
Rule-based systems formalized within a software architectural styleq

R.F. Gamblea,* , P.R. Stigera, R.T. Plantb

aDepartment of Mathematical and Computer Sciences, University of Tulsa, Tulsa, OK 74104, USA
bDepartment of Computer Information Systems, University of Miami, Coral Gables, FL 33124, USA

Received 24 September 1998; received in revised form 5 January 1999; accepted 5 January 1999

Abstract

This article considers the utilization of architectural styles in the formal design of knowledge-based systems. The formal model of a style is
an approach to systems modeling that allows software developers to understand and prove properties about the system design in terms of its
components, connectors, configurations, and constraints. This allows commonality of design to be easily understood and captured, leading to
a better understanding of the role that an architectural abstraction would have in another complex system, embedded context, or system
integration. In this article, a formal rule-based architectural style is presented in detail using the Z notation. The benefits of depicting the rule-
based system as an architectural style include reusability, understandability, and the allowance for formal software analysis and integration
techniques. The ability to define the rule-based architectural style in this way, illustrates the power, clarity, and flexibility of this specification
form over traditional formal specification approaches. In addition, it extends current verification approaches for knowledge-based systems
beyond the knowledge base only.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Rule-based system; Knowledge-based system; Software architecture; Formal methods

1. Introduction

Software systems have primarily been developed in the
past within the spectrum of two camps: theWetand theDry
as described by Goguen [1]. TheWetcamp is primarily the
‘hacker’ mentality, in which the system developer wishes to
create a system as fast as possible and utilizes as many
heuristic design principles as possible to achieve that objec-
tive. The system may or may not be documented. In addi-
tion, validation of the system can be very difficult to perform
completely within the soft specification of requirements.
The reality that this approach works, quite often against
the odds, is because the designer is not developing a system
purely in a random way, but is utilizing heuristic patterns of
design, based upon previous experience and anecdotes
passed among programmers.

The alternative development camp is theDry community
where only formal methodologies are utilized. These design

principles have been propagated by ‘the new mathematical
puritans’ [2]. Although outside observers may consider
these mathematical designs difficult to express and under-
stand upon first examination, more detailed study would
show that they are not arbitrary pieces of mathematical
specification, but actually follow certain design patterns.

The aim of the research into architectural styles is to bring
together these two philosophies in terms of their design
principles, both heuristic and formal into a single approach
toward solid, correct and rigorous systems design that facil-
itates stronger verification and validation. Early examples of
this confluence between the wet and the dry communities
are the design principles laid down by researchers, such as
Jackson, who identified a series of rules for constructing
‘structured designs’ from the basic building blocks of
programs such as instruction sequence, selection and itera-
tion [3]. These and other design principles have been carried
into the research on software architecture and architectural
styles [10].

In the same way Jackson attempted to formalize program-
ming heuristics by creating building blocks, or “higher
levels of abstraction,” through his sequences selection and
iteration “box and data-structured” methodologies, there is a
movement in software engineering research to attempt to
combine “refined-heuristic” design principles with formal

Knowledge-Based Systems 12 (1999) 13–26

0950-7051/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-7051(99)00004-0

q This research is sponsored in part by the AFOSR (F49620-98-1-0217).
The US Govt. is authorized to reproduce and distribute reprints for govern-
mental purposes not withstanding any copyright violation therein. The
views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endor-
sements, either expressed or implied of the AFOSR or the US Govt.

* Corresponding author.
E-mail address:gamble@euler.mcs.utulsa.edu (R.F. Gamble)

mathematical notations. One area of concentration for this is
in formalizing architectural styles [4–8].

Software architecture provides a way to more compre-
hensively address the issue of designing a complex software
system of component modules [10]. Commonalties in
system structure can be exploited through the use of archi-
tectural styles, which are defined informally with respect to
their components, connectors, configurations, and
constraints [24]. Thus, styles provide a common basis for
communicating design knowledge. In addition, generic
architectural styles can be adapted via specialization for
reuse in particular applications.

In this article, we describe a formal model of a rule-based
architectural style in terms of its architectural abstractions
(components, connectors, and configuration). The use of
formal, mathematical modeling of software components
has been shown to reduce the ambiguity of a design speci-
fication and to contribute to increasing the reliability of the
implementation [4–6]. There is a strong need for AI-
researchers to have a well-defined architectural style for a
rule-based system. Such a style would prove beneficial
when, for example, there are multiple rule-based systems
contained within or gathered to form a larger complex
expert system. Within a common abstraction, the integration
and analysis of the connectivity between two or more of the
rule-based systems would be greatly facilitated. Another
benefit of integration at this more abstract level is that the
implementation issues do not impede the developers under-
standing of the system as a whole. Instead, the architectural
abstraction allows developers to concentrate on how the
components communicate and what they expect from each
other and their environment.

We concentrate on the rule-based architectural style
because it is a foundational style for knowledge based
systems. Certainly, other forms of knowledge-based
systems are being developed, e.g. hybrid, object-oriented,
and fuzzy. However, rules remain a major source for knowl-
edge representation. Thus, complex knowledge-based
systems may have multiple styles integrated to form a
whole system. In this situation, it is even more important
to have a common formal abstract representation of the
styles to examine and prove properties of performance
and quality. We present this work as a reference for deter-

mining the answering to the following questions: what is the
structural model of a rule-based system, what distinguishes
a rule-based system from other architectures, and can a
system be proven to be architecturally compliant with a
rule-based architectural style.

The article is composed of the following sections. Section
2 briefly describes the background of architectural styles
and the role of formal methods in those styles. Section 3
presents a formal model of a rule based system in its own
style using the Z notation [9]. Section 4 discusses verifica-
tion and validation of rule-based systems. Finally, Section 5
draws together conclusions to the findings of this work.

