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The existence of a formal description of any language 
is a prerequisite to any rigorous methods of proof, 
validation, or verification. This article develops a for- 
mal semantics in the denotational style for rule-based 
production systems. Primarily, a formal description of 
a generalized, hypothetical language for rule-based 
expert systems is developed as a base. Building on 
this base, it is possible to specify in detail the varia- 
tions that distinguish individual real-world systems in 
a usable way. 

1. INTRODUCTION 

The use of production systems in the development 
of a knowledge-based application has been popular 
since they were demonstrated in the MYCIN (Short- 
liffe, 1974) and Rl (McDermott, 1980) systems to be 
both natural and intuitive in nature. This, combined 
with their modularity and declarative style, enabled 
the fast and easy development of otherwise complex 
or infeasible systems. 

The popularity of this representational form 
brought about a new style of programming based on 
the paradigm of rule-based systems, along with many 
shells, environments, and languages dedicated to the 
creation of production systems. These languages and 
environments also simplified many programming 
tasks that were previously difficult to perform, such 
as the rapid prototyping of expert systems. 

The combination of a new programming paradigm 
and new approaches to development had a beneficial 
effect in freeing the developer and programmer from 
trivial chores to build creative new systems. However 
the growth in rule-based environments was not sup- 
ported by any theoretical model of these systems. 
This led to significant problems in the validation and 
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verification of rule-based systems, and research is 
still active in that area (O’Leary, 1987; Preece, 1993). 
The development of an exact formal description of 
the new languages is a step toward reliable valida- 
tion and verification, but research in this area has 
primarily been focused on the specification of the 
shells and their inference process (Gold and Plant, 
1991). 

Although formal semantic specifications have been 
developed for the general languages of artificial 
intelligence-LISP (Gordon, 1973; Henderson, 1980) 
and PROLOG (Jones and Mycroft, 1984; Nicholson 
and Foo, 1989)-and general-purpose goal-directed 
languages (Gudeman, 1992), their application to spe- 
cific domain-oriented languages, particularly those 
for expert systems, has been left largely unexplored. 
In this article, a formal semantic description for 
rule-based systems is presented. 

Initially, the semantic system is constructed around 
a simple but representative system. This provides a 
formal description of just one hypothetical rule- 
based language; as such, it would be of very limited 
usefulness. Much of the power of a useful semantic 
system is in its ability to describe, within a constant 
framework, the variations in different systems. The 
semantics of several such variations are also pre- 
sented. 

In Section 2, a simple language for describing 
rule-based expert systems is presented; this is not a 
description of any real language, just a generic syn- 
tactic base for the semantic definitions that follow. 
Then, in Section 3.1, using the well-established style 
and notation of denotational semantics (Milne and 
Strachey, 1976; Stoy, 1977), the semantic domains 
are defined for representations of conditions and 
system states, after which it is possible to give defi- 
nitions (Section 3.2) of the basic semantic functions 
8 and g for evaluating expressions and checking 
their domains, respectively. Building on these, in 

J. SYSTEMS SOFTWARE 1995; 29:251-259 
0 1995 by Elsevier Science Inc. 
655 Avenue of the Americas, New York, NY 10010 

0164-1212/95/$9.50 
SSDI 0164-1212(94)00108-Y 



252 J. SYSTEMS SOFTWARE 
1995; 29:25-259 

S. Murrell and R. Plant 

Section 3.3, three additional functions, Y,Y, and d, 
are used to determine which rules may be fired and 
what input is required from the user. Together with 
function ti, which defines (Section 3.5) the effect of 
carrying out the possible actions or conclusions, it is 
possible (Section 4) to specify the actions of the 
whole system. Once a basic definition for simple 
rule-base systems has been presented, additions to 
cover more complex possibilities are discussed (Sec- 
tion 5). 

