
Graph reduction implementation
of a production system

Stephen MurreH and Robert Plant*

The paper explores the implementation of rule-based pattern-
directed inference systems on parallel computers. The paper
discusses one of these approaches in detail, the use of a graph-
reduction machine such as ALICE. The technique is illus-
trated through two example domains: automobile fault
diagnosis and organic psychiatric mental disorders. The paper
discusses extensions to the graph reduction technique as
applied to knowledge-based systems, including partitioning,
time considerations and input data types. The paper shows
that the graph-reduction technique has significant advantages
for knowledge-based system implementation over conven-
tional approaches, and it demonstrates that this programming
style is amenable to knowledge engineering domains.

Keywords: parallel processing, graph reduction, production
systems, ALICE system

This paper explores the implementation of rule-based
pattern directed inference systems on parallel computers.

Traditionally, speed has been a major problem with
rule-based production systems. In order to overcome
this, three approaches are possible: improvements in
implementation, faster computers, and the use of mul-
tiple processors. In this paper we take the third path.

There are a great many different styles of parallel
computation, all of which could potentially be applied
to the problem of rule based production systems. We
chose to use graph reduction 1-3 in our investigation for
its simple flexibility. There are two other approaches to
parallel processing that also have strong promise for
future investigation:

Department of Computer Science and Mathematics, University of
Miami, Coral Gables, FL 33124, USA
*Department of Computer Information Systems, University of
Miami, Coral Gables, FL 33124, USA
Paper received 2 November 1993. Revised paper received 8 July 1994.
Accepted 27 July 1994

• Transputer-based methods: These are a popular and
flexible approach ~6 to parallel processing. Some
decision-based and diagnostic problems 6 have
been implemented in this style, but these have
been implementations specific to a particular
problem, and they show no apparent scope for
generalisation.

• Hypercube or cosmic cube f ixed-topology systems:
Although these are ideal 7 for vector processing and
other regular programs, this approach may lack the
flexibility of the other approaches, but as an estab-
lished technology it should not be ignored.

Our investigation into the applicability of the graph
reduction approach is based on the ALICE system* (the
Applicative Language Idealized Computing Engine) 1. In
the first section of this paper we discuss the background
to parallel processing and graph reduction machines.
Additionally, a helpful introductory example showing
graph reduction applied to a simple mathematical
problem is given in Reference 1. The use of graph
reduction for knowledge-based systems is shown
through two examples in the second section of the
paper. Firstly, a small example is given for the diagno-
sis of automobile faults that shows the complete reduc-
tion process, followed by a more complex problem in
the domain of organic psychiatric mental disorders.
After the fundamental techniques of graph reduction
applied to knowledge-based systems have been illus-
trated, the third section discusses extensions to that
base, including the partitioning of knowledge bases and
the use of non-Boolean inputs, and timing factors. In
the final section of the paper, we discuss future research
directions and advantages that these techniques have
for the knowledge engineering community.

*We do not use ALICE itself, but a local implementation (MALICE)
which follows the original very closely.

0950-7051/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
Knowledge-Based Systems Volume 8 Number 4 August 1995 155

Graph reduction implementation of a production system: S Murrell and R Plant

ALICE architecture

A program in an ALICE system consists not of the tradi-
tional ordered sequence of uniform instructions, but of a
set of 'packets' connected in a graph, or tree-like struc-
ture. Each packet represents either an operation to be
performed, or an item or structure of data. The connec-
tions, or arcs, between packets encode dependency,
dataflow paths, the order of execution, and the shapes of
data structures.

An ALICE system consists of a number of logically
identical processing agents sharing and independently
executing the same program in parallel. These processing
agents, and their interfaces with the shared program store,
are designed in such a way that the execution time for any
operation has no component which is dependent upon the
number of processors currently operating, and ideally so
that an individual processing agent can, with minimal
delay, be connected to, or disconnected from, a system
without disrupting the operations of that system. A conse-
quence of this design is that, if a single processing agent is
engaged in a complex computation, a second agent may,
at any time, be 'plugged in', and (provided that there is
enough work for two agents) halve the required process-
ing time. Similarly, an agent may be 'unplugged' from a
system in which it is no longer required, and reconnected
to another, or even used as an individual workstation.

causing external actions (such as user input or output),
replacing the original packet (as ALICE is a graph
reduction machine, this must be an 'update-in-place'
operation which will leave the surrounding graph
structure intact, and the newly created subgraph
installed as an integral part of that structure,
completely replacing the original packet).

