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Abstract

The Black-Scholes (1973) model frequently misprices deep-in-the-money
and deep-out-of-the-money options. Practitioners popularly refer to these strike price
biases as volatility smiles. In this paper we examine a method to extend the
Black-Scholes model to account for biases induced by nonnormal skewness and
kurtosis in stock return distributions. The method adapts a Gram-Charlier series
expansion of the normal density function to provide skewness and kurtosis adjustment
terms for the Black-Scholes formula. Using this method, we estimate option-implied
coefficients of skewness and kurtosis in S&P 500 stock index returns. We find
significant nonnormal skewness and kurtosis implied by option prices.

l. Introduction

The Black-Scholes (1973) option pricing model is commonly used to
value a wide range of derivative securities. Despite its usefulness, however, the
model has some well-known deficiencies. For example, the Black-Scholes model
frequently misprices deep-in-the-money and deep-out-of-the-money options. These
mispricing patterns are thought to result from the parsimonious assumptions used
to derive the model. In particular, the Black-Scholes model assumes that stock log
prices follow a constant variance diffusion process, where over any finite interval
a log price is normally distributed. Early studies by Black and Scholes (1972) and
Officer (1973) test and reject the validity of the constant variance assumption.
Since then, a vast body of research, most notably the conditional
heteroskedasticity literature originating with Engle (1982) and Bollerslev (1986),
documents the volatile nature of stock return variances. Financial economists now
know that stock return variances are stochastic and correlated with stock price
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levels. Consequently, stock return distributions are skewed and kurtotic relative
to a normal distribution. Heston (1993), Hull and White (1987), Scott (1987),
Stein and Stein (1991), and Wiggins (1987) show that under these conditions, the
original Black-Scholes model yields option prices that are expected to differ
systematically from observed option prices.

As Black (1975) points out, “One possible explanation for this
[mispricing] pattern is that we have left something out of the formula.” In this
paper we derive a relatively simple method to extend the Black-Scholes formula
to account for nonnormal skewness and kurtosis in stock return distributions. Our
methodology is analogous to Jarrow and Rudd (1982). We begin by expanding
the Black-Scholes formula to account for nonnormal skewness and kurtosis in
stock return distributions. Then, based on this expanded Black-Scholes formula,
we estimate coefficients of skewness and kurtosis implied by option prices. This
methodology extends the widely used procedure of obtaining implied standard
deviations to include obtaining implied coefficients of skewness and kurtosis.

1. Previous Studies of the Black-Scholes Model

Pricing biases associated with the Black-Scholes option pricing model are
well documented. Black (1975), Emanuel and MacBeth (1982), MacBeth and
Merville (1979), and Rubinstein (1985) report that the Black-Scholes model tends
to systematically misprice in-the-money and out-of-the-money options. Early tests
by Black (1975) find that the Black-Scholes model underprices deep-
out-of-the-money stock options and overprices deep-in-the-money stock options.
Later, MacBeth and Merville (1979) examine Chicago Board Options Exchange
(CBOE) call options from December 1975 to December 1976. In contrast to
Black (1975), they find that the Black-Scholes model overprices out-of-the-money
call options and underprices in-the-money call options.