2. A SIMPLE RULE-BASED SYSTEM 

To avoid the specific details and idiosyncrasies of 
any particular implementation, we initially assume a 
generic rule-based system. A program in this hypo- 
thetical system consists of a collection of rules and 
their associated declarations. 

The following are the only metaconstructs used in 
the syntax specifications: 

[A] means that A is optional 

[AIBJC . . . ] means a choice between A, B, or C 

Furthermore, 

(rule) + 

(cond) + 

(relat)* 

(expr) + 

(acts) + 
(act) + 

(expl) + 

IF (cond) (acts) [BECAUSE 

(=d>l 
(identifier) 
(relat) 
(cond) AND (cond)l(cond) OR 
(cond)(NOT (cond) 

((cond)) 
(expr) = (expr)l(expr) < 

(exw)l(expr> 5. <ywr> 
I (expr) + (expr)l(expr) > 

(expr)I(expr) 2 (expr) 
(identifier)I(constant) 

I ((expr>) 
I lex;r;l; (pexpr)l(expr) - 

ex r ex r 
I :ex;r)Z) X (expr>l(expr) + 

ex r 
(act)[AND(acts)] 
DEDUCE 
(identifier)[=](expr) 
(string-constant) 

I (expr) 
I (expl) + (expl) 

Examples: 

IF weight> classX 2240 
DEDUCE tooheavy TRUE 
BECAUSE “weighs more 

than" +class + “tons." 
IF unemployed DEDUCE salary=0 

2.1 Modes and Declarations 

Although most rule-based systems do not provide 
type checking of operands, this specification does. It 
is easier to ignore an unwanted feature than to 
make use of an unprovided one. The equations in 
Section 3.2 leave explicitly undefined the behavior 
when type errors occur. 

To enable type checking, a declaration is required 
for every variable used. The declaration associates a 
type, a mode, and an accessibility with each identi- 
fier. For the sake of completeness, declarations are 
permitted to specify an initial value for an identifier. 

(decl) + (acc)(mode)(type)(defs) 
(act) + [MODIFIABLE] 
(mode) + ASKEDIDEDUCED 
(type) + NUMBERIBOOLEANISTRING 
(defs) + (defn)[,(defs)] 
(defn) +(identifier)[= (expr)] 

Examples: 

MODIFIABLE DEDUCED NUMBER x, y=O, z 
ASKED BOOLEAN HasHeadaches 

Type is used in its traditional sense to specify the 
set of values that an identifier may take on; natu- 
rally, the system may easily be extended to include 
more types than shown here. Mode is used to specify 
a basic but flexible interface with the user. An 
identifier that is declared as deduced may only be 
given a value as the result of executing an (act). An 
identifier that was declared as asked may also re- 
ceive a value in this way, but if it is ever needed 
before it gets a value, the user may be queried. 

Access simply defines whether or not an identifier’s 
value may ever change. To conform to the most 
common rule-based systems, once an identifier has 
been deduced to be true, it remains permanently 
true, and any later attempt to give it a different 
value is a sign of inconsistency and therefore an 
error. However, it may be desirable to have identi- 
fiers that behave like variables, so the option is 
permitted. 

2.2 Programs 

With these definitions, it is sufficient to state that a 
program is simply an arbitrary mixture of rules and 
declarations. It may be the case that the order in 
which rules are entered has some effect on the 
system’s conflict resolution strategy, but that is not 
reflected in the syntax. 

(prog) + empty 
I (component)(prog) 

(component) + (decl) 

I (rule) 
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3. SEMANTICS Examples: 

3.1 Domains 

The behavior of any rule is dependent on the cur- 
rent state of the system (i.e., the values associated 
with identifiers), so before the semantics of rules 
may be defined, a representation for the state must 
be selected. 

An identifier naturally has five components: its 
name, accessibility, mode, type, and value; addition- 
ally, it is possible to keep track of the reasons for the 
current value (in systems that do not support rea- 
sons, this component may be ignored). Only the 
value and reason may change while a program is 
running; the other components are tixed. 