2. Relevant background

In this section, we present an overview of the role of
software architecture, its relationship to design issues in
AI-based systems, and the role formal methods plays in
architectural description.

2.1. Software architecture

As mentioned earlier, the programming community has
identified, over time, a series of structures that when used in
certain ways lead to predictable and useful behaviors. These
structures have become common to solving certain classes
of problems, such as object-oriented styles of programming
and design, the client–server paradigm, abstraction, layer-
ing, etc. The interesting question that a programmer or a
designer must ask of themselves is “why would I use one
of these approaches in a given situation over another and
how can I capture an understanding of each approach to
make this comparison?” This is the role of the software
architecture or framework. A software architecture depicts
how a system is realized by a collection of computational
entities (components), the interactions among these compo-
nents (connectors), patterns guiding the composition of
components and connectors (configurations), and
constraintson the patterns [10] (Fig. 1).

An architectural style has been characterized by Garlan
and Shaw [24] as a mechanism for defining “a family of
systems in terms of structural organization. More specifi-
cally, an architectural style determines the vocabulary of
components and connectors that can be used in instances
of that style, together with a set of constraints on how they
can be combined” [24]. Thus, for each of the structures that
we defined loosely earlier e.g. OOP, client–server, etc. we
can now define a set of conditions under which these styles
of structure can exist, and apply constraints to determine the
behavior of that structure.

Examples of common architectural styles include main
program/subprogram, pipe and filter (Fig. 2), event-based,
blackboard, and rule-based (Fig. 3). There are certain
assumptions and constraints associated with each architec-
ture that guide the designer. For example, the working
memory of the system and the preconditions of the rules

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2614

Fig. 1. Architectural styles: components, connectors and configuration.

Fig. 2. Diagram for pipe and filter architectural style.

are combined with the inference engine in the rule-based
style.

Although depicting a generic architectural style and/or an
application in a particular style using a box-and-line
diagram provides a way to understand the overall structure
of a system, additional text is needed to clarify functionality
and constraints. Because the description of a system is at
such a high-level, there is a large conceptual gap between
the architectural abstractions and the implementation.
Formal modeling can bridge the gap owing to its applicabil-
ity at multiple levels of abstraction and the existence of
refinement techniques that transform high-level abstractions
into concrete implementations, while preserving correct-
ness.

Until recently AI-based architectures, such as rule-based
and blackboard systems, have been largely ignored with
respect to this formal modeling framework [7,8]. One
reason is that the AI-based architectures are typically
more complex than the styles such as pipe and filter and
event systems. For example, while within configuration
descriptions for pipe and filter, and event systems there is
only a single component type and a single connector, within
the configuration description of the blackboard and rule-
based system styles [11], there exist several distinct compo-
nent and connector types. Another reason for the complexity
is that an AI-based architecture requires some type of an
“intelligent” component, that makes decisions or chooses
between several alternatives in a context dependent manner
and as such, this component can be difficult to formally
specify.

2.2. Formal methods in software architecture

In this section we will briefly review the literature in
terms of the utilization of formal approaches to the specifi-
cation of architectural styles.

In developing a software architecture, Abowd, et al. [5]
formally specify three syntactic classes: components,
connectors, and configurations. A component consists of a
set of ports (incoming and outgoing) and a description, a
connector consists of a set of roles (incoming and outgoing
connections to ports) and a description, and a configuration
describes a generic attachment function that binds connector
roles to component ports. Using these generic primitives as

a basis, Abowd, et al. [5] developed formal models in the Z
notation [9] of the pipe and filter style, and event system
architectural style. We extend their approach to specify the
architectural abstractions of the rule-based architectural
styles, presented in Section 3.

2.2.1. The basic Z notation
Z [9] has a special type constructor, called theschema. A

schema defines a binding of identifiers or variables to their
values in some type. In the notation within the article, user-
defined types appear in all uppercase letters.Bold font indi-
cates a Z operator. The items above the dividing line are
declarations of variables which bind identifiers with values.
The items below the dividing line are properties that must
hold between the values of identifiers. All common identi-
fiers below the line are scoped by the declarations above the
line. Comments appear in italics to the right of the specifi-
cation entries.

Other Z operations used in the article are as follows: The
notationf:X$ Ymeans thatf is a relation between elements
of type X and Y. The notationf:X K Y means thatf is a
partial function from the setX to the setY. If f is a relation or
function thendom f is the domain of f, andran f is the range
of f. If S is a set, then #S is the size of S. If S and T are
sequences, then S^T is the concatenation of the two
sequences into one. If S is an ordered triple thenS.1 is the
first element of the triple, followed byS.2, andS.3.

Abowd, et al. [5] rely on some Z notational conventions
for describing the class of an architectural style component
or connector and the behavior of those classes as state
machines. For referencing purposes, we term their approach
OSS for “Object-State-Step.” The component (connector)
object schemadefines the class of the component (connec-
tor) with the attributes each instance of the class must have.
These represent the static properties of the component type.
The state schemafor each type represents a binding from
identifier to values of the attributes of the class. We can
view this binding as the snapshot description of some
state machine, that is, the view of the state machine at
some point in time [10]. The behavior of the state can be
dynamic, as long as it is contained within the bounds of the
static properties.

Operations on the state machine are in the form ofstep
schemasdescribed as transitions from one legal state to

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 15

Fig. 3. Rule-based architectural style diagram.

another, defining the relationship between the values of
identifiers before and after the operation. TheD is used to
indicate the changeable variables in the step operations. For
instance, ifRule_Componentis the name of a component
schema type, thenRuleState would be its representative
state schema. An instance of theRule class is defined within
the RuleState schema.DRuleState is equivalent to two
copies of the state schema, one as defined inRuleState
(called thebefore state schema) and one that has all of the
identifiers inRuleStatedecorated with primes (0) to define
the after state schema. The step schema defined for this
example would be calledRuleStepand would most likely
operate onDRuleStateto indicate how changes are made to
the state variables (see Figs. 13–15).