Rubinstein (1985) studies options price data for the thirty most actively
traded option classes on the CBOE between August 1976 and August 1978. He
divides the data into two subgroups. The first subgroup includes data from August
1976 to October 1977. In this period, Rubinstein reports a systematic mispricing
pattern similar to that reported by MacBeth and Merville (1979), where the
Black-Scholes model overprices out-of-the-money options and underprices
in-the-money options. The second subgroup includes data from October 1977 to
August 1978. During this period, he reports a systematic mispricing pattern
similar to that reported by Black (1975), where the Black-Scholes model
underprices out-of-the-money options and overprices in-the-money options.
Rubinstein concludes that strike price biases for the Black-Scholes model are
significant and that the direction of bias tends to be the same for most options at
any point. However, the bias direction can change across different periods.
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Jarrow and Rudd (1982) propose a semiparametric option pricing model
to account for observed strike price biases in the Black-Scholes model. They
derive an option pricing formula from an Edgeworth expansion of the lognormal
probability density function to model the distribution of stock prices. In this paper
we derive a semiparametric option pricing formula analogous to that of Jarrow
and Rudd. The chief difference is that we use a Gram-Charlier series expansion
of the normal probability density function to model the distribution of stock log
prices. Stuart and Ord (1987, pp. 222-25) discuss the distinction between an
Edgeworth expansion and a Gram-Charlier expansion. Operationally, the Jarrow
and Rudd method accounts for skewness and kurtosis deviations from
lognormality for stock prices, while the method developed here accounts for
skewness and kurtosis deviations from normality for stock returns. As it turns out,
both models are equally effective in providing accurate option price adjustment
terms. In this paper we use a model based on skewness and kurtosis deviations
from normality in stock returns because skewness and kurtosis coefficients for all
normal distributions are 0 and 3, respectively (Stuart and Ord (1987, p. 183)). In
contrast, skewness and kurtosis coefficients for lognormal distributions vary
across different lognormal distributions (Aitchison and Brown (1963)). As a
result, it is more convenient to report and interpret empirical results based on
observed skewness and kurtosis deviations from a normal distribution since our
reference points are constants.

lll. Derivation of a Skewness- and Kurtosis-adjusted
Black-Scholes Model

To incorporate option price adjustments for nonnormal skewness and
kurtosis in an expanded Black-Scholes option pricing formula, we use a
Gram-Charlier series expansion of a normal density function. Stuart and Ord
(1987, pp. 222-23) discuss this approach, which is similar to a Taylor series
expansion for analytic functions. From this expanded density, we obtain an option
price formula that is the sum of a Black-Scholes price plus adjustment terms for
nonnormal skewness and kurtosis. We derive this expanded formula below.

A Gram-Charlier series expansion (Type A) of the density function f(x)
is defined as

f(x) = E ¢, H (1) (x)

where ¢(x) is a normal density function, H,(x) are Hermite polynomials derived
from successively higher derivatives of @(x), and the coefficients ¢, are
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determined by moments of the distribution function F(x). This expansion is an
infinite series. However, in actual applications the series is truncated to exclude
terms beyond the fourth moment. The resulting truncated density provides an
approximation that accounts for nonnormal skewness and kurtosis. Specifically,
after standardizing to a mean zero and unit variance, a truncated series that
accounts for skewness and kurtosis yields the following density function where
i; and p, denote standardized coefficients of skewness and kurtosis, respectively:

u, -

3
4' (24 — 622 ¥ 3) (1)

g@) =n@)|l +

%(ﬁ S32)

where

1

exp(-z%2);
Van

n(z) =

In(S,/S,) -(r - c®s)t

zZ = b}

oyt

S, = current stock price;

S, = random stock price at time #;

¥ = risk-free interest rate;

t = time remaining until option maturity; and

o = standard deviation of returns for the underlying stock.

An important property of the density function g(z) in equation (1) is that
it yields the following expected values: E(z) = 0, E(z%) = 1, E(z°) = p,, E(z*) = p,.
Thus, the coefficients of skewness and kurtosis for g(z) are explicit parameters in
its functional form. Under a normal specification we have the skewness and
kurtosis coefficients p, = 0 and p, = 3, respectively, which upon substitution into
g(z) yield the special case of a standard normal density n(z).

Assuming risk neutrality, we apply the density function g(z) in equation
(1) to derive a theoretical European call option price as the present value of an
expected payoff at option expiration. Mathematically, this option price is derived
from the following expression,

0

Coe = [(S, - K)g(z(S))dz(S) @)

k
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where 2(S)) = (log S, - p)/oVt, p =log S, + (r - 6%/2)t, and K is the option’s strike

price. We evaluate this integral in the Appendix. From it, we obtain the following

option price formula based on a Gram-Charlier density expansion, denoted here
by Cge:

CGC = CBS U, Q3 + (P'4 - 3)Q4 (3)

where

Cys =S, M(d) - Ke™ N (d - o\f) is the Black-Scholes option pricing formula;

