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Introduction Recap Classification of States Limiting Behavior

Today’s agenda

1 Recap

2 Simulating a DTMC

3 Classification of States

4 Limiting Behavior (as n→∞)
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Discrete Time Markov Chains

A DTMC {Xn, n ≥ 0} is completely defined by
1 State Space S

State Space S is a finite or countable set of states that the
random variables Xn may take on.

2 Transition Probabilities pij

pij = P(Xn+1 = j |Xn = i), for all i , j ∈ S , for all n ≥ 0

3 Initial probability distribution α

αi = P(X0 = i), for all i ∈ S
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An Inventory Model (cont’d)

Consider the inventory model from Lecture 3.
S = {0, 1, 2, 3, 4, 5}
Assume that the initial state is randomly chosen, i.e.,

α = (16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

Transition Probability Matrix is

P =



0 1 2 3 4 5

0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3


p
(n)
ij = P(Xk+n = j |Xk = i) is given by the C-K Equations

P(n) = Pn
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probability distribution of Xn

The probability distribution of Xn is

πn = αPn

We denote P(Xn = i) = πn(i)
The expected value of Xn is given by

E (Xn) = πn · S =
∑
i∈S

iπn(i) (dot product)

P(X2 = 4) = π2(4)

=
5∑

i=0

P(X2 = 4|X0 = i)P(X0 = i)

=
5∑

i=0

p
(2)
i4 αi

P(X2 = 4,X6 ≥ 3,X11 = 0) = P(X11 = 0|X2 = 4,X6 ≥ 3)P(X2 = 4,X6 ≥ 3)

= P(X11 = 0|X6 ≥ 3)P(X2 = 4,X6 ≥ 3)

= P(X11 = 0|X6 ≥ 3)P(X6 ≥ 3|X2 = 4)P(X2 = 4)

=
(
p
(5)
30 + p

(5)
40 + p

(5)
50

)(
p
(4)
43 + p

(4)
44 + p

(4)
45

)
π2(4)
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discrete inverse transform method

P=

[ 0 1

0 0.3 0.7
1 0.6 0.4

]

Once you get Xn−1, simulate Xn, given the value of Xn−1

To sequentially simulate the first n transitions X1,X2, ...,Xn,
we only need to simulate n iid uniforms U1,U2, ...,Un
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discrete inverse transform method

Consider again the inventory model

P =



0 1 2 3 4 5

0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3


Suppose Xn−1 = 3

How to simulate Xn?

Simulate a U ∼ Uniform(0, 1).

Get Xn according to the following table

Simulated U 0 ≤ U ≤ 0.1 0.1 < U ≤ 0.3 0.3 < U ≤ 0.7 0.7 < U ≤ 1 1 < U
Simulated Xn 0 1 2 3 4 or 5
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General Case

S = {0, 1, ...,m}

P =


0 1 ... m

0 p00 p01 . . . p0m
1 p20 p21 . . . p1m
...

...
...

. . .
...

m pm0 pm1 . . . pmm


Suppose Xn−1 = i

How to simulate Xn?

Simulate a U ∼ Uniform(0, 1)

Get Xn according to the following table

Simulated U 0 ≤ U ≤ pi0 pi0 < U ≤ pi0 + pi1 . . .

m−1∑
j=0

pij < U ≤
m∑
j=0

pij

Simulated Xn 0 1 . . . m
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Accessibility

Definition: Accessibility

We say that a state j is accessible from state i

i → j

if p
(n)
ij > 0 for some n ≥ 0.

We say that j is accessible from i if there is a possibility of ever
reaching j from i .

If j is not accessible from i , then

p
(n)
ij = 0 for all n ≥ 0

and thus the chain started from i never reaches j .

By definition, i is accessible from i , i.e., i → i
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Communication

Definition: Communication

We say that states i and j communicate

i ↔ j

if i is accessible from j , and j is accessible from i , i.e.,

j → i and i → j

We say that two states communicate if they are accessible from
one another.

By definition, i communicates with itself, i.e., i ↔ i .

Communication is transitive:

If i ↔ j and j ↔ k ,

then i ↔ k
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Communication Classes: Example 1

Consider again the inventory model

P =



0 1 2 3 4 5

0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3


All states communicate with each other. The Markov Chain is
irreducible.
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s-S policy

Consider again the inventory model

P =



0 1 2 3 4 5

0 0 0 0.1 0.2 0.4 0.3
1 0 0 0.1 0.2 0.4 0.3
2 0.3 0.4 0.3 0 0 0
3 0.1 0.2 0.4 0.3 0 0
4 0 0.1 0.2 0.4 0.3 0
5 0 0 0.1 0.2 0.4 0.3


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s-S policy: Limiting Behavior

P10 ≈



0 1 2 3 4 5

0 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056
1 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056
2 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056
3 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056
4 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056
5 0.0909 0.1556 0.2310 0.2156 0.2012 0.1056


The matrix elements appear to converge to some constant prob-
abilities

The rows become identical

Why? What determines that limit?
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Stationary Distribution

Definition: Stationary Distribution

Let {Xn, n ≥ 0} be a Markov Chain with initial probability distri-
bution α, state Space S , and transition probability matrix P. A
probability distribution π is called stationary distribution for the
markov chain if

π = πP (1)

and ∑
i∈S

πi = 1.

The stationary distribution π does not depend on α.

Equation (1) can be written as

πj =
∑
i∈S

πipij for all j ∈ S
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Stationary Distribution: in MATLAB

Suppose S = {1, 2, ...,m}, a finite state space

π is a probability distribution, therefore

m∑
i=1

πi = 1⇒ (π1, π2, ..., πm) ·


1
1
...
1

 = π · 1 = 1

π is stationary, therefore

π = πP

⇒πI = πP

⇒π(I− P) = 0 ∈ Rm×1

We end up with the system

πA = b

where

π ∈ R1×m, A = (I−P, 1) ∈ Rm×(m+1), b =

(
0
1

)
∈ R1×(m+1)
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Stationary Distribution: in MATLAB

%%STATIONARY DISTRIBUTION

P=[0 0 0.1 0.2 0.4 0.3

0 0 0.1 0.2 0.4 0.3

0.3 0.4 0.3 0 0 0

0.1 0.2 0.4 0.3 0 0

0 0.1 0.2 0.4 0.3 0

0 0 0.1 0.2 0.4 0.3];

n=size(P,1);

A=[eye(n)-P,ones(n,1)];

b=[zeros(1,n),1];

%We want to solve the system pi*A=b

pi=b/A
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Stationary Distribution

Theorem

(under assumptions) Every irreducible DTMC has a unique station-
ary distribution. The stationary distribution corresponds to the long
run proportion of time that the DTMC spends on each state.

Consider for example, the inventory model

We can verify this theorem using simulation

The long run proportion of days that the closing inventory is
zero is

π0 = 0.0909
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