Identifiers are represented by a Cartesian product: 

ID = NAMEXACC XMODEXTYPEXVAL 
X REASON 

NAME = String 
ACC = {Var, Fix} 

MODE = (Ask, Ded} 
TYPE = (Num, Bool, Str) 
VAL = Real+ {True, False}+String+ 

{Undefined} 
REASON = String 

STATE = 
invariants: 

RULE = 
PROG = 
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(“weight", Fix, Ask, Num, 3371, “user 
input") 
(“class", Fix, Ask, Num, 1, "user in- 
put") 
("tooheavy", Fix, Ded, Bool, True, 
“weighs more than 1 tons") 

In this definition, the VAL component is drawn 
from one of four basic domains, the first three 
representing the sets of real numbers, Boolean val- 
ues, and strings. The fourth, which does not corre- 
spond to one of the user-declarable types, contains 
just one value, known as undefined; its only pur- 
pose is to take the place of the value for a variable 
that has none. It is not appropriate to use I 
instead of undefined, because the condition that it 
represents must be detectable. 

For each of the possible identifier types T, a 
membership function is, is provided: 

i%Jum (x) =x E RealV x=Undefined 
isBool(x) EXE {True, False} Vx 

=Undefined 
is Str(~) =x E StringV x=Undefined 

The state of a system at any time is simply the set 
of all currently known identifier representations, with 
the requirement that there may be at most one 
unique record for each identifier in the state, and 
that its value is consistent with its type. 

set(ID) 
Vs:State, V(n, a, m, t, v, r),(n', a', m', t', d, r') E s, 

(n=nl)*(a= a> A (m=m) A (t =t’) A (v=Tj) A (r =2) 
Vs:State,V(n, a, m, t, v, r) E s,is,(v) 
(cond) X (acts) X (expl) 
set(RULE) 

Each rule is reduced to a triple containing its 
three essential syntactic components, and the whole 
program (for run-time purposes) is considered to be 
a set of such rules. 

3.2 Evaluation Functions 

evaluation. 8 is subscripted with the expected type 
of its result, a formal detail, which, as a side effect, 
provides a type-checking mechanism. 

Given a state, conditions and expressions may be 
evaluated. The function 8 defines the result of this 

It is not possible for the evaluation of any expres- 
sion to result in a change to the state of the system, 
so a straightforward applicative model is possible: 

g+(expr) X STATE 
ZT(k:(constant)), 

Z?&:(identifier)), 

8N,,(e,:(expr) + e,:(expr>), 

VAL 
intuitive meaning of k, if i sT ( k ) 
not defined otherwise 
lookup,(n, s) 



254 J.SYSTEMSSOFTWARE 
1995;29:251-259 

In this traditional notation for semantic functions, 
the STATE parameter, s, is reduced to a subscript to 
make the important parameter-an expression- 
more prominent. Of course, the state is a vital 
parameter, but in terms of understanding, 8 is 
considered to be a function from syntax to meaning. 
The concepts of denotational semantics are covered 
fully in Stoy (1977). 

There would normally be a partial definition for 8 
corresponding to each of the possible syntactic forms 
for an (expr), but due to the confines of this 
format, only significantly different cases are shown 
here. Syntactic labels are retained to disambiguate 
the cases; the definition ZY&:(identifier)), = 
lookup,(n, s) means that if n is syntactically an 
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identifier, then 2Y&>, = lookup, (n, s ) . In other 
words, if a result of type T is expected, and n is an 
identifier, and the current state is represented by s, 
then the meaning of n (when seen as an expression) 
may be obtained by looking up the identifier n in the 
state s, demanding a result of type T. 