0, - %SOGW' (Qoyt - dyn(d) - &*t N(d));

0, = L5001 (@ 1 - 30/ (d - o (@ + 1% N@): and

d

_ In(S,/K) + (r + o*/2)

oyt

In equation (3), O, and Q, represent the marginal effect of nonnormal
skewness and kurtosis, respectively, on the option price C.. To graphically assess
the expected effect of skewness and kurtosis on option prices, we plot O, and O,
in Figure I in an example where S, = 100, o = 15 percent, ¢ = three months, r =
0.04, and K varies from 75 to 125. The horizontal axis measures option
moneyness, defined as the percent difference between a stock price and a
discounted strike price:

~-rt

Ke™ - §,
Moneyness(%) = —2 x 100.
Ke -rt

The vertical axis measures dollar values for Q, and Q,. The effects of skewness
and kurtosis on option prices displayed in Figure I are qualitatively similar to
Figures Il and IV in Heston (1993). Most important, negative (positive) skewness
causes the Black-Scholes model to overprice (underprice) out-of-the-money
options and underprice (overprice) in-the-money options.
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Figure 1. Adjustments for Skewness and Kurtosis. Option price adjustments for negative skewness (-(;) and
positive kurtosis (Q,) deviations from normality.

Equation (3) is the fundamental option price formula of this study. If
stock returns are normally distributed, then p, = 0 and p, = 3 and equation (3)
collapses to the Black-Scholes option price formula. If p, # 0 and p, # 3,
equation (3) is the sum of a Black-Scholes option price plus adjustment terms for
nonnormal skewness and kurtosis.

V. Data

Price data for this study come from the Berkeley Options Data Base of
CBOE options. This database includes records of bid-ask price quotations and
transactions time-stamped to the nearest second. We base this study on the CBOE
market for S&P 500 index options. Rubinstein (1994) argues this market best
approximates conditions required for Black-Scholes model accuracy. Option
prices, index levels, strike prices, and option maturities come directly from the
Berkeley database. To avoid bid-ask bounce problems in transaction data, we take
option prices as midpoints of bid-ask price quotations. U.S. Treasury bill rates
with maturities closest to option expirations state the risk-free interest rate.
Interest rate information is culled from the Wall Street Journal. Since S&P 500
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index options are European style, we use the method suggested by Black (1975)
to adjust index levels by subtracting present values of future dividend payments
before each option’s expiration date. The S&P 500 Information Bulletin provides
daily S&P 500 index dividends.

Following data screening procedures in Barone-Adesi and Whaley (1986),
we delete all options with prices less than $0.125 and all option transactions
occurring before 9 a.m. We also purge obvious outliers from the sample,
including option prices that lie outside well-known no-arbitrage option price
boundaries (Merton (1973)). We report results obtained from option price
quotations for contracts traded in November 1990 and December 1993.

V. Estimation Procedures and Results

Our first set of estimation procedures assesses the performance of the
Black-Scholes option pricing model. In these procedures we estimate implied
standard deviations (ISD) on a daily basis for call options on the S&P 500 index.
On a given day for a given option maturity class, we obtain a unique ISD from
all bid-ask price midpoints using Whaley’s (1982) simultaneous equations
procedure. We use this ISD as an input to calculate theoretical Black-Scholes
option prices for all price observations within the same maturity class. We then
compare these theoretical Black-Scholes prices with corresponding
market-observed prices.

Our second set of estimation procedures assesses the performance of the
skewness- and kurtosis-adjusted Black-Scholes option pricing formula derived in
the previous section. In these procedures we simultaneously estimate [SD, implied
skewness (ISK), and implied kurtosis (IKT) parameters using all bid-ask
midpoints on a given day for a given maturity class. We then compare these
theoretical skewness- and kurtosis-adjusted Black-Scholes option prices with their
corresponding market-observed prices.

