5.2.1 Sensitivity of Optimal Policy

To get an idea of the relative importance of SGE effectiveness versus climate feedbacks for opti-

mal SGE policy, Figure 6 graphs the results under certainty for various values of the true feedback

parameter holding fixed the true SGE effectiveness parameter. Figure 7 graphs the results under

certainty for various values of the true SGE effectiveness holding fixed the true feedback parameter.

The optimal SGE policy is convex in the feedback parameter, becoming increasingly sensitive as the

feedback parameter increases. Feedbacks have a compound effect on the temperature (generating

the fat tail in the climate sensitivity). Therefore, SGE usage responds more when feedback param-

eter is large, to prevent the large temperature change that would result from the feedback effects

compounding over time in the absence of a policy intervention.
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Figure 6: SGE policy, gt under certainty, with the true value of φ equal to the mean of the prior
beliefs and the true value of β equals the mean of the prior beliefs and one and two standard
deviations above the mean of the prior beliefs. Each line is the mean of 1000 simulations to smooth
the effect of the weather shocks.
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Figure 7: SGE policy, gt under certainty, with the true value of β equal to the mean of the prior
beliefs and the true value of φ equals the mean of the prior beliefs and one and two standard
deviations above the mean of the prior beliefs. Each line is the mean of 1000 simulations to smooth
the effect of the weather shocks.

The value of perfect information is important for policy makers considering investment in R&D

that might reduce uncertainty. The value of perfect information relative to uncertainty with learning,

vpi, is:

vpi =

∫
β̃,φ̃

v
(
k0, T0,m0, t0, β̃, φ̃, 0, 0, 0

)
Φ ([β, φ] , [β0, φ0] ,W0) dβ̃dφ̃

−v (k0, T0,m0, t0, β0, φ0,W0) . (32)

Equation (32) reflects that if the planner had access to an experiment which revealed the true values

with certainty today, then ex ante in expectation the experiment is equivalent to a draw from the

prior distribution, the result of which is the true value the planner then knows with certainty. Thus,

perfect information allows the planner to begin with correct priors regardless of what β̃ and φ̃ turn
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out to be, whereas the value with learning reflects that the planner must start with priors of β0

and φ0 regardless of the true values. Performing the integration numerically on the value function

results in a value of perfect information of approximately 1%. Given the risk aversion coefficient

of 1.45, this implies households would be indifferent between perfect information and the learning

model with a 2.15% increase in consumption per person per year in perpetuity. Although not large

in percentage terms, this represents a world-wide increase in consumption of over one trillion dollars

per year.40

Figure 5 also shows that the mean SGE policy under learning is initially much greater than the

certainty policy, as SGE is used initially as a precaution against the possibility that the climate

sensitivity is very high. Since learning quickly rules out this case in most simulations, SGE policy

becomes similar under the two simulations.41

5.2.2 Learning Case vs. No-learning Case

Figure 8 contrasts optimal SGE policy under learning with optimal policy under uncertainty but no

learning.

40Note however, that small computational errors in the percentage gain magnify when converting to dollar values.
41Kelly and Tan (2015) find that, for abatement, the mean certainty and uncertainty policies are similar after the

first decade.
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Figure 8: SGE policy, gt, 10,000 simulations, learning and no learning. Quantiles for the learning
case are over beliefs βt and φt whereas quantiles for no learning are over true values β̃ and φ̃.

Because the planner knows that no learning will take place, the initial-period policy given no learning

differs from the initial policy under learning even though initial beliefs are identical.

Initially, SGE under no learning is about 0.03. This is less than the average of the certainty

initial values of about 0.08. Since SGE policy is convex in the feedback parameter under certainty,

the average of the starting values is greater than the starting value under certainty when the true

value is the prior mean. This effect is offset to some degree as with no learning the policy at the

prior mean is greater than the policy under certainty of the prior mean for precautionary reasons.

However, this effect is relatively small because Figure 8 shows that even under no learning, some

tailoring of the SGE policy is possible.

As the simulations progress, learning allows the planner to tailor SGE policy, substantially in-

creasing SGE when beliefs indicate climate change is severe and SGE is effective. Even without

learning, there is some difference across the policies despite no difference in beliefs. This is because
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temperature differs across the simulations due to the different true parameter values, and policies

respond to that difference. If the temperature rises unexpectedly (due to the true value of the

climate sensitivity being higher than the believed value), and no learning takes place, the planner

attributes this only to higher weather shocks while anticipating lower future temperatures based on

the initial beliefs. Therefore, the planner increases SGE by a relatively small amount. In contrast,

under learning, when the temperature rises beliefs also rise, signalling to the planner that future

temperatures will also rise. Therefore, the planner increases SGE by a larger amount with learning.

The planner under learning bases SGE policy largely on beliefs because beliefs indicate likely paths

of future temperatures. A similar argument holds for SGE effectiveness. When beliefs about SGE

effectiveness rise, the planner increases SGE. However, without learning, even if SGE is effective

the planner keeps the prior belief and does not increase SGE usage. Conversely, when the climate

feedbacks are small and the temperature remains low, the planner without learning uses more SGE,

anticipating future temperatures will evolve according to the prior distribution with a higher mean.

The mean SGE policies differ between learning and no learning for two reasons. First, after period

0, uncertainty is lower under learning. Therefore, SGE has a more certain effect on temperature.

All other things equal, this induces the planner to use more SGE under learning. Second, under

learning the use of SGE slows learning. Under no learning, the use of SGE does not affect the speed

of information gain, which is fixed at zero. All other things equal, this induces the planner to use less

SGE under learning. Figure 8 shows that the mean SGE policy is generally greater under learning,

reflecting that the uncertainty effect is generally stronger. Finally, the above characterization is

somewhat simplified since all state variables are changing in different ways after the initial period,

each of which affects SGE policy.
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Figure 9: Abatement policy, αt, 10,000 simulations, learning and certainty.