P R O D U C T I O N SYST E MS T H R O U G H G R A P H
R E D U C T I O N

In this section of the paper we present an approach to the
use of graph reduction in the creation of knowledge-based
systems. In order to facilitate this, we will develop a
knowledge-based system from a decision table, a form of
intermediate representation often used by knowledge
engineers in the development of knowledge-based
systems 8]1.

The approach that we follow is to take the decision
table form as an input to a program that translates that
table into a graph reduction program that can be run on
an ALICE machine (see Figure 1).

We will now consider each of these processes in greater
detail.

Production of graph-reduction program

Operations of processing agent

When a processing agent is running, it will continually
cycle through the familiar 'fetch-execute' sequence. First,
it finds in the shared program store (called the 'packet
pool') any packet that is suitable for execution, and
removes that packet, or marks it in some way, so that no
other agent will select the same one. The agent then
inspects the contents of the packet, to find which opera-
tion it represents, and what the parameters of that opera-
tion are to be (they may either be other packets, or simple
constants), and it performs the operation by executing a
sequence of instructions found in a preloaded program
store.

Performing the operations indicated by a single packet
will generally involve some or all of the
following:

• extracting information from argument packets,
• performing simple, low-level operations (such as arith-

metic calculations),
• updating information in other packets,
• creating new packets to represent new data structures,

or newly required subcomputations,
• removing obsolete packets,

The domain upon which our system is based in this first
example is trivial, and yet it is designed to illustrate
several important aspects of the graph-reduction
approach to knowledge-based system implementation.
We start our development with a decision table, in this
case an automobile fault diagnosis table, consisting of
only three conditions and three possible actions (this is
shown in Figure 2).

Creating a decision table from which to commence our
development aids system verification and validation, and
is an area of active research 1215. However, a full discus-
sion of this is beyond the scope of this paper.

The decision table is processed by a Pascal program
which mechanically translates the table into an ALICE
program. This has several advantages: the correctness of
the system is maintained, and automatic transformation
saves labor and time for the knowledge engineer, and
aids knowledge engineers who have little experience in
developing graph-reduction systems. The full ALICE
program resulting from transforming the decision table
is given in Appendix 1.

The ALICE program in Appendix 1 is composed of
nine parts, each of which describes how to reduce a
different type of packet: "initial", "query", "positive",
"negative", "and2", "and3", "or2", "and3", and

I Oecision Tsbte ~ I Transformation ~ ALICE Fi[e Program Program User Input

Figure 1 Decision table for graph-reduction transformation process

156 Knowledge-Based Systems Volume 8 Number 4 August 1995

Graph reduction implementation of a production system: S Murrell and R Plant

C1: Dim Headtights Y Y Y Y
C2: Battery Terminats Corroded Y Y H N
C3: Battery Terminals Loose Y y II

AI: CLean Battery TerminaLs X
A2: Tighten 6attery Terminats X X
A3: Recharge Battery X

Figure 2 Decision table for graph-reduction system

cl

I unr'~ I ~rY I "o': o' " I
c2

I ~ r '~ 1 °~ry I .o2 0orr=--,, I
c3

[Unready] C~lery] "c3 Loose" I

neu(cl) Id-q~ry st=unready ar91="cl: O|m HeadLights"
nau(c2) tdequery at=unre~lly ergl="cZ: Battery TerminaLs Corroded"
ne~(c.3) |dsClMery stsunreldy argl="c3: Battery Term|nets Loose n

Figure 3 Condition packets

"conclude". The first part (between 'to reduce initial'
and 'to reduce query') is designed to construct the graph
over which the graph-reduction system will be run. In
this system we create the graph from the queries back-
wards to the conclusions, in a backward chaining style.
First, three condition packets are created, as shown in
Figure 3.

Each packet, when and if it is picked for reduction, is
reduced according to the sets of rules provided in the
ALICE program. Just as the section headed 'to reduce
initial' describes how the initial default seed packet is
replaced to produce the machine's correct initial config-
uration, a later section of the program labelled 'to
reduce query' describes in detail how each of these new
query packets should be reduced. The identifiers cl, c2,
and c3 simply provide a means of referring back to
these packets later.

The status field of a packet determines when a packet
may be selected for reduction. Only packets with a
status of 'ready' may ever be reduced. These query
packets will remain unprocessed until their statuses are
changed.