Cn, a, m, t, v, r) E s A v Z Undefined 
ti lookup,(i, s) =v 

The state invariant makes this definition of lookup 
unambiguous; it also leaves the value of an unknown 
identifier undefined. Semantics for specific systems 
may specify different behaviors with minimal modi- 
fication, 

iFB,,,(el:(expr> I e,:(expr>), = True,if gNum(e,), I 8'Nu,,,(e2), 
False, otherwise 

8'B,,,(cI:(cond)AND c,:(cond)>, = True, if 2F’~ool(cl)s = True A 8BO01(c2)s = True 
False, otherwise 

The definition of 8 for Boolean expressions does 
not specify whether fulZ or short-circuit evaluation is 
to be used. Nor could it, because 8 simply specifies 
the correct result, which is the same in both cases. 
The distinction may be made in the design of 0, 
below. 

The function 0 is used to check that an expres- 
sion or condition is being evaluated within its do- 

main and will not result in an invalid operation. This 
is not simply to make the system under definition 
more robust, which would be unrealistic modeling, 
but also to ensure that these semantic functions do 
not become inconsistent. The other semantic func- 
tions (particularly 8 and J& have their domains 
implicitly restricted to only those states for which 0 
would return True. 

g&(expr)X STATE + {True, False} 
B,(k:(constant)), = True,ifis,(k) 

False, otherwise 
B,h(identifier)), = True,if(n, a, m, T, v, r)E s A v# Undefined 

False, otherwise 
0~Jq:<expr> + e2:(expr>), = O~Um(e,), A0N,,(e2), 

0,,,,(q:(eWX> I e,:(expr)), = 0,,,(q), AONU,,,(e,), 

OB,,,(cI:(cond) AND c,:(cond)), = ~BOOl(cI)s A (8BOOl(ct)s = False VOBool(cz)s) 
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The definition for AND specifies that A AND B is 
only valid if A is valid and false, or if A and B are 
both valid, that is, short-circuit evaluation, which is 
essential if Askable variables are to be usable. A 
similar definition holds for OR: 

=9B,,,(c,:(cond) OR c,:(cond>), =9Bool(~l)s A 

(~BOOl(cl)R = True V9Bool(~2)s) 

Finally, the obviously wrong expressions must be 
excluded: 

a,,,,(el:(expr) + e,:(expr>>, = False 

gN,,(e,:(expr) 5 e,:(expr)), = False 

9Nu,(cl:(cond) AND c,:(cond)), = False 
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A nonsubscripted variant of 9 is used for checking 
actions when no result value is produced; this is 
defined in Section 3.5. 

It should be noted that implementations are not 
required to check 9, which would represent a great 
deal of wasted computation. 9 is only used to 
restrict the domain of the semantic model so that 
the results of invalid operations are not specified. 

3.3 Variables 

The function P’: (expr)X State + set(Iden- 

t i f i er) provides a list of those identifiers that are 
required for the evaluation of an expression, but are 
still both undefined and askable. In other words, 7’ 
determines which questions might usefully be asked. 

Y'"(n:(identifier)), = (n}if(n, a, Ask, t, Undefined, r) E s 

{ } otherwise 
Y"(k:(constant)), = { } 

Y(e,:(expr) f e,:(expr)), = Y(e,>, U Zr(e2)s 

YXe,:(expr) 5 e,:(expr>>, = FTel)s U Y?e,>, 

+{I V(c,:(cond) AND c,:(cond)>, = Ye if ECU 
NcJs if Y/(c,), 
{ } otherwise 

= ( 1 A~Bool(~l)s A tYBool(cl)s = True 

#{ 1 
= { ) A~Bool(~l)s A ZBool(cl)s = False 

Y(c,:(cond) OR c,:(cond)), = Y(cljs if Y(c,), 
NC& if Y?cl& 
1 } otherwise 

Y(NOT c:(cond)), = T(C), 

The definition for A AND B should be read thus: 
If A contains unknown values, then those are the 
unknown values required for A AND B (the un- 
knowns in B are not necessarily required; A may yet 
evaluate to false). If A has no unknowns, is valid, and 
evaluated to True, then the unknowns of B are 
required. 