Figure 9 compares optimal abatement policy under learning and under certainty. Like SGE, the

initial mean abatement policy is higher under learning, as a precaution against an potentially high

climate sensitivity. Optimal abatement under learning is initially below the level that would occur if

the climate sensitivity was known to be high for certain, however. The optimal policy under learning

quickly converges to the certainty policy under all cases, since the residual uncertainty about SGE

effectiveness is not as important for abatement policy as it is for SGE policy.

Figure 10 contrasts optimal abatement policy under learning with optimal abatement policy

under uncertainty but no learning.
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Figure 10: Abatement policy, αt, 10,000 simulations, learning and no learning.

In the case without learning, the planner’s beliefs about the net feedback parameter and SGE

effectiveness are unchanged through time and therefore, the policy response in both cases of high

and low climate sensitivity hovers around the case with mean climate sensitivity. In contrast, under

learning the planner increases abatement when learning indicates the climate sensitivity is relatively

high and the reverse.

5.2.3 Optimal policy and the Speed of Learning

Section 3 showed that experimentation with SGE slowed learning about both SGE effectiveness

and climate sensitivity, given the 2015 initial conditions. However, the thresholds I1 and I2, which

determine whether or not SGE speeds learning, evolve over time as functions of the state variables

T , m, W2, and W3. A natural question is whether or not optimal SGE ever exceeds I1 or I2. If so,

for these time periods SGE would speed learning about SGE effectiveness and the climate sensitivity,

respectively. Optimal SGE would then have an information benefit from experimentation, rather
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than an information cost. Figure 11 investigates this issue by comparing the mean of I1 over time

(the mean of I2 remains far above one for all t) with the mean of optimal SGE. Figure 11 shows

that I1 declines over time.
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Figure 11: Threshold for SGE to speed learning about SGE effectiveness, I1t, mean 10,000 simula-
tions.

Recall, I1 = T
F̂ ′
· W2

W3
and the first fraction increases modestly as both temperature and forcing

through higher CO2 concentrations increase, but the overall fraction increases because the numer-

ator is linear. In the second fraction, both variances are decreasing as learning proceeds, but the

numerator decreases faster (refer to equation 21). Figure 11 shows that the mean of I1 is greater

than the mean SGE deployment g for all time periods (however, git > I1,it for about 1.45% of all

simulations/time periods). The slowing of learning caused by SGE creates a disincentive for SGE

use throughout the simulations, not just at the initial conditions.



Learning and Geoengineering 42

6 Conclusion

We present a model of optimal climate policy that includes the possibility of using solar geoengi-

neering (SGE) to reduce temperatures. The model allows for uncertainty and endogenous learning

over both climate sensitivity (the effect of carbon on temperature) and the effectiveness of SGE (the

effect of SGE deployment on temperature). It allows for two climate policy variables – abatement

and SGE – both of which affect the rate of learning about those uncertain parameters, creating a

potential motivation to experiment with either policy to reduce uncertainty. However, we find that

any reasonable level of SGE implementation actually slows learning. Since SGE has an uncertain

effect on the climate, use of SGE essentially adds noise to the climate system. Given current initial

conditions, no information justification exists for experimentation with SGE. Further, over time,

starting at current calibrated initial conditions and continuing along the optimal path, the mean

SGE level is below the mean of minimum level required to gain information from SGE experimen-

tation in each period. Thus, the information loss of using SGE continues over time, which acts as a

disincentive for SGE usage.

Our model contains several simplifying assumptions that can be relaxed in extensions. We use

the simplified version of DICE from Traeger (2014), and DICE itself is a relatively parsimonious

integrated assessment model. Optimal policy is defined solely based on net discounted utility for

the aggregate representative economy; our model does not incorporate any heterogeneity (e.g. by

income, region) and does not consider equity criteria. Our model has endogenous learning over two

uncertainties, but other parameters could also be modeled as uncertain, for example, SGE damages.

Theoretically, we decompose the effect of SGE on learning into a signal strength effect and a

noise amplification effect. The signal strength effect shows that small-scale SGE implementation

reduces the magnitude of the temperature change and thus makes the temperature signal harder

to observe amidst the noisy weather shocks. However, with large-scale SGE implementation, the

planner expects to see a large change in temperature. Since a weather shock is unlikely to cause a

large change in temperature, more information will be gained. Furthermore, any use of an uncertain

SGE technology adds noise to the climate system, making learning over climate sensitivity more

difficult; we call this the noise amplification effect.

Our numerical results show that SGE deployment is highly sensitive to beliefs about climate

sensitivity and SGE effectiveness. Although SGE usage is generally low, it is substantially higher
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when beliefs indicate that climate change is likely to be severe and that SGE is effective at reducing

temperature. Because the costs of both abatement and SGE are convex, some small amount of SGE

is always optimal, as it is less costly than using only abatement.
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Appendix

2 Details of Numerical Model

2.1 Optimization Problem

The full model is the optimization problem, plus the equations governing the evolution of the ex-

ogenous variables. Exogenous variables depend only on the time state and are denoted as functions

of t. All endogenous state and control variables vary over time. We suppress the t subscript on all

current state and control variables, and primes denote next-period values. The objective is:

v (S) = max
K′,g,α

L (t)

(
C

L(t)

)1−ω
− 1

1− ω
+ exp (−δut)

∫ ∞
−∞

v (S′ (H ′)) Φ
[
H ′, µH , P

−1
H

]
dH ′

 . (2)
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The planner chooses g and α along with savings, defining next period’s capital stock K ′. Here L(t)

is the exogenously-determined population, ω is the utility curvature parameter, and δu is the pure

rate of time preference. Here also Φ is the normal density and S is a vector of state variables:

S = [K,TAT ,M, t, µ, P ] , (3)

In equation (3), the state vector consists of the stock of capital, K; the atmospheric temperature,

TAT ; the atmospheric stock of carbon, M ; and the time state t. The state vector also consists of five

learning states: µ is a 2-dimensional vector (β, φ) and P is a matrix with 3 independent elements

(P1, P2, and P3). Thus the state vector has 9 total dimensions.