2.2.2. Research in modeling architectural styles
As stated earlier, OSS [5] provides an initial approach to

modeling architectural styles. The approach is demonstrated
on two styles: the pipe and filter style and the event system
style. For an architectural style, each component type,
connector type, and configuration, are defined first as a static
class and then operationally with a generic state and generic
state transitions. A component is defined to haveports, some
of which may or may not be explicitly modeled. Not all
component ports require connector interaction within the
configuration. This allows for input and output from the
environment external to the software system. A connector
is defined to haveroles, all of which must be connected to
some port in the configuration.

Allen et al. [12] elaborate upon the Abowd, et. al. [5] frame-
work, by providing a formal notation and theory for architec-
tural connectors. They use the Wright architectural
description language, which they developed for the specifica-
tion and analysis of software architectures. The formal model-
ing of the connectors allows them to check for compatibility of
aportwith arole. A port represents the relationship between a
component and its environment, i.e. a procedure that can be

called, or a variable that can be accessed by interacting with
another component [5]. Roles provide the interface to a
connector. Each role defines the expected behavior of one of
the participants in an interaction [5]. Allen et al. [12] claim that
connector models allow for checking whether the configura-
tion is deadlock free, and potentially automate the analysis of
architectural descriptions.

We describe the rule-based architectural style based on
the guidelines we have developed [11] to extend the OSS
approach. Our approach resolves many of the problems with
development consistency previously experienced, such as
the use of explicit ports and different data types, and
provides a clearer pattern of description for directly apply-
ing abstractions to other architectural style definitions. For
example, there are patterns that determine when individual
ports are made explicit in the component type model and
when a single collection variable is defined to gather all the
information off the ports. In addition to the guidelines, we
have developed certain principles of specialization to model
subtypes of components and connectors [11].

Abd-Allah [4] creates a formal model in Z of the archi-
tectural styles pipe and filter, main program/sub-routine,
and event system, constructing a single generic model of
the system configuration based on these styles. He divides
components and connectors into categories relative to data
and control. However, his configuration model is a large
conglomeration of the aspects from all of the styles that
he examines, such that a specification would include certain
aspects, if they were part of that style; but ignore others if
they do not pertain to that style. He admits that his approach
does not extend to other styles without modification. Gacek
elaborates on this approach by adding the blackboard style
[25], which requires the introduction of additional variables
and constraints into the configuration.

Moriconi, et al. [6] represents a software architecture
using concepts that include components, interface, connec-
tor, configuration, and mappings of architectural style.
Using first order logic he defines some of the entities
pertaining to a pipe and filter style. However, Moriconi’s
research concentrates solely on theories of composition and
the method has not been expanded to other styles, addition-
ally not all the entities in the style have been fully defined.

3. Rule-based systems

In this section, we present an architectural style, for a

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2616

Fig. 4. The basic components of a knowledge-based system.

Fig. 5. Architectural abstractions for the rule-based system style.

rule-based system in terms of components, connectors, and
configuration entities. The usefulness of this style of presen-
tation are that it can be compared directly with other archi-
tectural styles for a basis of designing and integrating a
system, analysis used for guaranteeing properties of other
styles can be extended to this specification and vice versa,
and it contributes to a critical mass of models needed for
proper formal design of complex systems. In addition, this
style shows how distinct component types can be formally
described and integrated into a single system, leading to an
insight into integrating heterogeneous systems.

3.1. Informal system

Knowledge-based systems are one of the tangible by-
products of artificial intelligence research. Essentially, a
knowledge-based system attempts to capture expertise in
an application area. As knowledge-based systems became
more widely used, development products came into exis-
tence. Most of these products support at least the three
components described in Fig. 4.

Working memory (WM) serves as a repository for the
initial information or facts supplied to the KBS. Additional
facts may be inferred or deduced by the KBS as it executes

and these are stored in WM as well. All conclusions, inter-
mediate and final, are also stored in WM. Representation of
WM may be expressed in many formats, such as proposi-
tions, predicates, objects, and frames.

The knowledge base (KB) contains the domain knowl-
edge which is often in the form of rules. It does not have to
be completely represented as rules. In fact, more robust
systems use a hybrid knowledge representation that depends
on the available knowledge. A hybrid KB may include rules,
procedures, and object messages. We will concentrate our
discussion on rules, as they are the most common represen-
tation of the KB.

A rule in the KB generally has the form:

LHS! RHS

where the left-hand side (LHS) has a set of conditions to be
satisfied and the right-hand side (RHS) has a set of actions to
perform if the conditions are satisfied.

The inference engine (IE) processes the rules and facts to
deduce new facts and conclusions. In a forward chaining
system, the LHS of a rule is matched against the available
facts in WM. Those rules that match successfully are
considered to be instantiated. For serial KBSs, only one
rule is selected from the instantiated set for execution.

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 17

Fig. 6. Inference engine component object schema.

Fig. 7. Inference engine state specification.

The selection is typically based on some form of conflict
resolution strategy. Once a rule is chosen, its RHS actions
are performed, possibly changing WM and/or the KB. A
backward chaining system attempts to match the RHS as
goals. Those RHS actions that are sought after goals cause
the rule to be placed in an instantiated set. Conflict resolu-
tion again plays the part in choosing the executed rule.
Execution in backward chaining involves asserting the
LHS conditions of the chosen rule as goals to be attained.
Some systems perform hybrid chaining to meet their goals.
In most cases, the IE halts by explicit command or by the
absence of any matching rules.

3.2. Formal style

Our specification of the rule-based architectural style as
presented in this section includes the abstraction types of the
rule-based system as well as their state and step schemas.