If a query packet is ever picked for reduction, the
rules (shown in full in Appendix 1) specify that the asso-
ciated string should be printed, and the user invited to
type a response. If the response is 'yes', then the query
packet is changed from a computational packet to a
data packet representing the value TRUE. If the answer
is 'no', then the value is FALSE. Any other response is
ignored, and the packet is made available for a second
reduction, thus causing the question to be asked again
later.

The second aspect of system creation specified in the
'to reduce initial' section is the creation of the second
packet layer (see Figure 4).

This second layer provides negated forms of the
conditions. If one of these packets is ever picked for
reduction, it will be unable to proceed until its argu-
ment (the condition packet that it refers to) has already

cl ¢1n

I0°re'~10~rYl"°'"l I °°r '~ I " " ' * ' " l l l l l

C2 c2n

Io°re=~i°'rYl"°2"l~ IO°r''~ I " ' * ' " 1 1 1 1 I

c3 c3n

I~r"~l°~'ryl"°~' l~ I~r"~ I...,,.11111
neu(cln) id=negative st=unready argl=cl
neu(c2n) id=negetive st=unready argl=c2
neu(c3n) id=oegative st=unready argl=c3

Figure 4 Second layer propagation packets

been reduced to a data packet. Until that happens, this
packet is suspended, and the argument packet's status is
changed to 'ready' so that it may be selected. This is
how demand for a computation is propagated through
the graph of packets.

When a 'negative' packet is eventually reduced, it is
rewritten as a data packet with the opposite logical
value to that of its condition.

The third layer, which represents the left-hand sides
of the rules, calculates the conjunction of the relevant
conditions (e.g. the packet k3, shown in Figure 5, repre-
sents the condition C1 ^ -,C2 ^ C3). Similarly, the
fourth layer, which only exists for right-hand sides that
are activated by more than one conjunction of condi-
tions, consists of logical disjunctions (see Figure 6).

c I [~ cln

I I I

c2 ~ cZn

Jr

k, 1 [Unr..~ [,~,

c 3 ~ c3nl

, I I
k, Ij
I un*"~ t ' ~ I I l l

1

new(k1) Idqnd2 st-unready mr91-cl mri2-c2
r~(kZ) Id-imd3 st-unready eret-cl = ~ arg3-¢3
neu(k3) Idqnd3 stmJl~eldy Ir91,,c1 ef'g2~2n er93=c3
neu(k4) |deln~ =t~nreedy ar91=cl Irll2sc2n llr113=¢.~1

Figure 5 Third layer conjunction packets

Knowledge-Based Systems Volume 8 Number 4 August 1995 157

Graph reduction implementation of a production system: S Murrell and R Plant

kl

k2

k3

} L
V-

k4

I I

°'luor,. ior2jltlll
I

ne.(ol) id=or2 st=unready argl=k2 arg2=k3

Figure 6 Fourth layer disjunction packets

"and" and "or" packets behave in fundamentally the
same way as the 'negative' packets; their arguments are
changed from 'unready' to 'ready' if they have not
already been reduced to data, and, once the arguments
are data, these packets are also rewritten as either
TRUE or FALSE data packets according to the opera-
tion that they represent. In this implementation,
complete evaluation of Booleans is performed. Once
one of the arguments of an "and" packet reduces to
FALSE, the other packets are still evaluated. This is
just a simplification, and certainly not a fixed feature of
the graph reduction method.

Having created all of the necessary left-hand side
conditions with their logical conjunctions and dis-
junctions, we can now create packets that represent
the right-hand sides of the rules, the conclusions (see
Figure 7).

These last three packets are not given identifiers
because no other packets will need to refer to them;
they are the roots of independent computations. The
final clause of each, "rc=l", sets their reference counts.
ALICE uses reference counts to determine whether or
not a packet is still in use. Reference counts are
normally calculated automatically, and, if a packet's
reference count ever reaches zero, the system recycles it,
through a process of garbage collection. Any packet
that is deliberately not referred to by any others must be
protected from garbage collection by being given an
artificially nonzero reference count.

It is by this mechanism that the system recognizes the
packet cln as unnecessary, and removes it.

kl

- l I0-1..,.....I I
r-"

hey id=concLude stsreldy argl=k1 arg2=.al: CLean Battery Temin~Ls" rc=l
neu td=concLude st-ready argl=ol arg2s"a2: Tighten h t t e r y TerminaLs" rc=l
neu id=concLude st-reedy arglsk4 arg2-.i.3: Recharge Battery ~' rc=l

Figure 7 Creation of right hand side conclusion packets

Reducing the production system graph

Once the graph structure has been created (it is shown
in its entirety in Figure 8), the ALICE system can
proceed to reduce the graph on the basis of the input
data from the user.