The maximization is subject to the following equations:

Q = Kγ (A (t)L (t))
1−γ

, (4)

Y = (1− Λ−D)Q, (5)

C = Y + (1− δk)K −K ′. (6)

Here equation (4) defines gross output. Equation (5) gives net output equal to gross output less total

climate damages and abatement and SGE costs. Here D is damages as a fraction of gross output and

Λ are abatement and SGE costs as a fraction of gross output. Equation (6) defines consumption as

net output less savings. Savings is next period’s capital K ′ less capital net of depreciation, (1−δk)K.

Damages are:

D = πTT
2
AT + πm (M −M1750)

2
+ πgg

2. (7)

Climate change damages D are a function of atmospheric temperature TAT , as in the original DICE

model, but also of carbon M , reflecting the fact that SGE reduces temperature without reducing

carbon stocks. Use of SGE also causes damage directly through the term πgg
2.

Costs from abatement and SGE are both modeled as power functions of abatement and SGE

intensities, respectively.

Λ = θ1 (t)αθ2 + θGEg
θ3 , (8)
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Emissions E are

E = σ (t) (1− α) (A (t)L (t))
1−γ

+ ELAND (t) . (9)

Emissions are a function of industrial emissions (σ (t)Kγ (A (t)L (t))
1−γ

) minus abatement, plus

exogenous emissions from land use changes denoted by ELAND.

The carbon cycle, radiative forcing, and temperature, and learning variables evolve as defined in

Section 2 in the paper. For completeness, the equations are repeated here:

M ′ = M1750 + (1− δm (t)) (M −M1750) + E. (10)

F ′ =

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
(1− φg) , (11)

T ′AT = TAT + ξ1

{
F ′ − ξ2TAT − ξ3 [TAT − TLO] (t)

}
+ ε′. (12)

P ′ = P + ρεXX
tr, (13)

X =

 TAT

−F̂ ′g

 , (14)

µ′ = (P ′)
−1

(Pµ+ ρεXH
′) , (15)

µ =

 β

φ

 , (16)

t′ = t+ 1. (17)

µH = Xtrµ, (18)

varH = XtrP−1X + ρ−1
ε (19)

The exogenous variables evolve according to:

L (t) = L (0) + (L (∞)− L (0)) (1− exp (−gLt)) (20)

A (t) = A (0) exp

[
gA (0)

(1− exp (−δA))

δA

]
(21)
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gA (t) = log

[
A (t+ 1)

A (t)

]
(22)

gL (t) = log

[
L (t+ 1)

L (t)

]
(23)

σ (t) = σ (0) exp

[
gσ (0)

(1− exp (−δσ))

δσ

]
(24)

θ1 (t) = σ (t)
θp
θ2

exp [−δpt] (25)

ELAND (t) = ELAND (0) exp (−δLANDt) (26)

δm (t) = δm (∞) + (δm (0)− δm (∞)) exp (−δ∗mt) , (27)

EF (t) = EF (0) + (EF (∞)− EF (0)) min

(
t

85
, 1

)
(28)

[TAT − TLO] (t) = max
{
δT,1 + δT,2t+ δT,3t

2, 0
}

(29)

Equations (20)-(29) are continuous-time approximations of the exogenous equations in DICE pro-

vided by Traeger (2014).

2.2 Normalization

We next normalize the model and introduce several changes of variables that make the analysis more

convenient. Let k ≡ K
AL

denote capital per productivity-adjusted person and the same for c, and let

m ≡ M
M1750

. In addition, let:

grAL (t) =
L (t+ 1)A (t+ 1)

L (t)A (t)
, (30)

grA (t) =
A (t+ 1)

A (t)
, grL (t) =

L (t+ 1)

L (t)
, (31)

r (t) = exp
[
−δu + log

(
grA (t)

1−ω
)

+ log (grL (t))
]
, (32)

where gr denotes the gross growth rates and the levels of the exogenous variables are defined in

equations (20)-(29). Let π̂m = πmM
2
1750, σAL (t) = σ (t)A (t)L (t), and ψ = 1/M1750.

Next, we replace H ′ by a standard normal random variable. Let:

z′ =
H ′ − µH

var
1
2

H

, (33)
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H ′ = µH + var
1
2

Hz
′, (34)

dH ′ = var
1
2

Hdz
′. (35)

In the above set up, the time state and the precision variables are unbounded (see equation

13). The computational algorithm requires each state variable to be on a bounded domain. We can

replace the time state with a bounded function:

t̂ = 1− exp (−τt) . (36)

Further, we can replace the precision P with the variance:

W = P−1 ≡

 W1 W2

W2 W3

 . (37)

To simplify the model, we first integrate via substitution using (33):

∫ ∞
−∞

v (S′ (H ′)) Φ [H ′, µH , varH ] dH ′

=

∫ ∞
−∞

v
(
S′
(
µH + var

1
2
Hz
′
))

Φ
[
µH + var

1
2
Hz
′, µH , varH

]
var

1
2
Hdz

′

=

∫ ∞
−∞

v
(
S′
(
µH + var

1
2
Hz
′
))

Φ [z′, 0, 1] dz′,

(38)

where the last equality follows from the definition of the normal distribution. Hence the maximization

problem is unchanged by replacing H ′ with µH + var
1
2

Hz
′ in the constraints and integrating using

the standard normal distribution.

Next, since by definition, W = P−1, (P ′)
−1

= W ′. Thus (13) becomes:

(W ′)
−1

= W−1 + ρεXX
tr, (39)

W ′ =
(
W−1 + ρεXX

tr
)−1

, (40)

and similarly for the other constraints which are functions of the precision.