The box-and-line diagram associated with the architec-
tural style we model is shown in Fig. 3. There are multiple
component types in the rule base architectural style due to
the distinct forms of computation performed by each. These
component types are theInference Engine(IE_Component
in Fig. 5) that performs the matching of the rule precondi-
tions with the contents of working memory, theController
(RB_Controller in Fig. 5) that determines the next execut-
ing rule, and theRules(Rule_Component in Fig. 5) that
determines the actions as a result of the input facts from the
Controller. There are three types of connectors in the rule-
based architectural style, however two of them are a specia-
lization of a Carrier connector (R_CarN and F_CarI in

Fig. 5). A Carrier connector type represents a point-to-
point connector that transmits discrete values of data. The
Dispatcherconnector (Fig. 5) also transmits discrete values
of data, however it is not point-to-point. In contrast to the
existing models of architectural styles the rule-based style is
quite complex. Styles such as pipe and filter and event
systems have only one component type and one connector
type, thus lessening the complexity of their specification.

In the rule-based architecture modeled, the following
constraints are assumed:

• Only one pre-condition and only one post-condition is
allowed per rule.

• A precondition can contain multiple predicates.
• A postcondition can contain multiple actions.
• An ontology of facts is assumed across the system to

maintain semantic consistency.
• Rules are static, although it is possible to specialize the

architecture for dynamically changing rules.

We provide the user-defined types, user-defined
global functions, and the function types with comments
are given later. Because these function are application
dependent, and therefore, should be fully modeled at a
lower level of abstraction, we do not provide their
detailed specification.

Type Declarations

[FACT, RID, ACTION, PRECONDITION, PORT,
STATE, TEMPLATE] user-defined types
RID a rule component identifier that is a subtype of
PORT

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2618

Fig. 8. Inference engine step specification.

Fig. 9. Formal model of the class of distributor CIMs.

PRECONDITION� RID $ TEMPLATE a relation
between a rule identifier and the template of condition-
s elements that form the LHS of the rule
RULE-INSTS � RID $ set FACT a relation that
associates a rule with available WMES for instantiation

User-defined functions (types only)

update: ((ACTION $ FACT) × set FACT) K set
FACT
updates the contents of working memory
unifiedset: (RULE-INSTS× setPRECONDITION)K
(ACTION $ FACT)
produces new changes for IE
select: (RULE-INSTS × STRATEGY) K RULE-
INSTS
chooses which rule instantiations should fire
match: (setFACT × setPRECONDITION)K RULE-
INSTS
matches working memory with rule preconditions to
produce new rule instantiations

3.3. The component type specifications

We will first concentrate on component models, followed
by connectors, and then model the overall configuration. For
each component type, we employ a pattern of specification
to define the model that includes the information on the
ports, all possible states the component could reach, a
start state, and a legal transition type [5,11].

3.3.1. Inference engine component type
The inference engine component is a type of repository

component that also performs the match phase of the KBS.
Therefore, it must collect the incoming changes from one or
more rules, if any changes are made, and process them. The
variable changesdeclared in Fig. 6 holds a collection of
changes off the incoming ports of the IE component. This
variable can have any value of action-fact pairs as long as
they are part of the port alphabet. The port alphabet
described by the cross product ofactionsand facts, which
represent all possible values of actions and facts, respec-
tively. The variablerule_instsis an explicitly defined port
variable for the single outgoing port of the IE component

that holds the matched preconditions for transmission to the
controller.

The allowable state machine behavior of the inference
engine is contained within three variables:states for all
possible states the component can encounter,start for a
particular start state, andtransitions. The transitionsfunc-
tion takes an internal state and a set of action-fact pairs and
results in a new internal state and outgoing rule instantia-
tions. These are declared above the midline in the schema
IE_Component in Fig. 6. The constraints on these vari-
ables, which appear in the lower half of the schema in
Fig. 6, are that:

• the start state is valid,
• incoming and outgoing data are valid, and
• the state change examines inputchangesand results in

outputrule_insts.

Embedded in thetransitionsfunction are the actions of
matching and selecting appropriate rule instantiations.
However, these are modeled within the state schema for
this component type.

The state schema for theIE_Component, calledIEState,
is specified in Fig. 7. An instance of theIE_Component is
declared by the statement

ie: IE_Component

The state schema asserts that, at any point in a computa-
tion, theIE_Component is defined by its current state vari-
able, curstate, and the incoming and outgoing data, i.e.
instateand outstate, respectively. As defined in the lower
half of the state schema in Fig. 7, thecurstate of the
IE_Component is a tuple with the composite values of
(1) the local variables represented bystate_vars, (2) the
KBS working memory represented bywork_mem, and (3)
the preconditions of the rules represented byprecond. This
explicit state definition is one extension of the original
approach by Abowd, et al. [5].

Also in the constraint part below the midline of the
IEState specification is that

curstate [ie:states

This constraint means thatcurstatemust be a valid state
for an instance of the IE component type. The dot notation

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 19

Fig. 10. Rule based controller model.

in ie.statesallows a binding between the actual state defini-
tion and the attributes modeling in the component type. This
binding forms the essence of the constraints found in the
state schema.

As Z is a typed specification language, subtyping is
needed to provide more detailed specification while still
adhering to the desired component type constraints. For
convenience, we use the notation

a where A a B means that A is a subtype of B

For example, IESTATE × set FACT × set
PRECONDITION a STATE. This allowscurstateto be
simply typed as the maximal type STATE yet be defined as
constrained to the tuple format above. The benefit of using
maximal types and subtypes in this manner is that it allows
for representational consistency across component specifi-
cation. This representation consistency faciltates later inte-
gration among heterogeneous components [11].

The current incoming data to be processed appears in
instate, and the current outgoing data appears inoutstate.
As a rule based system computes using discrete cycles, there
can only be data on input ports or on output ports but not for
both. This is expressed in the last constraint in the schema.