The Black-Scholes Option Pricing Model

The Black-Scholes option price formula requires five inputs: a security
price, a strike price, a risk-free interest rate, an option maturity, and a return
standard deviation. Only the return standard deviation is not directly observable.
Adopting Whaley’s (1982) simultaneous equations procedure, we estimate a return
standard deviation by minimizing the following sum of squares with respect to the
argument BSISD, which denotes a Black-Scholes implied standard deviation.
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TABLE 1. Comparison of Black-Scholes Prices and Observed Prices of S&P 500 Index Options (SPX)
for November 1990.

Proportion of ~ Avg. Deviation of

Theoretical Theoretical Prices
No. of  Implied Std.  Prices Outside from Spread Avg. Call Avg. Bid-Ask
Date Price Obs.  Dev. (%) Bid-Ask Spreads  Boundaries ($) Price ($) Spread ($)
11/2/90 1050 26.66 0.91 1.68 22.52 0.71
11/6/90 1107 25.70 0.91 1.58 22.78 0.70
11/8/90 2274 26.29 0.91 1.53 21.08 0.73
11/12/90 1367 2421 091 1.51 22.85 0.69
11/14/90 1216 2331 0.92 1.54 22.51 0.67
11/16/90 1898 22.59 0.91 1.47 21.52 0.78
11/20/90 1079 22.58 0.88 1.10 24.70 0.86
11/26/90 1084 24.45 0.83 1.17 24.62 0.86
11/28/90 672 24.70 0.87 1.18 26.04 0.82
11/30/90 1254 24.58 0.88 1.23 25.56 0.78
Average 1300 24.51 0.89 1.40 23.42 0.76

Notes: On each day indicated, a Black-Scholes implied standard deviation (BSISD) is estimated from current
price observations. Theoretical Black-Scholes option prices are then calculated using BSISD. All observations
correspond to call options traded in November 1990 and expiring in March 1991.

min % [C

BSISD 7 [~oss @

-C

2
BS,/(BS]SD)]

In equation (4) above, N is the total number of price quotations available on a
given day for a given maturity class, C,s is a market-observed call price, and
Cys(BSISD) is a theoretical Black-Scholes call price calculated using the standard
deviation parameter BSISD. Based on the value of BSISD that minimizes the sum
of squared errors in equation (4), we calculate theoretical Black-Scholes option
prices for all options on a given day within the same maturity class. We then
compare these theoretical Black-Scholes option prices with their corresponding
market-observed prices.

Table 1 summarizes our calculations for S&P 500 index call option prices
observed during November 1990 for options maturing in March 1991. Column 1
lists sampling dates within the month. To maintain table compactness, we report
results only for even-numbered dates within the month. Column 2 lists the
number of price quotations available on each date. Black-Scholes implied standard
deviations (BSISD) for each date are reported in column 3. To assess the
economic significance of differences between theoretical and observed prices, we
list the proportion of theoretical Black-Scholes option prices lying outside their
bid-ask spreads, either below the bid price or above the ask price, in column 4.
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Column 5 lists the average absolute deviation of theoretical prices from bid-ask
boundaries for prices lying outside their bid-ask spreads. Specifically, for each
theoretical option price lying outside its corresponding bid-ask spread, we
calculate an absolute deviation according to the following formula:

max(Cgs - Ask, Bid - Cyg)

This absolute deviation statistic measures the economic significance of deviations
of theoretical option prices from observed bid-ask spreads. Finally, column 6 lists
day-by-day averages of observed call prices, and column 7 lists day-by-day
averages of observed bid-ask spreads.

In Table 1, the bottom row lists column averages for all variables. For
example, the average number of daily price observations is 1,300 (column 2),
with an average option price of $23.42 (column 6) and an average bid-ask spread
of $0.76 (column 7). The average implied standard deviation is 24.51 percent
(column 3). The average proportion of theoretical Black-Scholes prices lying
outside their corresponding bid-ask spreads is 89 percent (column 4), with an
average deviation of $1.40 for observations lying outside a spread boundary. This
average deviation is almost twice as large as the average bid-ask spread of $0.76.