Finally, the normalization replacing the aggregate economic variables with per-productivity unit
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variables is identical to Traeger (2014). After replacing M with m/ψ, the model reduces to:

v (s) = max
k′,g,α

{
c1−ω − 1

1− ω
+ r (t)

∫ ∞
−∞

v (s′ (z′)) Φ [z′, 0, 1] dz′
}
. (41)

Subject to:

s =
[
k, TAT ,m, t̂, µ,W

]
, (42)

c = (1− Λ−D) kγ + (1− δk) k − grAL (t) k′, (43)

D = πTT
2
AT + π̂m (m− 1)

2
+ πgg

2, (44)

Λ = θ1 (t)αθ2 + θGEg
θ3 , (45)

E = σAL (t) (1− α) kγ + ELAND (t) , (46)

m′ = 1 + (1− δm (t)) (m− 1) + ψE, (47)

F̂ ′ = ξ1 (η log2 [m′] + FEX (t′)) , (48)

T ′AT = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) + µH + var
1
2

Hz
′, (49)

W ′ =
(
W−1 + ρεXX

tr
)−1

, (50)

X =

 TAT

−F̂ ′g

 , (51)

µ′ = W ′
(
W−1µ+ ρεX

(
µH + var

1
2

Hz
′
))

, (52)

µ =

 β

φ

 , (53)

t = −1

τ
log
(
1− t̂

)
(54)

t̂′ = 1−
(
1− t̂

)
exp (−τ) , (55)

µH = Xtrµ, (56)

varH = XtrWX + ρ−1
ε , (57)
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plus the exogenous equations (20)-(29).

Note that uncertainty enters into the original model through the distribution for H ′, in equation

(8). In the normalized model, uncertainty enters directly into the temperature equation (49).

3 Proofs

3.1 Proof of Proposition 1

We first show that each element of W ′ is positive. Let W satisfy the assumptions of the proposition,

so that W is positive definite, W1W3 > W 2
2 . Then:

XtrWX > X2
1W1 + 2X1X2W2 +X2

2

W 2
2

W1
=

1

W1
(X1W2 +X2W1)

2
> 0, (58)

where the first inequality follows from W being positive definite, and the second from W3 > 0 by

assumption. Thus, from equation (21) in the main text, W ′1 > 0, W ′3 > 0 and since X2 < 0, W ′2 > 0.

Next, we show that W ′ is positive definite. Note that:

|W ′| =
(

1

1 + ρεXtrWX

)2
[ (
W1 + ρε |W |X2

2

) (
W3 + ρε |W |X2

1

)
− (W2 − ρε |W |X1X2)

2

]

=
|W |

1 + ρεXtrWX
, (59)

which is positive as shown in (58). Therefore, by induction the elements of W remain non-negative

and W remains positive definite for all t.

Next, we bound W ′ from above. Consider first W1. We have W ′1 < W1 if and only if:

W1 + ρε |W |X2
2

1 + ρεXtrWX
< W1, (60)

which simplifies to:

0 < (W1X1 +W2X2)
2
. (61)

Thus, W ′1 < W1 and by induction W1,t < W1,0 for all t. The same result holds for W3 by an

analogous argument. For W2, since W remains positive definite, we have:

W 2
2 < W1W3. (62)
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Since, as shown above, W1 and W3 are bounded by their initial values:

W2 < (W1W3)
1
2 < (W1,0W3,0)

1
2 ∀t. (63)

Hence W2,t is also bounded for all t.

3.2 Proof of Proposition 2

First we show I1 < I ′ < I2. By definition, I ′ < I2 if and only if:

I ′ ≡ T

F̂ ′
W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
< I2 ≡

T

F̂ ′
W1

W2
. (64)

Multiplying out the terms yields:

0 < W ′2 |W | , (65)

which is satisfied for all t from Proposition 1. Further, I1 < I ′ if and only if:

I1 ≡
T

F̂ ′
W2

W3
< I ′ ≡ T

F̂ ′
W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
. (66)

Multiplying out the terms results in:

0 < W ′3 |W | , (67)

which is satisfied for all t from Proposition 1 in the main text.

Next, we want to find the effect of SGE g in the current period on uncertainty W ′ next period:

∂W ′

∂g . Since W ′ is a function of both X1 = TAT and X2 = −F̂ ′g,

∂W ′

∂g
=
∂W ′

∂X1

∂X1

∂g
+
∂W ′

∂X2

∂X2

∂g
(68)

Since both current period X1 = TAT and F̂ ′ are unaffected by current-period SGE g, ∂X1

∂g = 0 and

∂X2

∂g = −F̂ ′. So,

∂W ′

∂g
=
∂W ′

∂X2
·
(
−F̂ ′

)
. (69)

It follows that ∂W ′

∂g < 0 if and only if ∂W ′

∂X2
> 0.
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The derivative of W ′ with respect to X2 from equation (21) in the main text is:

∂W ′

∂X2
=
−2ρε (W2X1 +W3X2)

(1 + ρεXtrWX)
2

 W1 + ρε |W |X2
2 W2 − ρε |W |X1X2

W2 − ρε |W |X1X2 W3 + ρε |W |X2
1


+

ρε |W |
(1 + ρεXtrWX)

 2X2 −X1

−X1 0

 (70)

=
−ρε

(1 + ρεXtrWX)
2

 Aw Bw

Bw Cw

 , (71)

where:

Aw = 2 (W2X1 +W3X2)
(
W1 + ρε |W |X2

2

)
− 2 |W |X2

(
1 + ρεX

trWX
)
, (72)

= 2
{
W1W2X1 +W 2

2X2 − ρε |W |X2X1 (W1X1 +W2X2)
}
, (73)

= 2 (W2 − ρε |W |X2X1) (W1X1 +W2X2) , (74)

Aw = 2W ′2
(
1 + ρεX

trWX
)

(W1X1 +W2X2) , (75)

Bw = 2 (W2X1 +W3X2) (W2 − ρε |W |X1X2) + |W |X1

(
1 + ρεX

trWX
)
, (76)

= W 2
2X1 + 2W2W3X2 +W1W3X1 + ρε |W |X1

(
X2

1W1 −X2W3

)
, (77)

=W2 (W2X1 +W3X2) +W3 (W1X1 +W2X2) +

ρε |W |X1 (−X2 (W2X1 +W3X2) +X1 (W1X1 +W2X2)) , (78)

Bw =

[
W ′2 (W2X1 +W3X2) +W ′3 (W1X1 +W2X2)

] (
1 + ρεX

trWX
)
, (79)

Cw = 2 (W2X1 +W3X2)
(
W3 + ρε |W |X2

1

)
(80)