Whenever a processor is free, a packet with a ready
status is selected at random; initially, there are only
three possibilities:

new id=conclude st=ready argl=kl
arg2="al: Clean Battery Terminals" rc= 1

new id--conclude st=ready argl=ol
arg2="a2: Tighten Battery Terminals"rc= 1

new id=conclude st=ready argl=k4
arg2-"a3: Recharge Battery" rc= 1

In a machine with a single processor, one of these ready
packets is selected. In a multiprocessor system, as many
packets as there are processors may be selected simul-
taneously. For example, the packet representing the
conclusion 'tighten battery terminals' could be selected.
As its one required argument (the "or" packet) has not
yet been reduced to a result, the conclusion is
suspended, and the argument is made ready. This
process of propagating readiness continues until the
queries are ready, and all higher nodes are suspended.
In Figure 9, which shows only the subtree for one
column of the decision table, at this point, the queries
would all be 'ready', and all packets to the right would
be 'suspended'.

When a query is selected, the corresponding question
is asked, and the packet is reduced to data. Any packets
that were previously suspended to wait for it are made
ready again. In this way, definite results are propagated
up the tree until a conclusion is finally reselected.
Referring again to Figure 9, execution terminates when
the conclusion has been printed and all the packets to
the left turned to 'data'.

Graph reduction for psychiatric domain

Having demonstrated the utility of the graph reduction
approach to knowledge-based systems programming
through the small example in the previous two sections,
we will now show the application of the technique in a
larger domain, that of organic psychiatric disorders.
This domain has shown itself to be applicable to the
traditional techniques of rule-based expert systems
development 16, and it is sufficiently complex to have
warranted examination by many researchers 17,~8. In this
paper, we will consider only a subsection of the
American Psychiatric Association's classification
scheme for mental disorders as stated in its Diagnostic
and Statistical Manual of Mental Disorders (DSM-III-
R). The section we will consider is that for organic
mental disorders, for which the decision table shown in
Figure 10 can be created from the DSM-III-R classifi-
cations.

The creation of the graph-reduction program was
achieved by following the methodology illustrated in
Figure 1, passing the decision table through the Pascal
preprocessor in order to produce the ALICE program
which is given in Appendix 2. This program reduces in

158 Knowledge-Based Systems Volume 8 Number 4 August 1995

Graph reduction implementation of a production system: S Murrell and R Plant

°' I - i

iu I*'~"¢'~ t ,

cln k, i
I"1 ' ~ I I t l 1

......... - i

°~ i l l 0~o

,,, T. ~

~ F°I" ' ; ' ~ Ill
. . . . ~

iii iill iIlll i t_

k2 I

I u I'~,~ t l It ld [.......

............. ' [l ul o~11111

u "~11 1 t l llIJ

} ._
I I

k4 I-I L

I u I'~ II II ILl

. e==,! II I I " I

I 'll'IIC~'lll ~ ii i~] [I I I

l__"lc~"l, ~ lll

Figure 8 Complete graph

the same manner as the automobile fault diagnosis
process described above, and it allows dialogues of the
following form to be achieved:

> Query cl: Evidence? y
> Query c2: Disturbance? y
> Query c3: Other symptoms? n
> Query c4: Impairment? y
>> Conclusion a3: Dementia
> Query c5: Memory? y
> Query c6: Change? n
>> Conclusion al: Delirium

It should be noted that it is not the aim of this paper to
discuss the implications of the use of knowledge-based

systems in the medical domain. This is an area of active
research and it is beyond the scope of this paper.
However the reader is directed to Reference 17 for a
comprehensive treatment of this topic.

E X T E N S I O N S T O G R A P H R E D U C T I O N
K N O W L E D G E - B A S E D E V E L O P M E N T

P a r t i t i o n s

The system so far described ensures that no unnecessary
questions are asked of the user as a byproduct of back-
ward chaining. No packets (and, in particular, no