Figure II displays deviations of observed call prices from theoretical
Black-Scholes call prices for November 6, 1990. The horizontal axis measures
option moneyness and the vertical axis measures price deviations in dollars. As
previously defined, option moneyness is the percentage difference between a
discounted strike price and a dividend-adjusted stock index level. A negative
(positive) percentage corresponds to in-the-money (out-of-the-money) options with
low (high) strike prices. Price deviations measured on the vertical axis are
observed prices minus theoretical prices. So defined, the fixed horizontal zero axis
corresponds to theoretical Black-Scholes prices, and the dots correspond to
observed call prices relative to theoretical Black-Scholes prices.

Figure II reveals that the Black-Scholes model systematically overvalues
out-of-the-money options and undervalues in-the-money options for this sample
of S&P 500 index call options. Moreover, the mispricing is significant. For
example, Figure II shows that for options more than 5 percent in-the-money or
out-of-the-money, the typical deviation between observed prices and theoretical
Black-Scholes prices is more than two dollars, or $200 per contract. By contrast,
the average bid-ask spread is $0.76, or $76 per contract.

Skewness- and Kurtosis-adjusted Black-Scholes Model

In our second set of estimation procedures, on a given day within a given
option maturity class, we simultaneously estimate return standard deviation,
skewness, and kurtosis parameters by minimizing the following sum of squares
with respect to the arguments ISD, ISK, and IKT:
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Figure II. Black-Scholes Formula (Four-month Options).

min %

ISD,ISK,IKT -

[C

OBS, j

(ISD) + ISK O, + (IKT - 3)Q))[* (%)

BS,j

The resulting values for ISD, ISK, and IKT represent maximum likelihood
estimates of implied standard deviation, implied skewness, and implied kurtosis
parameters based on N price observations. Substituting ISD, ISK, and IKT
estimates into equation (3), a skewness- and kurtosis-adjusted Black-Scholes
option price is expressed as

Cge = Cy(ISD) + ISK Q, + (IKT - 3)Q,. (6)

Equation (6) yields theoretical skewness- and kurtosis-adjusted Black-Scholes
option prices from which we calculate deviations of theoretical prices from
market-observed prices.

Table 2 summarizes our calculations for the same S&P 500 call option
prices used to compile Table 1. Consequently, column 1 in Table 2 lists the same
even-numbered dates and column 2 lists the same number of price quotations that
are listed in Table 1. However, to assess the out-of-sample forecasting power of
skewness and kurtosis adjustments, the simultaneously estimated ISD, ISK, and
IKT coefficients are estimated from prices observed on trading days immediately
before the dates in column 1. Thus, out-of-sample parameters ISD, ISK, and IKT
reported in columns 3, 4, and 5, respectively, correspond to one-day lagged
estimates. We use these one-day lagged values of ISD, ISK, and IKT to calculate
theoretical skewness- and kurtosis-adjusted Black-Scholes option prices
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TABLE 2. Comparison of Skewness- and Kurtosis-adjusted Black-Scholes Prices and Observed Prices
of S&P 500 Index Options (SPX) for November 1990.

Proportion of  Avg. Deviation of
Theoretical Theoretical Prices

No. of  Implied Std. Implied Implied Prices Outside from Spread
Date Price Obs.  Dev. (%) Skewness Kurtosis Bid-Ask Spreads  Boundaries ($)
11/2/90 1050 29.77 -1.66 3.25 0.81 0.48
11/6/90 1107 28.83 -1.88 3.82 0.86 0.33
11/8/90 2274 27.96 -1.59 3.23 0.55 0.22
11/12/90 1367 27.80 -1.78 4.01 0.98 0.96
11/14/90 1216 25.20 -1.81 3.61 0.68 0.38
11/16/90 1898 24.38 -1.87 3.37 0.54 0.39
11/20/90 1079 22.83 -1.83 3.82 0.14 0.16
11/26/90 1084 22.72 -1.52 3.01 0.95 0.61
11/28/90 672 24.97 -1.69 3.38 0.39 0.26
11/30/90 1254 24.19 -1.59 3.23 0.40 0.22
Average 1300 25.87 -1.72 347 0.63 0.40

Notes: On each day indicated, implied standard deviation (ISD), skewness (ISK), and kurtosis (IKT) parameters
are estimated from one-day lagged price observations. Theoretical option prices are then calculated using these
out-of-sample implied parameters. All observations correspond to call options traded in November 1990 and
expiring in March 1991.

according to equation (6) for all price observations on the even-numbered dates
listed in column 1. All skewness coefficients in column 4 are negative, with a
column average of -1.72. All kurtosis coefficients in column 5 are greater than
3, with a column average of 3.47. Normal distribution skewness and kurtosis
values are 0 and 3, respectively.