Cw = 2 (W2X1 +W3X2)W ′3
(
1 + ρεX

trWX
)
. (81)
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Combining equations (71), (75), (79), and (81) reveals that:

∂W ′

∂X2
=

−ρε
(1 + ρεXtrWX)

 2ŴAW
′
2 ŴAW

′
3 + ŴBW

′
2

ŴAW
′
3 + ŴBW

′
2 2ŴBW

′
3

 (82)

ŴA ≡W1X1 +W2X2

ŴB ≡W2X1 +W3X2

Next, Proposition 1 shows that W ′i > 0 for i = 1, 2, 3 and all t. Hence:

∂W ′1
∂X2

> 0 ⇐⇒ ŴA < 0 ⇐⇒ g >
W1

W2
· T
F̂ ′

= I2. (83)

∂W ′2
∂X2

> 0 ⇐⇒ ŴAW
′
3 + ŴBW

′
2 < 0 ⇐⇒ g >

W ′2W2 +W ′3W1

W ′2W3 +W ′3W2
· T
F̂ ′

= I ′. (84)

∂W ′3
∂X2

> 0 ⇐⇒ ŴB < 0 ⇐⇒ g >
W2

W3
· T
F̂ ′

= I1. (85)

Given (83)-(85) and I1 < I ′ < I2, and the fact that ∂W ′

∂g < 0 if and only if ∂W ′

∂X2
> 0, the sign of

the derivatives in each region is immediate.42

3.3 Proof of Proposition 3

To evaluate the derivative of W ′ with respect to α, note that

∂W ′

∂α
=
∂W ′

∂X1

∂X1

∂α
+
∂W ′

∂X2

∂X2

∂α
(86)

Note that X1 = TAT is unaffected by current abatement α. Further, X2 = −F̂ ′g, and though

g is unaffected by α, F̂ ′ is. In fact, since F̂ ′ = ξ1

(
η log2

[
M ′

M1750

]
+ FEX (t+ 1)

)
, it follows that

∂F̂ ′

∂α = ξ1η
1

M ′ ln 2
∂M ′

∂α < 0, since ∂M ′

∂α = −σ(t)Q. Thus, ∂X2

∂α < 0, so ∂W ′

∂α has the same sign of ∂W ′

∂X2
.

Then, all the steps of the proof of Proposition 2 follow, generating the same conditions but with

opposite sign as Proposition 2 (whenever ∂W ′

∂g < 0, ∂W ′

∂α > 0).

42Strictly speaking, Bw is a quadratic function of X2 since W ′2 depends on X2. However, one can show that exactly
one root exists for Bw over the domain X2 < 0. Therefore, the given condition (84) remains valid.
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3.4 Proof of Proposition 4

For Blackwell Informativeness, we first note that problem (41) can be written with T ′ as the random

variable:

v (s) = max
k′,g,α

{
c1−ω − 1

1− ω
+ r (t)

∫ ∞
−∞

v (s′ (T ′)) Φ [T ′, bT + µH , varH ] dT ′
}
. (87)

Here:

bT = F̂ ′ − ξ1ξ3 (TAT − TLO) (t) , (88)

and all other constraints are the same except (52), which becomes:

µ′ = W ′
(
W−1µ+ ρεX (T ′ − bT )

)
, (89)

From Blackwell’s theorem, experiment g2 produces a distribution over T ′ which is more infor-

mative than experiment g1 if the signal of T ′ from experiment g1 can be found by garbling the

signal from experiment g2.43 That is, experiment g2 is more Blackwell informative if there exists a

distribution Ψ such that:44

Φ (T ′1;µ1, var1) =

∫ ∞
−∞

Ψ (T ′1|T ′2) Φ (T ′2;µ2, var2) dT ′2,

µi = bT + µ′ (gi)
tr
X, i = 1, 2,

vari = XtrW ′ (gi)X + ρ−1
ε , i = 1, 2. (90)

That is, the experiment g2 is more informative if one can add additional randomness to (garble) the

signal produced by experiment g2 and get the signal produced by experiment g1. From Blackwell’s

theorem, if such a distribution Ψ can be found, then experiment two is a more accurate signal and

produces higher utility, all other things equal.

We hypothesize that Ψ is a normal distribution:

Ψ (T ′1|T ′2) = Φ (T ′1;A+BT ′2, varψ) . (91)

43See, for example, de Oliveira (2018).
44Here we essentially extend the argument of Krzysztofowicz (Krzysztofowicz, 1987)to multiple dimensions.
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Here A, B, and varψ are undetermined coefficients.

Given the guess, the right hand side of equation (90) integrates to:

r.h.s. = (2π)
− 1

2 (var∗)
− 1

2 exp

{
−1

2
var∗ (T ′1 − µ∗)

2
}
,

var∗ = A2var2 + varψ

µ∗ = B + µ2A (92)

Hence, given the guess, the right hand side integrates to the normal density:

r.h.s. = Φ (T ′1;µ∗, var∗) (93)

Hence, the guess is verified by equating the mean and variance of the right hand side and left hand

side of (90).

bT + µ′ (g1)
tr
X = µ∗ = B +

(
bT + µ′ (g2)

tr
X
)
A (94)

The undetermined coefficients are then set so that the means are equal for all X:

A =
µ′ (g1)

tr
X

µ′ (g2)
tr
X

B = bT

(
1− µ′ (g1)

tr
X

µ′ (g2)
tr
X

)
. (95)

Equating the variances results in:

var1 = var∗ = A2var2 + varψ, (96)

varψ = XtrW ′ (g1)X + ρ−1
ε −

(
XtrW ′ (g2)X + ρ−1

ε

)(µ′ (g1)
tr
X

µ′ (g2)
tr
X

)2

. (97)

For Ψ to be a valid distribution, the variance must be positive. Therefore:

XtrW ′ (g1)X + ρ−1
ε −

(
XtrW ′ (g2)X + ρ−1

ε

)(µ′ (g1)
tr
X

µ′ (g2)
tr
X

)2

> 0 (98)

The above condition reduces to equation (27) in the text.