_ t i , , i i i i ii1,11

cl

~' i i

c2 cZn

...... U Ill Quer'YIC2 ["U I"eg.=,~et[]
I I ;

t

Q u e r y ¢ 3 [u I I_1
Figure 9

k2 ,,o i ,~ i[
I, I d d

i i i i ! l

1

,,, i i i i i i,

Subtre¢ for rule CI ^ C2 ^ "~C3 -~ A2

t' i= ' ! ~ !~1

Knowledge-Based Systems Volume 8 Number 4 August 1995 159

Graph reduction implementation of a production system: S Murrell and R Plant

cl : Evidence

c2: Disturbance

c3: Other Symptoms

c4: Impairment

c5: Hemory

c6: Change

al: Det irium

a2: Dementia

a3: Amnestic Syndrome

a4: Organic Personatity Syndrome

a b c d e f g h ! j

y ly jy y yly y yly y
i

Y Y Y Y y y n n n n

y n n n n n

y n n n n y n n n

y y n n y y n

Yi n y n~ y n y
I

x x!xix x x
i

Figure lO

X X

X X

Organic psychiatric disorders decision table

I l l
I|1

These category packets may also be used in a slightly
more general way; related members of the first level of
categories may be grouped into supercategories, and so
on, producing a tree-like hierarchy of categories, giving
the user complete control over which parts of the rule
base are activated, and which are not.

In most situations, the user of a rule-based expert
system can be expected to have some idea of what kind
of problem is to be solved. The ability to leave the
majority of conclusions inactive can speed up computa-
tion enormously. Of course, this only prevents certain
conclusions from being activated (and consequently
prevents questions that only lead to those conclusions
from being asked); it does not alter the logic behind the
conclusions at all.

In fact, there is no reason why the hierarchy of cate-
gories should not be arranged to give control over the
activation of individual conclusions, so that the rule
base may be used to answer one specific question,
without any unnecessary work.

packets representing questions) may be reduced until
they have a status of 'ready'. Initially, only the packets
representing conclusions, or the actions on the right-
hand sides of rules, are ready, and the ready status is
only propagated to those subcomputations ('and's and
'or's etc.) that are actually needed.

This does not represent any real saving, as questions
that contribute to no conclusions at all are unlikely to
remain in the rule base of a system once its design is
complete. However, the same effect may be used to
great advantage if only a subset of all possible conclu-
sions are of interest, and if there is some way of ensur-
ing that only interesting conclusions have their status
initially set to 'ready'. In such a case, only those ques-
tions that directly contribute to an interesting conclu-
sion would ever be asked.

Fortunately, this is a very simple modification to
make to the system. First, the knowledge engineer
divides the conclusions up into a number of categories
(which may be as broad or narrow, and as meaningful
or arbitrary, as desired), and a "category" packet is
generated for each:

new id=category st=ready
argl ="name of category" arg2=...

If there is only one conclusion in a category, the second
argument of the corresponding packet points directly to
that conclusion packet. If there is more than one, it
should point to a tree of 'propagate' packets, as
described below.

The category packets are the only ones in the whole
system that are created with a status of 'ready'. When
one is reduced, it prints the question 'are you interested
in [first argument string]?', and waits for input. If the
input is 'yes', then it simply activates its second argu-
ment, thus propagating the 'ready' status toward the
relevant conclusions. If the answer is 'no', nothing is
done, and those conclusions remain 'unready'.

The 'propagate' packets perform no computation at
all, and are only used to spread the status of 'ready'
throughout a larger number of conclusions. When one
is reduced, it simply activates all of its own argument
packets.

Timing

In the worst case (an uncontrolled use of the rule base
in which all conclusions are activated, and all queries
are asked of the user), every packet is picked for reduc-
tion twice; once before its argument packets have been
reduced, when its job is to propagate the 'ready' status
throughout the system, and then a second time, when it
is actually reduced to either TRUE or FALSE. Thus,
the time required (for a single processor) is directly
proportional to the number of packets in the initial
configuration, which is itself proportional to the size of
the original decision table. (The initial configuration
consists mainly of one tree of "and" packets for every
column in the decision table, the size of that tree being
given by the number of conditions contributing to that
column, which is in turn bounded by the total number
of conditions). Thus, the worst case time for deductions
is linear in the problem size.

When partitioning is used to isolate individual
conclusions, the best-case time may be achieved. When
only one conclusion is active, and there are enough
processors in the system to perform all of the appropri-
ate reductions concurrently, the time required is propor-
tional to the depth of the AND-OR tree controlling the
active conclusion. Because each packet in the tree can
reference three other packets, that depth is approxi-
mately the base-3 logarithm of the number of condi-
tions in each AND tree, plus the base-3 logarithm of the
number of AND trees in the OR tree. Thus the best-
case time for a deduction is logarithmic in the problem
size.