Column 6 of Table 2 lists the proportion of skewness- and
kurtosis-adjusted prices lying outside their corresponding bid-ask spread
boundaries. The column average proportion is 63 percent. Column 7 lists average
absolute deviations of theoretical prices from bid-ask spread boundaries only for
prices lying outside their bid-ask spreads. The column average price deviation is
$0.40, or $40 per contract, which is close to half the size of the average bid-ask
spread of $0.76, or $76 per contract, reported in Table 1.

We assess the statistical significance of the improvement in performance
from out-of-sample adjustments for skewness and kurtosis using the following
Z-statistic for the difference between two proportions (Hoel (1984)):

Z_ pl_pZ

P, = YN, + p,(1 - pIN,
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Figure III. Skewness- and Kurtosis-adjusted Formula (Four-month Options).

In this statistic, p, and p, are sample proportions, and N, and ¥, are sample sizes
corresponding to these proportions. For example, from Table 1 we get the
volume-weighted average proportion p, = .90 and from Table 2 we get the
volume-weighted average proportion p, = .63. Both of these proportions are based
on a total sample size of N = 13,001 for all even-numbered days in the month.
A quick computation yields a Z-statistic of 54.2, which is statistically significant
at more than a 99.99 percent confidence level. We conclude that out-of-sample
adjustments for skewness and kurtosis significantly reduce the proportion of
theoretical prices lying outside their corresponding observed bid-asked spreads.

Figure III presents deviations of market-observed option prices from
theoretical skewness- and Kkurtosis-adjusted Black-Scholes option prices for
November 6, 1990. As with Figure II, Figure III measures option moneyness on
the horizontal axis, where negative (positive) moneyness corresponds to
in-the-money (out-of-the-money) options with low (high) strike prices. Dollar
price deviations measured on the vertical axis are calculated as market-observed
prices less theoretical prices.

Figure I1I reveals that out-of-sample adjustments for nonnormal skewness
and kurtosis remove almost all strike price biases of the Black-Scholes model for
this sample of S&P 500 index options. Furthermore, all deviations of skewness-
and kurtosis-adjusted Black-Scholes prices from observed prices are less than one
dollar in magnitude.
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TABLE 3. Comparison of Black-Scholes Prices and Observed Prices of S&P 500 Index Options (SPX)
for December 1993.

Proportion of ~ Avg. Deviation of

Theoretical Theoretical Prices
No. of  Implied Std.  Prices Outside from Spread Avg. Call Avg. Bid-Ask
Date Price Obs.  Dev. (%) Bid-Ask Spreads  Boundaries ($) Price ($) Spread ($)
12/2/93 2062 15.35 0.77 0.54 30.30 0.72
12/6/93 2018 14.90 0.65 0.44 29.59 0.69
12/8/93 1346 14.92 0.71 0.50 3093 0.65
12/10/93 3221 14.64 0.75 0.54 30.37 0.62
12/14/93 3546 15.12 0.69 0.53 29.21 0.70
12/16/93 2303 15.62 0.76 0.59 31.06 0.67
12/20/93 1305 14.79 0.75 0.78 29.93 0.59
12/22/93 1046 14.50 0.73 0.63 27.32 0.64
12/28/93 778 13.78 0.56 0.75 25.84 0.64
12/30/93 544 13.33 0.47 0.56 23.65 0.63
Average 1816 14.70 0.68 0.59 28.82 0.65

Notes: On each day indicated, a Black-Scholes implied standard deviation (BSISD) is estimated from current
price observations. Theoretical Black-Scholes option prices are then calculated using BSISD. All observations
correspond to call options traded in December 1993 and expiring in March 1994.