The purpose of 7 is to determine which ques- 
tions may be asked of the user as a precursor to the 
firing of a rule. Y and 9 together determine 
whether a rule may even be considered for firing, 
and 8 (applied to the rule’s condition) makes the 
final determination of firability and aids in the calcu- 
lation of the effects of any rule that is fired. 

3.4 Selection 

In the context of a set of rules that are under 
consideration for possible firing, the subset of rules 
that may be fired immediately may be determined. 
They are those rules for which no still-to-be-asked 
variables appear in their conditions, the current 
state satisfies the domain constraints for all three 

parts (condition, actions, reason), and the condition 
evaluates to True. 

237 set(RULE)XSTATE+ set(RULE) 

firr), ={(c, a, r) E rr19B001(c)s Agl(a), 

A9Strb-), A Y'-(c), ={ 1 

A\BOOl(c)s = True) 

This specifies that a rule may not be fired if so 
doing would cause an error when evaluating the 
actions or the reason. Typical systems do not look 
this far ahead. For a more accurate model in these 
cases, the conditions may be relaxed. 

In the same context, of a set of rules under 
consideration, the set of variables that could usefully 
be asked of the user may also be determined. If 
there are already firable rules, then there is no point 
in asking any questions; otherwise, any variable re- 
turned by Y” for one of the rules is a candidate. 

@:set(RULE)XSTATE+ set((identifier)) 

@(rr), = I 1 if fin), + I I 
= {i:(identifier)l 

3(c, a, r)E rr. i E Y(c),} otherwise 
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In general, a system will ask just one of the ques- 
tions returned by d before reconsidering what step 
to take next, by reevaluating 9X 

3.5 Actions 

An addition to B is required to ensure the validity 
of a deduction. This variant is not subscripted, be- 
cause there is no result and therefore no type to 
check. 

Naturally, a multiple action is only valid if all of 
its components are valid. The first component’s va- 
lidity may be tested under the current state of the 
system, but all subsequent components will be exe- 
cuted in the state as modified by the prior execution 
of the first component. JY’ models the result of 
performing a deduction, and must be used here. 

The deduction of a new value for a variable is 
valid only if the type of that value is the same as the 
declared type of the variable. It is also required that 
the variable either has no current value or was 
declared as modifiable. 

.59_(a,:(act) AND a,:(acts>), 
= False, if 9(al), = False 
(9(a,)o.&a,)), otherwise 

L&DEDUCEn:(identifier) = e:(expr)>, 
=9-,(e), if (n, a, m, t, v, r) E s 

and (v = Undefined) 
V(a = Var) 

False otherwise 

JX’ itself has a relatively simple definition. The do- 
main of .B! is assumed to contain only those combi- 
nations of actions and states for which 9 returns 
True, so no further checking is required. 

The result of an action is a modification to the 
state of the system, so the result type of LZ’ is STATE. 
When multiple actions are performed, the first is 
performed in the initial system state, but all subse- 
quent actions are performed in the resultant modi- 
fied state, so a composition of functions is used, as 
with 9. 

.!&:(acts)X STATE 
tia,:(act> AND a,:(acts)>, 

.&DEDUCEn:(identifier) = e:(expr)BECAUSEr), 

+ STATE 

= Ma,>~=da,>>, 
= Assign(n, e, r)s 

(n, a, m, t, v, r> E s Aa,( A9st,(r), * 

Assi9-n(nf et 4 = s @ (n, a, m, t, Zt(e)., g(r).) 

In the above definition, o is a simple updating 
operator that removes any existent record for a 
particular variable, replacing it with a new one. It 
could be formally defined thus: 

s 8 (n, a, m, t, v, r>= 
{(I-!, a', m', t', 6, r') E sin # n'} 

U{(n, a, m, t, v, r)) 

The definition of Assign specifies that only if the 
variable already exists and has the appropriate type 

may an assignment take place; when it does, the 
value and reason associated with the variable are 
replaced, but the other information remains un- 
changed. Such type checking is unnecessary in this 
context, because the prior use of B ensures that no 
type errors will occur, but in later uses of Assign, 
this protection is not available. 