Non-Boolean inputs

In many systems, the responses to queries are not all
either TRUE or FALSE, but are drawn from a larger
set, such as the integers. In such cases, an extra layer of
packets is required. The input from the user is requested
by a modified form of "query" packet, which rewrites
itself as an integer data packet. The following are

160 Knowledge-Based Systems Volume 8 Number 4 August 1995

Graph reduction implementation of a production system: S Murrell and R Plant

examples, with the first being before reduction, and
the second after reduction:

id=Querylnt st=ready argl="How many eggs"

id=Integer st=Data argl=6

The extra layer is composed of relational packets (corre-
sponding to the relational operators =, < , > etc.) which
have two arguments; when both the arguments have
been reduced to integer data, they themselves are re-
written as either TRUE or FALSE Boolean data
packets, depending upon the result of the comparison.
These relational packets take the places of the original
query packets.

C O M M E N T S AND CONCLUSIO NS

This paper has demonstrated that graph reduction can
be successfully applied to the implementation of
production-rule knowledge-based systems. We have
shown an approach to the mapping of decision tables to
a form suitable for parallel processing.

The graph-reduction approach has several advant-
ages.

The ALICE machine treats each packet as a
completely independent entity which is reduced in isola-
tion. This vastly simplifies the allocation and sharing of
resources, which is often a significant overhead in other
forms of parallel processing.

The approach we have used also has a best case loga-
rithmic time for its computations which is out of the
question for sequential systems. It gains some extra effi-
ciency from ALICE's selective reduction policy.

Owing to the existence of complete formal specifica-
tions for the ALICE systems ~9, and the simple nature of
the input decision tables, validation and verification can
become a realistic goaF °.

We feel that this approach will be of lasting value,
because it only requires very simple input, and it makes
use of an emerging technology 21.

REFERENCES

1 Darlington, J & Reeve, M (1981) 'ALICE: multiprocessor reduc-
tion machine for the parallel evaluation of applicative languages'
A CM/MIT Conf. Functional Programming Languages and
Computer Architecture NH, USA

2 Reeve, M & Zenith, S E (Eds.) (1989) Parallel Processing and
Artificial Intelligence John Wiley, UK

3 Peyton-Jones, S L, Clack, C and Salkild, J (1989) 'High per-
forrnance parallel graph reduction' Proc. PARLE '89 Parallel
Architectures and Languages Europe. Vol 1." Parallel Architectures
Springer-Verlag, Germany

4 (1984) OCCAM Programming Manual Prentice Hall
5 Jones, G (1987) Progamming in Occam Prentice Hall, USA
6 Hains, G & Todd, B S (1988) 'The parallel implementation of a

medical diagnostic model' Proc. Third International Conference
on Supercomputing - 1Iol 1 pp 222-229

7 Seitz, C (1985) 'The cosmic cube' Communications A CM Vol 28
No 1 pp 22-33

8 Metzner, J R & Barnes, B (1977) Decision Table Languages and
Systems Academic Press, USA

9 Cohen, P R & Feigenbaum, E A (1982) The Handbook o f
Artificial Intelligence - Vol 3 Pitman

10 Davis, R & King, J (1976) 'An overview of production systems'
in Elcock, E W & Michie, D (Eds.) Machine Intelligence - 1Iol 8

John Wiley, USA, pp 300-332
11 Murrell, S & Plant, R (1994) 'Decision tables: formalisation, vali-

dation and verification' Report 93-0602 Department of CIS,
University of Miami, USA

12 O'Leary, D E (Ed.) (1994) Collected Papers of AAAI Workshops
on Validation and Verification 1988-92 John Wiley, USA

13 Preece, A D, Shinghal, R & Batarekh, A (1992) 'Verifying expert
systems: a logical framework and a practical tool' Expert Systems
with Applications Vol 5 pp 421-436

14 Rushby, J (1988) 'Quality measures and assurance for AI soft-
ware' Contractor Report 4187 NASA, USA

15 Culbert, C(1990) 'Verification and validation of knowledge-
based systems' Expert Systems with Applications Vol 1 No 3

16 Moreno, H R & Plant, R T (1993) 'A prototype decision support
system for differential diagnosis of psychotic, mood, and organic
mental disorders' Medical Decision Making Vol 13 pp 43-48

17 Jakab, I (1992) 'Artificial intelligence in medicine and psychiatry:
new developments in the 1990s' Proc. Third Annual Symposium
Int. Association of Knowledge Engineers Washington DC, USA,
pp 241-261

18 Servan-Schreiber, D (1986) 'Artificial intelligence and psychiatry'
Journal of Nervous and Mental Disease Vol 174 No 4 pp 191-202