For part 2 of the proposition, we simply impose that µ′1 = µ′2. In this case, B = bT , A = 1, and
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(97) reduces to:

varψ = −Xtr (W ′ (g + ∆g)−W ′ (g))X, (99)

For ∆g small, varψ > 0 if:

−Xtr ∂W
′

∂g
∆gX > 0,

Xtr ∂W
′

∂g
X < 0,

Xtr ∂W
′

∂X2

∂X2

∂g
X < 0,

Xtr ∂W
′

∂X2
X > 0. (100)

Using (82), the above condition reduces to:

−ρε
(
X1ŴA +X2ŴB

)
(X1W

′
2 +X2W

′
3)

(1 + ρεXtrWX)
> 0 (101)

Using equations (50) and (82), the above condition reduces to:

−ρεXtrWXŴB

(1 + ρεXtrWX)
2 > 0 (102)

Since XtrWX > 0 from Proposition 1, the condition reduces to ŴB < 0, which holds if and only if

g > I1.

4 Computational Details

Here we provide a short overview of the computational solution method. See Kelly and Tan (2015),

Appendix B and Fitzpatrick and Kelly (2017) for full details on the solution method used here. We

use a multidimensional spline approximation of the value function and value function iteration to

solve the dynamic program. That is, we replace the value function on the right hand side of the

Bellman equation with a spline approximation v̂ (s; pm) where pm denotes the vector of parameters

of the spline at iteration m. We use Gaussian quadrature to approximate the integral in (41). Let

{bij}j=1...J denote the base points and {wij}j=1...J the weights. The approximation to the Bellman’s
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equation is then:

vm+1 (si) = max
k′,α,g

 c1−ω

1− ω
+ r (t)

J∑
j=1

v̂ (s′i (si, k
′, α, g, bij) ; pm) Φ (bij , 0, 1)wij

 , (103)

subject to the model’s constraints.

4.1 Algorithm Summary

1. Initialization. We form a grid s̃ = {si}Ii=1 of feasible state variables. Table 2 gives the

collocation nodes that form the grid. The curse of dimensionality limits the number of grid

points such that the model solves within a reasonable amount of time. Therefore, the selection

of collocation nodes cannot be arbitrary. We use a relatively large number of collocation nodes

for T and µ since uncertainty over the climate sensitivity with fat tails implies that a very wide

range of values for T and µ are possible outcomes. In contrast, the range of W is small and

decreases monotonically after each time period and therefore requires the fewest grid points.

In addition, the value function has significant curvature in the k, T , and µ dimensions, which

requires additional grid points to estimate accurately. It is also important to allocate grid

points near the initial condition, s0.

2. Spline Initialization. We use a cubic spline approximation of the value function. The cubic

spline has 3 parameters for each collocation node, except in the W dimensions, which have

2. The parameters ensure that the spline fits the value function exactly at each grid point,

and that the spline is twice continuously differentiable. We choose the initial approximation

parameters to fit a function satisfying known properties of the true value function such as

concavity in k and decreasing in T , µ, and W .

3. Maximization. For each grid point si, we use v̂ (s′i (si, k
′, α, g, bij) ; pm) to find α, g, and k′

and therefore vm+1 (si) using the approximate Bellman equation (103).

4. Numerical Integration. Each numerical integration uses J = 5 base points, and the upper

and lower bounds of integration are set to the mean of z′ ±3 standard deviations. Note that

z is a standard normal obtained by summing the three normally distributed random variables

in the model and transforming the result to a standard normal, so the implied bounds for H ′

and therefore ε′, β̃ and φ̃ will be different.
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5. Approximation. The approximation parameters pm+1 are set to match vm+1 (si), and main-

tain twice differentiability.

6. Termination. The algorithm stops if ‖ vm+1 (si)− vm (si) ‖6 0.001, otherwise we increment

m by one and return to step 3.

State Grid Points

k 0.46,0.7447,0.85,0.95,1.00,1.05,1.15,1.30

T 0.4,0.85,1.5,2,2.5,4,6,10,15

m 1,1.4473,2.25,3.25,4.25

t̂ 0,0.1,0.2,0.5,0.8,0.9,0.95,0.99,1

µ 0.25,0.65,0.75,0.97

φ 0.1504,0.2026,0.2548

W1 0,0.0085,0.017

W2 0,0.0023

W2 0,0.0003

Total grid points: 466,560

Table 2: Collocation points. k: capital stock per productivity adjusted person, further normalized so
that the steady state is one. TAT : atmospheric temperature in ◦C above preindustrial, m: greenhouse
gas concentrations as a fraction of preindustrial levels. t̂: equal to 1− exp (−0.02t), where t is years
after 2015. µ: mean of the prior distribution of the net feedback parameter (unit free). φ: mean
of the prior distribution of the SGE effectiveness (watts per meter squared per 5MT sulfur). W1:
variance of the prior distribution for the net feedback parameter (unit free). W2: covariance of
the prior distribution (unit free). W3: variance of the prior distribution for the SGE effectiveness
parameter (unit free).

4.2 Further Bounds on the State Space

The computational algorithm requires s′ to remain on the grid, otherwise v̂ (s′) must be extrapolated

in an arbitrary way (without data). In particular, the elements of s′ cannot fall outside the intervals

given by the maximum and minimum values given in Table 2. Using the variance instead of the

precision and mapping the time state into a bounded function means that W ′ and t̂′ will remain

on the grid. For k and m, the minimum and maximum values in Table 2 are such that the planner

optimally remains in the given interval.
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However, keeping T ′, β′, and φ′ on the grid is less straightforward. Consider, for example, a grid

point such that T , φ, or µ equals its maximum value. Then evaluating s′ on the right side of the

distribution in the numerical integration must yield still higher values which are off the grid. For

this reason, we manually impose upper bounds equal to the maximum values given in Table 2. In

the simulations performed in the main text, in only 0.005% of the simulated time periods does T ′,

β′, or φ′ meet or exceed the maximum value, causing the constraint to bind.45

To get an idea of the accuracy of the solutions, we compute the residuals to the Euler equations

on all simulated points (10,000 simulations times 256 time periods times 3 Euler equations). Except

for the initial conditions or if a state variable achieves it’s maximum value, these simulated points

are all between grid points. The mean absolute error for all Euler equations is 0.0102 and the median

absolute error is 0.0066 (versus zero if the solution exactly satisfies the Euler equations), indicating

the solution is reasonably accurate between grid points.