9 is a simple string-evaluating function used to 
construct reasons. Using I1 as a string concatenation 
function: 

Z(expl) X STATE 
L%'(k:(string-constant)), 
LNe,:(expl) + e,:(expl)), 

He:(expl)), 

=%nh) 

String 

~~e,W~e,~ 
91,,(gN,,(e>,>if gNw(e), 
~Bool(~Bool(e>,> if ~Bool(ds, etc. 
L%&it(n) ifn < 10 
sInt([n + 10j)l19~i,i,(nmod10) otherwise 
“O", etc. 
“True" 
“False" 
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3.6 Initial State 

The initial state of the system may be obtained from 

Aprogram){ I( ); 9 builds up an initial state and a 
representation of the rules in its second and third 
(subscripted1 parameters as it scans the program, 
finally returning the two as a pair: 

3 (prog) X STATE X PROG 
+ STATEX PROG 

Aempty),, p = 63, P> 
J?IF c:(cond) a:(acts) 

BECAUSE r:(expl) p~:(prog)),~ 

= ~PPL, (PUl(C, a, 
da:(acc) m:(mode) t:(type) 

I-))) 

n:(identifier) pp:(prog)),, 
= ({ }, ( 1) if (n, d, m', t', d, r') E i 

APP) (sU((n.a,m,t,Undefined, (L ")l),p otherwise 
Aa:(acc> m:(mode) t:(type) 

n:(identifier) = e:(expr)pp:(prog)),,, 
= (1 },{ 1) if (n, d, m', t', d, 9) E s 
(I I,{ 1) if a,(e), ) = False 
fiPP> lsU((n,a,m,t,I,le), ), . . ,,)lx p otherwise 

In the above four clauses, the second adds a new 
rule to the rule base, the third adds a new variable 
after checking that the variable in question has not 
already been declared, and the fourth adds a new 
variable with an initial value after first checking that 
the expression for the value is valid. The first clause 
returns the accumulated results as a pair when the 
whole program has been processed. 

4. THE EXECUTION CYCLE 

The execution cycle of a typical system, after the 
initial state has been constructed, would be as fol- 
lows: 

Sr is used to determine which rules may fire imme- 
diately. 

if none, d is used to determine which questions 
may be asked. 

if none, execution halts. 
otherwise, one question is asked, and 9 
reevaluated. 

The process is repeated until a firable rule is 
found. 

& is used to determine the results. 

This procedure validly describes systems in which 
there is no concept of askable variables; in such 
cases, ~9 always returns { }. 

To model a complete system, including user inter- 
actions, one final compound state is introduced: SYS 

is a compound of four parts, representing the cur- 

rent state (set of records for variables), the program 
under execution (a set of rules), the user input yet to 
be read (a list of values), and the output so far 
produced (a list of strings). As normal execution 
progresses, the state component is updated as the 
result of deductions, and rules are removed from the 
program as they fire. When interaction with the user 
is required, a question is added to the end of the 
output list, and an answer is taken from the head of 
the input list. 

The input list is considered to be predetermined 
in that inputs are taken from it at the same time as 
outputs are put onto the output list. This may not 
seem to correctly model user interaction, but it 
should be borne in mind that the semantics are 
intended to specify the correct result from any given 
conditions; the time at which those conditions came 
into existence is not relevant. 

SYS = STATE X PROG X IN X OUT 
IN = list(VAL) 

OUT = list(String) 

The function Step : SYS --t SYS modes a single 
step in the running of a system; it is defined with 
three mutually exclusive conditional clauses: 

%pls # 1 1 * 3r ES7(p),. 