19 Murrell, S (1988) 'State transition specifications for abstract
machines' DPhil Thesis Computing Laboratory, University of
Oxford, UK

20 Murrell, S & Plant, R T (1993) 'Validation and verification of
graph-reduction knowledge-based systems' Working Paper Dep.
Computer Science, University of Miami, USA

21 Townsend, P (1987) 'Flagship hardware and implementation' ICI
Technical Journal Vol 5 No 3 pp 575-594

APPENDIX 1

To reduce initial:
new(cl) id=query st=unready

argl = "cl: Dim Headlights"
new(c2) id=query st=unready

argl="c2: Battery Terminals Corroded"
new(c3) id=query st=unready
argl="c3: Battery Terminals Loose"

new(cln) id=negative st=unready argl=cl
new(c2n) id=negative st=unready argl =c2
new(c3n) id=negative st=unready argl=c3
new(kl) id=and2 st=unready argl=cl
new(k2) id=and3 st=unready argl=cl

arg3=c3
new(k3) id=and3 st=unready argl=cl

arg3=c3
new(k4) id=and3 st=unready argl=cl

arg3=c3n
new(o2) id=or2 st=unready argl=k2
new id=conclude st=ready argl=Kl

arg2=c2
arg2=c2

arg2=c2n

arg2=c2n

arg2=k3

arg2="al: Clean Battery Terminals"rc=l
new id=conclude st=ready argl=r2

arg2="a2: Tighten Battery Terminals"rc=l
new id=conclude st=ready argl=K4

arg2="a3: Recharge Battery"rc= 1
rewrite id=null st=data rc=0

argl=argl

to reduce query:
write string "Query: C'
write integer argl
write string "?"
read char x
read char y
k=O
if (x=89) or (x=121)
k=l
rewrite id=true st=data

Knowledge-Based Systems Volume 8 Number 4 August 1995 161

Graph reduction implementation of a production system: S MurreU and R Plant

if (x78) or (x110)
k=l
rewrite id=false st=data argl =argl

if k=O
rewrite id=query st=ready argl=argl

to reduce positive:
require argl
if (argl.id)=true

rewrite id=true
else
rewrite id=false

st=data argl=argl.argl

st=data argl=argl.argl

to reduce negative:
require argl
if (argl.id)=true

rewrite id=false
else

rewrite id=true

st=data argl=argl.argl

st=data argl =argl.argl

to reduce and2:
require argl
require arg2
if ((argl.id)=true) and ((arg2.id)=true)

rewrite id=true st=data argl=argl
else
rewrite id=false st=data argl =argl

arg2=arg2

arg2=arg2

to reduce and3:
require argl
require arg2
require arg3
if ((argl.id)=true) and ((arg2.id)=true) and

((arg3.id)=true)
rewrite id=true st=data argl =argl arg2=arg2

arg3=arg3
else

rewrite id=false st=data argl=argl arg2=arg2
arg3=arg3

to reduce or2:
require argl
require arg2
if ((argl.id)=true) or ((arg2.id)=true)
rewrite id=true st=data argl =argl arg2=arg2

else
rewrite id=false st=data argl=argl arg2=arg2

to reduce or3:
require argl
require arg2
require arg3
if ((argl.id)=true) or ((arg2.id)=true) or

((arg3.id_=true)
rewrite id=true st=data argl =argl arg2=arg2

arg3=arg3
else
rewrite id=false st=data argl=argl arg2=arg2

arg3=arg3

to reduce conclude:
require arg2
if ((arg2.id)=true)
write string "Conclusion:A"
write integer argl
write char 10
rewrite id=true st=data

else
rewrite id=false st=data

APPENDIX 2

To reduce initial:
new(cl) id=query st=unready

argl ="cl: Evidence"
new(c2) id=query st=unready

argl--"c2: Disturbance"
new(c3) id=query st=unready

argl="c3: Other Symptoms"
new(c4) id=query st=unready

argl="c4: Impairment"
new(c5) id=query st=unready

argl ="c5: Memory"
new(c6) id=query st=unready

argl ="c6: Change"
new(cln) id=negative
new(c2n) id=negative
new(c3n) id=negative
new(c4n) id=negative
new(c5n) id=negative
new(c6n) id=negative
new(kl) id=and3