A single computational step for theIE_Component
transforms the incomingchangestuple into the outgoing
rule_inst using two user-defined functions whose types
were declared earlier. Theupdate function changes the
contents of working memory according to the input
changes. The match function uses the updated working
memory and the rule preconditions (precond) to produce
all possible rule instantiations that can fire, which is placed
in rule_instfor delivery to theRB_Controller .

The step or transition schema, calledIEStep, is defined in

Fig. 8. The use ofKIEState means that the before and after
states of the variables declared inIEState are defined for
IEStep. All IEState (and IEState0) constraints hold,
making them state invariants. The result of the computation
is the removal of action-fact tuples from the input collection
variable, and the addition of the new information to the
output variable. Time-stamping can be included into the
rule-based system by the type being embedded in the facts
and thenIEStep schema can create the time stamp.

3.3.2. The rule-based controller component type
The main function of theRB_Controller component is to

determine the next executing rule or set of rules. This deter-
mination is performed using a set of conflict resolution stra-
tegies designed to guide the system efficiently through the
search space toward a solution. For instance, two conflict
strategies often employed in rule-based systems are (1)
distinctiveness, which eliminates rules firing repeatedly
with the same, exact facts, and (2)specificity, which when
presented with two rules, one of which has a LHS that is a
superset of the other, the more specific rule (with the super-
set) will be chosen. Individual conflict resolution strategies
can be ordered and combined, such as the MEA or LEX
strategies in OPS5.

Because of its definition, theRB_Controller component
type is a special type ofcontroller integration mechanismor
CIM [11]. A CIM provides decision-based control of some
kind among multiple components within an architectural
configuration. It can be specialized for many situations in
which integration via control is required. For example, in
real-time system and repository architectural styles, control
in the form of scheduling or conflict resolution is needed. In
the same respect, a mediator gateway [26] can be described

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2620

Fig. 11. Rule based controller specification.

Fig. 12. Rule based controller step specification.

as a CIM that insulates certain components from changes
being made to others. Another type of gateway controller
may gather information from disparate sources to coordi-
nate before passing it on to a single component [26]. In
addition, a CIM can define global constructs related to an
integrated system composed of the same or different archi-
tectural styles such as the broker integration strategy [13].

A CIM is modeled as a component in an architectural
style because it performs decision-based computation
using internal strategies.The RB_Controller is a speciali-
zation of a generic controller called aDistributor_CIM .
The formal model of aDistributor_CIM can also be
expressed using the extended OSS template [11]. The use
of maximal types in the generic definition allows the specia-
lization of components, such as theRB_Controller , to
incorporate more meaningful types.

For example, the user-defined types for theDistributor_-
CIM as depicted in Fig. 9 are ALLDATA, CID, STATE,
STRATEGY, and DCSTATE. ALLDATA is perhaps the
most important maximal type to allow for component
specialization from theDistributor_CIM because it
encompasses all possible data types. The data types are
further constrained within the specializations. The type
CID stands for “component ID”. This type is important to
a CIM because CIMs must have knowledge of the compo-
nents for which they make decisions. Thus, in the model of

the Distributor_CIM , the CIDs are used as explicit port
references instead of random ports. The user-defined type
STATE is common among all component models that are
based on state-machines. STRATEGY and DCSTATE are
specific to the state of theDistributor_CIM , where the
embedded strategies for decision-making reside to form
the specific state of the CIM.

The Distributor_CIM in general has a collection vari-
able for input calledindataof type ALLDATA to hold the
data off of the port. Multiple output ports are expressed
explicitly because theDistributor_CIM makes some type
of choice among them. Though not modeled in Fig. 9, the
order of the information sending may be important. This can
be specialized as another CIM. The output ports are defined
by outports, a set of type CID. Thealphabetfor the output
ports is the maximal type ALLDATA contained on those
ports, expressed as a partial function from a component
identifier to all data types. The variabletransitions takes
an initial state and part or all of the incoming data, and
produces a new state and all of the outgoing data on the
specified ports. These represent the static properties of this
type of CIM.

There are several constraints on theDistributor_CIM
model. The start state must be valid. There must be at
least one output port, otherwise no decision-making would
be necessary. Theoutportsmust have valid alphabets. The

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 21

Fig. 13. TheRule_Componentobject schema.

Fig. 14. RuleStateschema.

final constraint in the schema presented in Fig. 9 defines a
valid transition for theDistributed_CIM . The function
related is used in the transition statement in place of a
specific operation that is fully defined within a specializa-
tion of this component model.

Using Fig. 9, we next describe the specializedRB_Con-
troller from these static properties. This component type
schema uses Z schema inclusion to bring in the declarations
and constraints of theDistributor_CIM . Schema inclusion
can be used as long as (1) the newly declared types are
subtypes of the included declaration types and (2) any
added or amended constraints do not conflict with the
included constraints. The component schema forRB_Con-
troller is presented in Fig. 10. To define the specialization
using schema inclusion, we note that for the user-defined
types RID andset FACT:

RID a CID

RULE_INSTSa ALLDATA

The other user-defined types STATE, STRATEGY, and
RCSTATE are analogous to theirDistributor_CIM coun-
terparts in which

RCSTATE× setSTRATEGYa STATE

Using the subtyping declarations above,indata, outports,
alphabet, and transition are redeclared inRB_Controller .
The added and amended constraints on the class of
RB_Controller components provide for atransition func-
tion redefinition. First, the subset operator details the more
genericrelatedfunction from theDistributor_CIM , i.e.

related�intran; indata� , �intran# indata�
A constraint that the outgoing data must be a subset of
incoming data is added. This constraint is required because
the functionality of theRB_Controller is to simply select
which incoming rule instantiations (from theIE_Compo-
nent) should be fired, not to alter the data in any way. For a
sequential rule-based system the controller would need an
additional constraint restricting the number of outgoing rule
instantiations.