Further Empirical Results

To corroborate our empirical results, we apply all procedures leading to
Tables 1 and 2 and Figures II and I1I to a data set representing options traded in
December 1993 and maturing in March 1994. Tables 3 and 4 and Figures IV and
V below present empirical results obtained from these data.

For this second sample of S&P 500 index options observed in December
1993, the average Black-Scholes implied standard deviation reported in Table 3
is 14.70 percent (column 3). This is less than the average standard deviation of
24.51 percent reported in Table 1, indicating that market volatility was much
lower at year-end 1993 than at year-end 1990. The average number of daily price
observations is 1,816 (column 2), with an average option price of $28.82 (column
6) and an average bid-ask spread of $0.65 (column 7). The average proportion of
theoretical prices lying outside their corresponding bid-ask spreads is 68 percent
(column 4), with an average deviation of $0.59 for observations lying outside a
spread boundary. This average deviation of $59 per contract is almost as large as
the average bid-ask spread of $65 per contract.

Figure IV displays deviations of observed call prices from theoretical
Black-Scholes call prices for December 8, 1993. Option moneyness on the
horizontal axis is the percentage difference between a discounted strike price and
a dividend-adjusted stock index level, where a negative (positive) percentage
corresponds to in-the-money (out-of-the-money) options with low (high) strike
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Figure IV. Black-Scholes Formula (Three-month Options).

prices. Price deviations measured on the vertical axis are market-observed prices
minus theoretical prices.

Figure IV reveals the same general pattern of strike price biases shown in
Figure II, where the Black-Scholes model underprices in-the-money options and
overprices out-of-the-money options. However, because of lower intraday index
volatility, considerably more observations overlap in Figure IV. Figure IV is
actually constructed from 1,346 price observations, although only a much smaller
number of dots are visually distinguishable.

Table 4 summarizes our calculations for the same S&P 500 call option
prices used to compile Table 3, where out-of-sample parameters ISD, ISK, and
IKT are one-day lagged estimates used to calculate theoretical skewness- and
kurtosis-adjusted Black-Scholes option prices. Again, all skewness coefficients
(column 4) are negative, with a column average of -1.66, and all kurtosis
coefficients (column 5) are greater than 3, with a column average of 5.75.

Column 6 of Table 4 lists the proportion of skewness- and
kurtosis-adjusted prices lying outside bid-ask spread boundaries, where the
column average proportion is 18 percent. Column 7 lists average absolute
deviations of theoretical prices from bid-ask spread boundaries. The column
average deviation is $0.12, or $12 per contract, which is less than one-fifth the
average bid-ask spread of $0.65, or $65 per contract.

We assess the statistical significance of the improvement in performance
from out-of-sample adjustments for skewness and kurtosis using the same
Z-statistic for the difference between two proportions described above. From
Table 3 we get the average proportion p, = .68, and from Table 4 we get the
average proportion p, = .18. Using the sample size of N = 18,160 for all
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TABLE 4. Comparison of Skewness- and Kurtosis-adjusted Black-Scholes Prices and Observed Prices
of S&P 500 Index Options (SPX) for December 1993.

Proportion of ~ Avg. Deviation of
Theoretical Theoretical Prices

No. of  Implied Std. Implied Implied Prices Qutside from Spread
Date Price Obs.  Dev. (%) Skewness Kurtosis Bid-Ask Spreads  Boundaries (§$)
12/2/93 2062 14.14 -1.45 5.35 0.07 0.07
12/6/93 2018 13.30 -1.54 4.83 0.09 0.10
12/8/93 1346 13.32 -1.65 5.77 0.05 0.08
12/10/93 3221 13.42 -1.49 5.59 0.15 0.10
12/14/93 3546 13.77 -1.45 6.06 0.11 0.10
12/16/93 2303 13.69 -1.64 5.48 0.16 0.15
12/20/93 1305 13.06 -1.81 5.98 0.24 0.20
12/22/93 1046 12.83 -1.90 6.18 0.21 0.10
12/28/93 778 12.40 -1.92 6.37 0.57 0.18
12/30/93 544 11.56 -1.74 5.90 0.12 0.12
Average 1816 13.15 -1.66 5.75 0.18 0.12