St&s, P, i, o)=(&-),,p \ r, i, 0) 

This first clause states that if there are any firable 
rules, then one of those rules is executed to update 
the state and removed from the program to prevent 
multiple firings. 

d(p), Z I 1 * 3v E d(p),. Step(s, p, i, 0) 
= (Assign(v, hd (i), “input"),, 

p, tl(i>, ollvl1,‘?") 

The second states that if there are any askable 
questions (which implies that there are no firable 
rules), then one of those questions (i.e., variables) is 
appended to the output list as a question, and the 
head of the input list is assigned to be the new value 
of that variable in the updated state. 

9(P), = ( 1 A d(P), = { 1 - 
Step(s, P, i, o)= (s, P, i, 0) 

The final clause states that if there are no firable 
rules and no askable questions, then nothing hap- 
pens. 

The function Run may now be defined as the least 
upper bound, or fixed point of step, to describe a 
complete run of the system from an initial state. 
This is possible because each of the useful opera- 
tions of Step is guaranteed to change the system. 

Run= UStep 
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5. VARIATIONS 

The specification presented above makes a number 
of assumptions that are not valid in most real sys- 
tems. The variations required to describe the most 
common real cases are generally very slight. 

5.1 Evaluation of Logical Expressions 

Commonly, logical expressions are subject to short- 
circuit evaluation; the first operand of an AND or OR 
operation is always evaluated first, and the second 
operand is only evaluated if the value of the first 
makes it necessary. In some implementations, full 
evaluation is used. The two strategies are different 
in two ways: the former frequently results in faster 
execution (irrelevant to the semantics), and the lat- 
ter may result in more run-time errors (consider the 
expression A AND B, when A is False and B is 
undefined. Short-circuit evaluation would return 
False; full evaluation would attempt to evaluate B 
and cause an error). 

Full evaluation may be specified through some 
simple alterations to the functions 9 and Y. First, 
9 is changed to insist that the second operand of 
AND or OR is valid, regardless of the value of the first 
operand: 

B,,,,(c,:(cond) AND c2:(cond)), = 

-%ool(cl)s A%c&*)s 
9,,,,(c,:(cond) OR c,:(cond)), = 

%OOl(cl)s A%oOIWs 

Second, 7, which determines the set of askable 
variables that are essential in an expression, but still 
undefined, is similarly altered: 

V(c,:(cond) AND c,:(cond)>, = 

7Iq>, U V(q), 
Y(c,:(cond) OR c2:(cond>>, = 

V(q), U Yle2)s 

5.2 Undefined Variables 

The function 8, returns false if applied to an unde- 
fined identifier. This means that ~9’~ is never applied 
to undefined identifiers, which in turn means that no 
attempt is ever made to evaluate undefined values; 
the possibility of run-time errors or default values 
does not arise. If this is not the true behavior of the 
system in question (and almost invariably, it is not), 
simple modifications to the specification are again 
possible. 

The first is to remove the protection that 9 
provides against ever looking at an undefined vari- 
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able: 

g&:(identifier)), = 
True if (n, a, m, T, v, r)E s 
False otherwise 

If a run-time error is the correct behavior when an 
undefined identifier is used, then it is sufficient to 
specify I (“bottom”) as the result of lookup. As 
the bottom of the semantic domains, a result of I 
will be propagated through any functions or opera- 
tors that subsequently receive it as an operand. 

(n, a, m, t, v, r) E s A v # Undefined 
* lookup,(i, s) =v 

(n, a, m, t, v, r) E s A v = Undefined 
* lookup,(i, s) =_L 

The same result could be obtained more explicitly by 
allowing lookup to return Undefined as its result, 
and redefining all of the functions that could use the 
result of a lookup to have Undefined as a 0. 
However, such a change would introduce a very 
large and unnecessary volume to the specification. 