Following a similar pattern in modeling theIE_Compo-
nent, we define the state,RB_ControllerState, of an
instance of theRB_Controller component type and the
state transition or step,RB_ControllerStep. By the specia-
lization, these state and step definitions logically imply
those modeled for the class ofDistributor_CIM compo-
nents [11].

Fig. 11 describes theRB_ControllerState. An instance
of RB_Controller is defined by

c : RB_Controller

linking the static properties of the component object with
the state. The current internal state,curstate, is a tuple
containingstate_varscombined with the applicable deci-
sion strategies,strategies, for the component instance. The
current incoming data is represented asinstate, and the
current outgoing data is represented asoutstate. The first
two constraints in Fig. 11 describes the valid states of the
RB_Controller . The latter three constraints detail the
content restrictions oninstateandoutstate.

A single computational step for theRB_Controller
component is defined in the schemaRB_ControllerStep
in Fig. 12. This step schema models the transformation of
all the incoming data into the outgoing data that is placed on
the output ports using the select function. Theselectfunc-
tion in Fig. 12 applies the embedded decision strategies of
theRB_ControllerState to the input to produce the appro-
priate output. The incoming data is removed frominstate
and the new output is added to the output ports viaoutstate.

3.3.3. The rule component type
The next component type that is modeled as part of the

rule-based architectural style is the rule. Because there is a
decision as to which rules are fired, each rule must have a
unique name, i.e.rulename, in the component type schema
Rule_Component(Fig. 13). The variablefacts represents
all possible facts that could appear on the input port that are
predetermined to instantiate the rule. The connector (as
described later) between theRB_Controller and theRule_-
Component strips away the RID embedded in the
RULE_INSTS type from the output of theRB_Controller .
Thus the rule only works withfacts of type set FACT as
input.

The set of possible changes that can be made by the RHS
actions of a rule are embodied inchanges. All possible
actions and facts for the class are also defined such that
the inputinstsand the outputchangescan be validated, as
seen in the constraints onRule_Component. The rule tran-
sitions by mapping an internal state and the value ofinststo
a new internal state with outgoingchanges. Thus, in the
constraints, thetransition is determined by looking at
incoming insts and results in the outgoingchanges. In
most applications, the rule does not change state. However,
we allow for this flexibility in the model.

The state schema for the class ofRule_Component is

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2622

Fig. 15. RuleStepschema.

defined in Fig. 14, asRuleState. An instance of theRule_-
Componentclass is created in a similar fashion to the two
earlier state schemas defined. The state schema asserts that
at any point in a computation, the rule is defined by its
current internal state, and the incoming and outgoing data.
The variablecurstatein theRuleStateschema combines the
value of the local variables (state_vars) with the internally
defined precondition of the rule (precond), i.e. its LHS.
Curstatemust be a valid state for an instance of theRule_-
Componentclass, requiring the subtyping declared as:

RSTATE× PRECONDITIONa STATE

The second constraint, namely

precond:1� r:rulename

is stated to ensure that the rule identifier that maps to the
actual template of working memory elements of the precon-
dition is the same as the instance of the rule component
defined in the state. The current incoming data to be
processed appears ininstateand the current outgoing data
appears inoutstate. As a rule-based system works in discrete

cycles, there can only be data on input ports or output ports
but not both. This constraint is defined in the schema.

A single computational step for the class ofRule_Com-
ponent transforms the incominginsts into the outgoing
changesusing the user-defined function,unifiedset, declared
earlier. Theunifiedsetfunction unifies the incominginsts
with the precond, produces a set ofchanges, and makes
thosechangesavailable for delivery to theIE_Component.
The results of the computation step are the removal of the
rule instantiation from the incoming data and the addition of
the new changes to the outgoing data. The step or transition
schema, calledRuleStep, is described in Fig. 15.

3.4. The connector models

As shown in Fig. 5, connectors pass information among
components. The rule-based architectural style requires
three types of connectors. Two of the connectors are
specializations of the Carrier connector [11]. TheCarrier
connector is a point-to-point connector that transports
discrete data. This means that this generic class of

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 23

Fig. 16. Specialized carrier connectors:R_CARN andF_CARI .

connectors can either be in a state in which (a) there is no
data incoming or outgoing or (b) there is either incoming
data or outgoing data, but not both. There are four types of
Carrier connectors: (1)CarB with both input and output
ports explicitly defined, (2)CarI with only an input port
explicitly defined, (3)CarO with only an output port expli-
citly defined, and (4)CarN with no ports explicitly defined.
The two Carrier connector types used in the rule-based
architectural style are namedF_CarI (a specialization of
the CarI connector that transports facts) andR_CarN (a
specialization of theCarN connector that transports rule
instantiations). The third connector type used is called the
Dispatcher that collects changes from the rules and passes
them to theIE_Component.

The R_CarN connector transmitsrule_inst from the
IE_Component to the RB_Controller (Fig. 16). This
type of connector class is defined by an input collection
variable inrule, which contains all possible incoming rule
instantiations, and an output collection variableoutrule,
which contains all possible outgoing rule instantiations.
The behavior ofR_CarN is defined by giving its transmis-
sion policy within theR_CarNState schema in Fig. 16,
which is consistent with the discrete transmission of the
genericCarrier connector. A single step in the behavior
of the class of R_CarN connectors, as modeled by
R_CarNStep, results in the incoming rule instantiations,

indata, being removed and being delivered to the outgoing
rule instantiations,outdata.