Notes: On each day indicated, implied standard deviation (ISD), skewness (ISK), and kurtosis (IKT) parameters
are estimated from one-day lagged price observations. Theoretical option prices are then calculated using these
out-of-sample implied parameters. All observations correspond to call options traded in December 1993 and
expiring in March 1994,
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Figure V. Skewness and Kurtosis-adjusted Formula (Three-month Options).

even-numbered days in the month yields a Z-statistic of 111.5, which supports the
conclusion that out-of-sample adjustments for skewness and kurtosis significantly
reduce the proportion of theoretical prices lying outside their corresponding
observed bid-asked spreads.

Copvright © 2001. All Rights Reseved.
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Figure V displays deviations of observed option prices from theoretical
skewness- and kurtosis-adjusted Black-Scholes option prices for prices observed
on December 8, 1993. Figure V reveals that out-of-sample adjustments for
nonnormal skewness and kurtosis remove almost all strike price biases of the
Black-Scholes model for this sample of S&P 500 index options. Overall, this
second data set supports all conclusions reached with the first data set.

In addition to results for the two months of data reported in this paper, all
empirical procedures were performed using several other months of data.
Empirical results obtained from these other months of data are essentially
identical to results reported here. Furthermore, we applied all procedures to all
data using Jarrow and Rudd’s (1982) option price formula with qualitatively
similar results. These results are available from the authors upon request.

VI. Summary and Conclusion

We derive and empirically test a European option pricing model that
extends the Black-Scholes (1973) model to account for nonnormal skewness and
kurtosis in the distribution of stock returns. We find that adjustments for skewness
and kurtosis are effective in removing systematic strike price biases from the
Black-Scholes model for S&P 500 index options. The model is simple to
implement, because it is specified as a sum of three parts: a Black-Scholes option
price, plus separate adjustments for nonnormal skewness and kurtosis.

We apply the expanded model to estimate coefficients of skewness and
kurtosis implied by market-observed S&P 500 index option prices. These
skewness and kurtosis coefficients are simultaneously estimated with an implied
standard deviation. This method for simultaneously calculating implied standard
deviations and implied coefficients of skewness and kurtosis extends the widely
used procedure of only obtaining implied standard deviations. The model has
implications for researchers and practitioners concerned with the often-observed
strike price biases associated with the Black-Scholes option pricing formula.

Appendix

We outline a derivation of the expanded option price formula appearing
in equation (3). First, define p = InS, + (r - */2)tand d, = (p - In K)/c\ft, then
apply the change of variable z = (In S, - p)/oVt to equation (2). The option price
formula based on a Gram-Charlier expansion can then be expressed as




Skewness and Kurtosis in S&P 500 Returns 191

B, -3
7 H, (2) |n(z)dz,

C. =e™ j‘ (eum-‘llz _ K) 1 + %H3(Z) +

GC
~d,

where Hermite polynomials are defined by the relation H,(z)n(z) = d"n(z)/dz",
Hy(z) = 1 (Stuart and Ord (1987)). The first component of this expanded option
price formula is the Black-Scholes formula, which is derived in Stoll and Whaley
(1993). The second and third components are based on Hermite polynomials of
order n = 3 and n = 4, respectively. For these components, integration by parts
yields this equality:

T (e wroviz _ K)Hn(z)n(z)dz = —c\/t_ e® Ofo e‘“”’Hn_l(z)n(z)dz
_dz

-d,

2

Successive integration by parts transforms the right-hand side above into this
expression:

..Kn(dz)jgi1 (-g\/t_)j H,_ (-d,)+ (—g\/t—)”soe”N(dl)

Using the well-known equality Kn(d,) = S,e"n(d,), where d, = d, - ot yields this
expression:

soer'(-"i(-oﬁ Vi, (-djn(d) + (-ofr )"N(dz)]

j=1

Substituting the Hermite polynomials H,(z) = -z and H,(z) = (z* - 1) yields the
expressions needed to explicitly state the terms Q, and Q, in equation (3).
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