If a default value is to be returned for undefined 
identifiers, that, too, may be built into the definition 
of lookup: 

(n, a, m, t, v, r)E s AvZUndefined 
- lookup,(i, s) =v 

h, a, m, Num, v, r) E s A v = Undefined 
3 looku&,,,(i, s> = 0 

(n, a, m, Bool, v, r)EsAv=Undefined 
- lookup,,,,& s) = False 

(n, a, m, Str, v, r)E s A v=Undefined 
* lookup,,,(i, s) =“" 

5.3 Conflict Resolution 

The function Run is specified to just pick one possi- 
ble firable rule, or one possible askable question, 
leaving unspecified the exact method used to make a 
choice (i.e., the conflict resolution strategy). Having 
a nondeterministic choice may be the best answer, 
but it is not the usual answer. Most systems give 
priority to the rule that was entered first. 

This requires four simple changes: 

The domain PROG must be redefined as 1 ist 
(RULE) instead of ~~~(RuLE). 

PROG = list(RULE) 

The initial-state-generating function 9 must 
compile the PROG as a list, replacing the U 
operator with a II. 
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-a(ewW), , = (s,p) 
AIF c : (co& &acts) BECAUSE dexpl) pdprog)),, p = APP),,(,,,~(~, a, 1.)D 

etc. 
3. The function gS should produce a list of firable 

rules instead of a set. 

fi(>), = 0 
.fi(c, a, r)llO, = (c, a, r)lbW, 
if 9BOOl(c), As_(a), AgStr(rjs 

AY(c)s = { ) A ii?Bool(c)s = True 
9Q), otherwise 

4. The partial definition of Step for a nonempty set 
of immediately firable rules must be modified to 
expect a list of firable rules, and always take the 
first. 

Y(p), f 0 * StepCs, p, i, 0) = 
(M(r),, p 1 r, i, o>, where r = head(flp),) 

If similar transformations were applied to the selec- 
tions of the question to be asked if there are no 
immediately firable rules, then the result would be 
an entirely deterministic specification. This would be 
a much more comfortable and satisfactory situation, 
but unfortunately not necessarily realistic. 

5.4 Refirable Rules 

The specification of Step shows that a rule is re- 
moved from the program once it has fired. This 
prevents multiple firings and provides a guarantee of 
progress during execution. Many systems behave in 
this way, but many do not. If refirability is required, 
then rules must no longer be removed from the 
program after each firing: 

23~1, # I I * 3r ESZ(p),. 
Step(s, p, i, 0) = UCr),,p, i, o> 

However, this could result in a situation in which an 
application of Step to a state results in no change 
to that state. In a nondeterministic system, this 
would not imply that no further deductions are 
possible, but would mean that the unchanged state is 
a fixed point of the step function, and therefore 
that Run may no longer be defined as the least fixed 
point of Step. In such a case, it is better to provide 
an explicit definition of Run stating that Step is 
repeatedly applied until there are no firable rules 
and no askable questions: 

~~)~={}AB(p)~={}jRun(s, P, i, 0) 
= (s, p, i, 0) 

fip>,f{ )v@(p>,f{ }*Run(s, P, i, 0) 
=Run(Step(s, p, i, 0)) 

6. CONCLUSION 

This article has shown that a rigorous, formal de- 
scription of a production system is well within reach. 

It is possible to give a complete definition of every 
detail of the execution of a rule-based expert system 
program, either for reference or to enable a proof of 
correctness, or complete verification and validation. 
Furthermore, the more subtle variations between 
different implementations may be clearly described 
as differences in the semantics. 

For this development, the denotational (Milne 
and Strachey, 1976; Stoy, 1977) style of semantics 
was selected because it gives a very flexible frame- 
work on which to build a direct specification. Future 
work using an axiomatic approach is likely to be 
equally rewarding and perhaps more generally ac- 
ceptable, because the notation used to express ax- 
iomatic definitions tends to be less intimidating to 
the uninitiated. 
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