The F_CarI connector type is located between the
RB_Controller and the rules. It transports theRB_Con-
troller rule_inst as a set of facts to the selected rules as
modeled in Fig. 16. AnF_CarI connector is defined by
an input port of type RID, the type of data that is carried
on the input port (alphabet) of type RULE_INSTS, and the
output collection variableoutfactwhich contains all possi-
ble outgoing facts (of typesetFACT). The behavior of this
type of connector is defined by its transmission policy
modeled inF_CarIState in Fig. 16 which is consistent
with the discrete transmission of the genericCarrier
connector. A single step in this connector type results in
the incoming rule instantiations,indata, being removed,
and being delivered as facts to the outgoing data as modeled
in F_CarIStep.

The third type of connector class,Dispatcher, has an
input collection variableinchanges, representing all possi-
ble incoming changes, and an output collection variable
outchanges, representing all possible outgoing changes
(Fig. 17). TheDispatcher connector collects and transports
the changes from the individualRule_Component
instances to theIE_Component. It is assumed that the
order of rule changes in a single cycle is not important.
The behavior of aDispatcher is defined by giving its

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2624

Fig. 17. Dispatcher connector.

Fig. 18. Configuration of rule-based architectural style.

transmission policy as modeled by the state schema
DispatcherState. At any point in time, theDispatcher at
most one ofindataor outdatamay have data. In this sense, it
is very similar to theCarrier connector because of its
discrete transformation, but it is not point-to-point (see
Fig. 5). A single step (DispatcherStep) in the behavior of
aDispatcher results in the incoming changes,indata, being
removed from the input variable and being delivered as
outgoing changes tooutdata.

3.5. The configuration specification

Following is the model of the configuration of compo-
nents and connectors into an interacting set that describes
the overall functionality of the rule-based architecture (Fig.
18). The variable declarations are instances of the compo-
nents and connectors that we have previously modeled.
There is oneIE_Component, one RB_Controller , a set
of Rule_Components, one R_CarN connector, a set of
F_CarI connectors, and oneDispatcher connector. The
constraints that appear in the schema establish the correct
bindings between the connectors and the components. The
first constraint restricts theR_CarN connector’s incoming
data represented byinrule to be the same as theIE_Com-
ponent outgoing data represented byrule_inst. The second
constraint confines theR_CarN connector’s outgoing data
represented byoutruleto be the same as theRB_Controller
incoming data represented byindata. The next two invar-
iants bind the set ofF_CarI connectors to theRB_Control-
ler and the individualRule_Components. In the first of
these constraints, the input port represented byinport of
all F_CarI connectors must be represented asRB_Control-
ler output ports inoutports. Also, within this constraint, data
on an F_CarI port, represented by itsalphabet, must be
equivalent to the data in theRB_Controller alphabetfor
that port (RID). In the next constraint, there must be a rule
whose RID matches anF_CarI connectorinport. Also in
this constraint, the output data of theF_CarI connector,
represented byoutfact, is equivalent to the incoming data
represented byinstsof thisRule_Componentinstance. The
last two constraints bind theDispatcher connector to the
individual rules and theIE_Component. The Dispatcher
incoming data, represented byinchanges, is restricted, by
the generalized union operator, to be a subset of the actions
and facts of the rules. TheDispatcher outgoing data, repre-
sented byoutchange, is equivalent to theIE_Component
incoming data, represented bychanges.

The behavior of the state for the configuration defined in
Fig. 18 is defined as the behaviors of all the components and
connectors previously defined. The state of the system can
be formulated by identifying the component and connector
states with components and connectors in the system. The
step of a traditional rule-based system is one of the match-
select-act. In the defined architectural style, the match is
performed as part of theIE_Component step, the select
is performed as part of theRB_Controller step, and the

act is performed as part of aRule-Component step.
The configuration of the rule-based architectural style
includes all of the architectural abstractions. Thus, the
step of the configuration would include those transmis-
sions made by connectors, as well as the transitions of
components. However, because of the discrete nature of
the rule-based system, only one step in the configuration
can be performed at a time, with all else remaining the
same.

4. Verification and validation of knowledge based
systems

The use of architectural style models affords the knowl-
edge engineer the opportunity to verify the complete under-
lying system behavior while allowing the developers to alter
the knowledge base at will. The modeling approach
presented in this article provides a rigorous and comprehen-
sive analysis foundation of the overall knowledge based
system functionality. The style definition provides informa-
tion on integration together with the minimal requirements
for rule and controller entrance into a larger, more complex,
system architecture.

The ability to understand the system at this level allows
the knowledge engineer to then utilize traditional verifica-
tion and validation techniques at detailed application levels.
These techniques have been extensively documented and
vary from the formal approaches to the experimental [14–
21].

There has been a considerable amount of tool develop-
ment research performed with over 40 tools occurring in the
literature (an extensive survey of the tools can be found in
[22]). The use of the architecture abstraction also enables
the knowledge engineer to consider the overall system from
a clear abstract specification and, having considered the
verification and validation requirements, determine the
most applicable tools with which to analyze the system.

The use of the rule-based architectural style is also bene-
ficial in the area of heterogeneous systems where multiple
knowledge bases may be integrated together or indirectly
interact [23]. Validation and verification research in this
area is beginning to emerge, as the existing techniques
have traditionally been limited to static aspects of systems
with single knowledge bases. For instance, O’Leary has
considered the problem of multiple knowledge bases
systems being integrated together assuming the same ontol-
ogy [23]. We feel that the architectural approach would be a
suitable complimentary technique to employ to this class of
problems.

5. Conclusions

This article has described a formal model for the
rule-based architectural style. This form of specification
allows for a complex knowledge-based system representation

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–26 25

to be created and developed in a straightforward manner.
The styles based specification is clearly advantageous over
traditional forms of specification, in that it facilitates
commonalties of design, acts as an enabling vehicle for
communicating about the design, and as such leads to a
robust and constructive methodology for the creation of
knowledge-based systems specifications.