5 Calibration and Parameter Values

All of the parameter values, and the sources (adjusted to the annual time step used here) of their

calibration, are listed in Tables 3 and 4. The parameters are taken from Nordhaus (2016) and Heutel

et al. (2018), except as detailed in Section 4 or below.

5.1 SGE Control Costs and Damage Parameters

We use the calibration in Heutel et al. (2018) for SGE control costs and damage parameters. The

DICE model combines damages from increased temperatures and increased CO2 concentrations into

a single function of temperature. Heutel et al. (2018) assume a decomposition of these damages

into 80% from temperature, 10% from atmospheric CO2 concentrations, and 10% from deep ocean

concentrations. Since our model does not include a deep ocean concentration state, we assume that

20% of damages are due to the atmospheric concentration of CO2 and 80% are due to temperature.

This calibration yields the values for πT and πm which yields π̂m = πmM
2
1750.46

45Costello et al. (2010) and Newbold and Daigneault (2009) give theoretical justifications for upper bounds on
temperature and show the results are not sensitive to the upper bound. In a model most similar to here, Kelly and
Tan (2015) test upper bounds up to 30◦C and show the results are not sensitive to the upper bound.

46Moreno-Cruz and Smulders (2017) notes that increases in the stock of CO2 has a beneficial CO2 fertilization
effect which may exceed the damages for low concentrations of CO2. Like most integrated assessment models, we do
not include a CO2 fertilization effect. Sensitivity analysis assuming CO2 fertilization benefits exceed CO2 damages
for CO2 concentrations up to halfway between pre-industrial and the current stock was not quantitatively important
for abatement and SGE policy.
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5.2 Calibration of CO2 Absorption Parameters

The DICE model contains three carbon sinks: the atmosphere, the biosphere/shallow ocean, and

the deep ocean. We follow Traeger (2014) and reduce the number of state variables from three

to one by assuming a time dependent exogenous function δm (t)m that governs the absorption of

atmospheric CO2 into the biosphere and oceans, so that carbon concentrations follow equations (47)

and (27). The calibration requires an initial CO2 stock absorption rate δm (0), a rate of decline in

the CO2 absorption rate as the ocean sinks become saturated with carbon, δ∗m, and a steady state

absorption rate δm (∞). Traeger (2014) chooses these parameters to produce similar atmospheric

CO2 concentrations as in the DICE 2013 model, given the optimal emissions in DICE. However,

Dietz et al. (2020) shows that in both the DICE 2013 model and the DICE 2016 model, the ocean and

biosphere sinks absorb less carbon then the best fit of global circulation models (GCMs) over the next

60 years (in DICE 2016 the absorption is less for all years). Traeger (2014) finds δm (0) = 0.014,

δ∗m = 0.01, and δm (∞) = 0.004 match DICE-2013. We find δm (0) = 0.014, δ∗m = 0.016, and

δm (∞) = 1e − 6 match DICE-2016 and δm (0) = 0.007, δ∗m = 0.04, and δm (∞) = 2e − 4 match

the best fit of GCMs given in Dietz et al. (2020) very closely. These differences create small but

significant policy differences, especially in later years. For example, initial abatement is about

3% higher using the best fit of GCMs calibration, since CO2 is higher in the early periods, when

damages are not as discounted. In addition, in later years when emissions is near zero, atmospheric

CO2 levels remain high for longer in the DICE 2016 calibration vs the best fit GCMs due to the

carbon sinks filling up in DICE 2016. Hence, SGE is somewhat less attractive in later years in the

DICE calibration vs the best fit of GCMs, because in DICE 2016 there is more direct CO2 damage,

which SGE does not address. In the end we elected to use the parameter values which match the

best fit of GCMs.

5.3 Calibration of Exogenous Growth Parameters

Table 4 gives the exogenous variable parameters. The calibration of the exogenous variables follows

Traeger (2014), updated to the 2016 version of DICE. For most parameters, calibrating the growth

rate so that the levels in 2025 match DICE-2016 produces a close match for all periods. The

exogenous atmosphere-ocean temperature differential parameters δT,i, i = 1, 2, 3, are calibrated to

match the differential in DICE. In particular, we choose the three parameters to match the initial
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(2015) differential, the peak differential, and so that the peak differential occurs in an identical year

as in DICE.

Economic Parameters

Parameter Value Source

Capital Share γ 0.3 Nordhaus (2016)

Depreciation Rate δk 0.1 Nordhaus (2016)

Coefficient of Relative Risk Aversion ω 1.45 Nordhaus (2016)

Pure rate of time preference δu 0.015 Nordhaus (2016)

Cost and Damage Parameters

Abatement Control Cost Exponent θ2 2.6 Nordhaus (2016)

SGE Control Cost parameter θGE 0.0027 Heutel et. al. (2018)

SGE Control Cost exponent θ3 2 Heutel et. al. (2018)

Temperature Damage Coefficient πT 0.0019 calibrated

Carbon Damage Coefficient π̂m 0.0017 calibrated

SGE Damage Coefficient πg 0.03 Heutel et. al. (2018)

Climate Parameters

Preindustrial GHG concentrations 1/ψ 588 GTC Nordhaus (2016)

Radiative Forcing Parameter η 3.6813 Nordhaus (2016)

Ocean Heat Uptake Parameter ξ1ξ3 0.088 Nordhaus (2016)

Ocean Heat Capacity ξ1 0.2624 calibrated

Initial Conditions

Initial Capital Stock K0 $223 Trillion Nordhaus (2016)

Initial Carbon Stock/Preindustrial m0 1.4473 Nordhaus (2016)

Initial Temperature T0 0.85◦C above 1920-40 Nordhaus (2016)

Initial mean of Prior Feedback Distribution β0 0.65 Roe and Baker (2007)