arg3=c3
new(xl) id=and3

arg3=c3n
new(k2) id=and2
new(x2) id=and3

arg3=c3n
new(x3) id=and3

arg3=c6
new(k3) id=and2
new(k4) id=and3

arg3=c3n
new(x5) id=and3

arg3=c6n
new(k4) id=and2
new(x6) id=and3

arg3=c3n
new(x7) id=and3

st=unready
st=unready
st=unready
st=unready
st=unready
st=unready

st=unready

st=unready

st=unready
st=unready

st=unready

st=unready
st=unready

st=unready

st=unready
st=unready

st=unready
arg2=c5n arg3=c6

new(k5) id=and2 st=unready
new(k8) id=and3 st=unready

arg3=c3n
new(x9) id=and3 st=unready

arg2=c5n arg3=c6n
new(k6) id=and2 st=unready
new(k7) id=and3 st=unready

arg3=c4
new(xl0) id=and3 st=unready

arg2=c2n arg3=c4n
new(xl 1) id=and2 st=unready
new(k8) id=and2 st=unready

arg2=xl 1
new(xl2) id=and3 st=unready

arg2=c2n arg3=c4n

argl=argl

argl =argl

argl =cl
arg 1 =c2
argl =c3
arg 1 = c4
argl =c5
arg 1 =c6

argl=cl

argl=cl

arg 1 =x 1
argl =cl

argl =c4n

argl =x2
argl =cl

arg 1 --c4n

arg 1 = x4
argl=cl

arg 1 =c4n

argl =x6
argl =cl

argl =c4n

argl =x8
argl=cl

argl =c 1

argl =c5
argl=xl0

argl=cl

arg2=c2

arg2=c2

arg2=c4
arg2=c2

arg2=c5

arg2=x3
arg2=c2

arg2=c5

arg2=x5
arg2=c2

arg2=x7
arg2=c2

arg2=x9
arg2=c2n

arg2=c6

162 Knowledge-Based Systems Volume 8 Number 4 August 1995

Graph reduction implementation of a production system: S Murrell and R Plant

new(xl3) id=and2 st=unready argl=c5
arg2=c6n

new(k9) id=and2 st=unready argl--xl2
arg2=x 13

new(xl4) id=and3 st=unready argl=cl
arg2=c2n arg3=c4n

new(xl5) id=and2 st=unready argl=c5n
arg2=c6

new(kl0) id=and2 st=unready argl=xl4
arg2=xl 5

new(xl6) id=and3 st=unready argl=cl
arg2=c2n arg3=c4n

new(xl7) id=and2 st=unready argl=c5n
arg2=c6n

new(kll) id=and2 st=unready argl=xl6
arg2=xl7

new(xl8) id=or3 st=unready argl=kl arg2=k2
arg3=k3

new(xl9) id=or3 st=unready argl=k4 arg2=k5
arg3=k6

new(rl) id=or2 st=unready argl=xl8 arg2=x19
new(ol) id=conclude st=unready argl=rl

arg2="al: Delirium"
new(r3) id=or2 st=unready argl=k2 arg2=k7
new(o3) id=conclude st=unready argl=r3

arg2="a3: Dementia"
new(x20) id=or3 st=unready argl=k3

arg2=k4 arg3=k8
new(r4) id=or2 st=unready argl=x20 arg2=k9
new(o4) id=conclude st=unready argl=r4

arg2= "a4: Amnestic Syndrome"
new(x21) id=or3 st=unready argl=k3 arg2=k5

arg3=k8
new(r5) id=or2 st=unready argl=x21 arg2=kl0
new(o5) id=conclude st=unready argl=r5

arg2= "a5: Organic Person... Syndrome"
new(il) id=iswanted st=unready

argl = "gl:Dementia" arg2=o3
new(g2) id=propagate3 st=unready argl=ol

arg2=o4 arg3=o5
new(i2) id=iswanted st=unready

argl="g2: All Other Diagnoses"arg2=g2
new(g0) id=propagate2 st=unready argl=il

arg2=i2
rewrite id=iswanted argl="starting" arg2=g0

to reduce iswanted:
write string "Are you interested in "
write string argl
write string "?"
read char x
read char y
if (x=89) or (x=121)
rewrite id=wakeup argl=arg2

else
if (x=78) or (x=110)
rewrite id=useless st=data rc=0

else
rewrite id=iswanted argl =argl arg2=arg2

to reduce wakeup:
require argl
rewrite id=useless st=data rc=0

to reduce propagate 2:
require argl
require arg2
rewrite id=useless st=data rc=0

to reduce propagate3:
require argl
require arg2
require arg3
rewrite id=useless st=data rc=0

Knowledge-Based Systems Volume 8 Number 4 August 1995 163