The article built upon the work of previous researchers
such as Shaw and Garlan [10] in the utilization of their
components, connectors and configurations, in conjunction
with the use of Z to specify elements of these architectural
abstractions. The aim is to create not only a formal archi-
tecture of the rule-based system, but to illustrate the corre-
spondence between the structural and semantic aspects of
the components and their interactions. This is a first step
towards showing the correspondence at the next level of
abstraction, between the system requirements and the imple-
mented system.

The utilization of architectural styles can be seen, there-
fore, to aid in the areas of design, development and main-
tenance. The design is enhanced through better notations,
the ability to have more correspondence between abstrac-
tions and the ability to perform better analysis upon these
designs. In this respect, the validation process is strength-
ened. The development process is enhanced through the
ability to show correspondence between levels of abstrac-
tion and ultimately through formal requirements. Hence,
this strengthens the verification process. Finally, the main-
tenance process is enhanced through a better documented,
more understandable, reusable form. Thus, a more reliable
form of the validation and verification process can be imple-
mented over the life of the system and its specification.

The creation of the architectural style was performed on
the rule-based system in order to demonstrate the feasibility
of the approach with respect to a fundamental representa-
tional form. Achieving this style allows for the system to be
implemented or utilized as a part of another structure, such
as a heterogeneous style. Hence, it can be seen that archi-
tectural styles such as the one presented are the building
blocks of future, more complex systems. Systems that other-
wise could not be built to acceptable levels of validation and
verification, due to their complexity, and the associated
difficulty of creating large complex formal specifications
and the costs associated with the traditional approach to
building these formal models. We see architectural styles
as the premier approach to the construction of large complex
systems in the future.

References

[1] J. Goguen, The dry and wet. Monograph PRG-100, Programming
Research Goup, Oxford University Computer Laboratory England.

[2] D. Ince, Software development: Fashioning the Baroque, Oxford
Science Publications, Oxford University Press, New York, 1988.

[3] R. Storer, M.A. Jackson, Pratical Program Development Using JSP: A
Manual of Program Design Using the Design Method Developed by
M.A. Jackson, Blackwell Scientific Press, Oxford, England, 1986.

[4] A. Abd-Allah, Composing Heterogeneous Software Architectures,
Ph.D. Dissertation, Department of Computer Science, University of
Southern California, August 1996.

[5] G. Abowd, R. Allen, D. Garlan, Formalizing Style to Understand
Description of Software Architecture, ACM TOSEM, submitted for
publication.

[6] M. Moriconi, X. Qian, R.A. Riemenschneider, Correct architecture
refinement, IEEE Transactions on Software Engineering 21 (4) (1995)
356–372.

[7] S. Murrell, R. Plant, R. Gamble, Defining architectural styles for
knowledge-based systems, AAAI-95, Workshop on Verification and
Validation of Knowledge Based Systems and Subsystems, August
1996, pp. 51–58.

[8] P.R. Stiger, R.F. Gamble, Blackboard Systems Formalized within a
Software Architectural Style, International Conference on Systems,
Man, Cybernetics, October 1997.

[9] J. Spivey, Introducing Z: A Specification Language and its Formal
Semantics, Cambridge University Press, Cambridge, 1988.

[10] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emer-
ging Discipline, Prentice Hall, Englewood Cliffs, NJ, 1996.

[11] P.R. Stiger, An assessment of architectural styles and integration
components, MS Thesis, Department of Mathematical and Computer
Sciences, University of Tulsa, January 1998.

[12] R. Allen, D. Garlan, A Formal Basis for Architecture Connection,
ACM TOSEM, 1997, submitted for publication.

[13] D. Mularz, Pattern-based integration architectures, PloP 1994.
[14] A.D. Preece, Validation and Verification of Knowledge-based

Systems, Working Notes AAAI 1993, Washington D.C.
[15] R.T. Plant, Validation and Verification of Knowledge-based Systems,

Working Notes AAAI 1994, Seattle, Washington.
[16] R.Gamble, C. Landauer, Validation and Verification of Knowledge-

based Systems, Working Notes IJCAI 1995, Montreal, Quebec,
Canada.

[17] J. Schmolze, Vermesan, A., Validation and Verification of Knowl-
edge-based Systems, Working Notes AAAI 1996, Portland, Oregon.

[18] R.T. Plant, G. Antoniou, Validation and Verification of Knowledge-
based Systems, Working Notes AAAI 1997, Providence, RI.

[19] J. Cardenosa, P. Meseguer, Proceedings of EUROVAV 1993:
European Symposium on the Verification and Validation of Knowl-
edge-based Systems, Univ. Polit. De Madrid, Spain.

[20] M. Ayel, M. Rousset, Proceedings of EUROVAV 1995: European
Symposium on the Verification and Validation of Knowledge-based
Systems, St Baldoph-Chambery, France.

[21] J. Vanthienen, F. van Harmelen, Proceedings of EUROVAV 1997:
European Symposium on the Verification and Validation of Knowl-
edge-based Systems, Leuven, Belgium.

[22] S. Murrell, R.T. Plant, A Survey of Tools for the Validation and
Verification of Knowledge-based Systems: 1985–1995. Decision
Support Systems 633 (1997).

[23] D.E. O’Leary, Verification of Multiple Agent Knowledge-Based
Systems, AAAI-97, Workshop on Verification and Validation of
Knowledge Based Systems and Subsystems, August 1997, pp. 13–23.

[24] D. Garlan, M. Shaw, Advances in Software Engineering and Knowl-
edge Engineering, An introduction to software architecture, World
Scientific, Singapore, 1993.

[25] C. Gacek, Detecting architectural mismatches during systems compo-
sition, TR USC/CSE-97-TR-506. University of Southern California,
Center for Software Engineering, 1997.

[26] M. Brodie, M. Stonebroker, Migrating Legacy Systems, Morgan
Kaufmann, San Francisco, CA, 1995.

R.F. Gamble et al. / Knowledge-Based Systems 12 (1999) 13–2626