Initial Mean of Prior SGE Effectiveness φ0 0.2026 calibrated

Initial Variance of Prior Feedback Distribution W1,0 0.132 Roe and Baker (2007)

Initial Variance of Prior SGE Effectiveness Distribution W3,0 0.0.1742 calibrated

Initial Covariance of Prior Distribution W2,0 0.03852 calibrated

Table 3: Parameter Values for endogenous equations. Values without units are unit free parameters.
Units are per annum unless otherwise noted.
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Economic Parameters

Initial Population L (0) 7.403B people Nordhaus (2016)

Asymptotic Population L (∞) 11.5B people Nordhaus (2016)

Decline Population Growth δL 0.0236 Nordhaus (2016)

Initial Labor Productivity A (0) 10.2952 1000$/person Nordhaus (2016)

Initial Labor Productivity Growth gA (0) 0.0211 Nordhaus (2016)

Decline Labor Productivity Growth δA 0.0049 calibrated

Initial Emissions Intensity σ (0) 0.0955 tC/1000$ Nordhaus (2016)

Initial Emissions Intensity Growth gσ (0) -0.0152 Nordhaus (2016)

Decline Emissions Intensity Growth δσ 0.001 calibrated

Initial Backstop Cost θ1 (0) 2.0163 $M/tC Nordhaus (2016)

Decline Backstop Cost Growth δp 0.0051 calibrated

Climate Parameters

Initial Land Emissions ELAND (0) 0.7092 GtC Nordhaus (2016)

Growth Rate Land Emissions δLAND 0.0223 Nordhaus (2016)

Initial Ocean Carbon Uptake δm (0) 0.007 calibrated

Asymptotic Ocean Uptake δm (∞) 0.0002 calibrated

Decline in Ocean Carbon Uptake δ∗m 0.04 calibrated

Initial Exogenous Forcing EF (0) 0.5 w/m2 Nordhaus (2016)

Asymptotic Exogenous Forcing EF (∞) 1.00 w/m2 Nordhaus (2016)

Temperature Difference Parameter δT,1 0.8064 calibrated

Temperature Difference Parameter δT,2 0.0370 calibrated

Temperature Difference Parameter δT,3 -0.000176 calibrated

Variance of Weather Shocks ρ−1
ε 0.0121 Kelly and Tan (2015)

Table 4: Parameter Values for exogenous equations. Values without units are unit free parameters.
Units are per annum unless otherwise noted.

6 Learning and Forecast Errors

The rate of learning is best viewed by observing the mean absolute forecast errors over time, given

the optimal decisions presented in the simulation results. For each simulation i, the forecast errors

of each uncertain parameter are:

Forecast Errorβ,it = abs
(
β̃i − βit

)
, (104)

Forecast Errorφ,it = abs
(
φ̃i − φit

)
, (105)
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Here β̃i and φ̃i are the true values drawn from the prior distribution for simulation i, and βit and φit

are the means of the current beliefs each period. We similarly compute the absolute forecast errors

for the climate sensitivity ∆T2×.47

Forecast Error∆T2×,it = abs
(

∆̃T 2×,i −∆T2×,it

)
, (106)

Figure 12 plots the mean absolute forecast error for these three parameters.
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Figure 12: Mean absolute forecast errors for φ̃, β̃ and ∆T̃2×. Mean of 10,000 simulations.

The climate sensitivity distribution is fat-tailed. As shown in Kelly and Tan (2015), for most

realizations of the climate sensitivity, the planner can rule out very large values quickly, reducing

forecast error. However, forecast errors are difficult to reduce much beyond the initial few periods.

Most of the remaining forecast error is driven by values of β̃ near one (consult equation 12 in the

47Again, climate sensitivity ∆T2× is a function of the uncertain net feedback parameter and so is itself uncertain.
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main text).48 Even small errors in the estimate of β̃ generate large forecast errors in ∆T̃2× in this

case. As for SGE effectiveness, the percent forecast errors barely fall over time. The size of the SGE

deployment is far too small to result in much learning. As shown in the theoretical section, SGE

levels way above one are required to speed learning about SGE. Modest deployment of SGE (less

than 0.1) is optimal given total costs and benefits, though it contains very little informational value.

Plotting the quantiles of forecast errors is also useful. Figure 13 plots the forecast error quantiles

for the SGE effectiveness parameter φ̃, without taking the absolute value.
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Figure 13: Forecast error quantiles for φ̃, 10,000 simulations.

From Bayes’ rule, the mean forecast errors for β̃ and φ̃ should be zero, since Bayes’ rule makes

unbiased estimates. Figure 13 shows the mean, which is still close to zero because the distribution

for φ̃ is the symmetric normal. The 90% and 10% quantiles indicate that forecast errors remain even

well past 2100 for some simulations. As a percentage of the true value, forecast errors in the lowest

10% represent average forecast errors of about -9%, whereas forecast errors in the top 10% represent

48Compare also the mean versus upper 90% quantile in Figure 5.
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average forecast errors of 10-11%.49 Optimal SGE deployment is not a large enough experiment to

significantly reduce these forecast errors.

Figure 14 plots the forecast error quantiles for the climate sensitivity ∆T̃2×.
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Figure 14: Forecast error quantiles for ∆T̃2×, 10,000 simulations.

Although the error reduces to plus or minus 0.1 by 2100, learning does not improve forecasts

further beyond that point, as noted above. For climate sensitivity, some learning quickly occurs

initially, followed by a long period of relatively little improvement in forecast errors. Learning about

both SGE effectiveness and the climate sensitivity is relatively slow, but the reasons are different.

Slow learning about climate sensitivity occurs since the climate sensitivity is the weighted sum of all

previous feedback effects. Thus small feedback uncertainties are magnified in the climate sensitivity.

In contrast, slow learning about SGE effectiveness occurs because fast learning requires significant

use of SGE, which is not optimal.

49Note that the largest/smallest forecast errors result from a sequence of weather shocks in the opposite direction
of the true value, not the largest/smallest true values of β and φ. Therefore, the set of simulations in the top/bottom
10% in Figure 13 differ from the set of simulations in the top/bottom 10% in Figures 3-4 in the main text.
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