
Formal Semantics for Rule-Based Systems

S. Murrell and R. Plant
Departments of Mathematics and Computer Science and Computer Information Systems,
University of Miami, Coral Gables, Florida

The existence of a formal description of any language
is a prerequisite to any rigorous methods of proof,
validation, or verification. This article develops a for-
mal semantics in the denotational style for rule-based
production systems. Primarily, a formal description of
a generalized, hypothetical language for rule-based
expert systems is developed as a base. Building on
this base, it is possible to specify in detail the varia-
tions that distinguish individual real-world systems in
a usable way.

1. INTRODUCTION

The use of production systems in the development
of a knowledge-based application has been popular
since they were demonstrated in the MYCIN (Short-
liffe, 1974) and Rl (McDermott, 1980) systems to be
both natural and intuitive in nature. This, combined
with their modularity and declarative style, enabled
the fast and easy development of otherwise complex
or infeasible systems.

The popularity of this representational form
brought about a new style of programming based on
the paradigm of rule-based systems, along with many
shells, environments, and languages dedicated to the
creation of production systems. These languages and
environments also simplified many programming
tasks that were previously difficult to perform, such
as the rapid prototyping of expert systems.

The combination of a new programming paradigm
and new approaches to development had a beneficial
effect in freeing the developer and programmer from
trivial chores to build creative new systems. However
the growth in rule-based environments was not sup-
ported by any theoretical model of these systems.
This led to significant problems in the validation and

Address correspondence to Prof. Stephen Murrell, Mathemat-
ics and Computer Science, University of Miami, P.O. Box 249085,
Coral Gables, FL 33124.

verification of rule-based systems, and research is
still active in that area (O’Leary, 1987; Preece, 1993).
The development of an exact formal description of
the new languages is a step toward reliable valida-
tion and verification, but research in this area has
primarily been focused on the specification of the
shells and their inference process (Gold and Plant,
1991).

Although formal semantic specifications have been
developed for the general languages of artificial
intelligence-LISP (Gordon, 1973; Henderson, 1980)
and PROLOG (Jones and Mycroft, 1984; Nicholson
and Foo, 1989)-and general-purpose goal-directed
languages (Gudeman, 1992), their application to spe-
cific domain-oriented languages, particularly those
for expert systems, has been left largely unexplored.
In this article, a formal semantic description for
rule-based systems is presented.

Initially, the semantic system is constructed around
a simple but representative system. This provides a
formal description of just one hypothetical rule-
based language; as such, it would be of very limited
usefulness. Much of the power of a useful semantic
system is in its ability to describe, within a constant
framework, the variations in different systems. The
semantics of several such variations are also pre-
sented.

In Section 2, a simple language for describing
rule-based expert systems is presented; this is not a
description of any real language, just a generic syn-
tactic base for the semantic definitions that follow.
Then, in Section 3.1, using the well-established style
and notation of denotational semantics (Milne and
Strachey, 1976; Stoy, 1977), the semantic domains
are defined for representations of conditions and
system states, after which it is possible to give defi-
nitions (Section 3.2) of the basic semantic functions
8 and g for evaluating expressions and checking
their domains, respectively. Building on these, in

J. SYSTEMS SOFTWARE 1995; 29:251-259
0 1995 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/95/$9.50
SSDI 0164-1212(94)00108-Y

252 J. SYSTEMS SOFTWARE
1995; 29:25-259

S. Murrell and R. Plant

Section 3.3, three additional functions, Y,Y, and d,
are used to determine which rules may be fired and
what input is required from the user. Together with
function ti, which defines (Section 3.5) the effect of
carrying out the possible actions or conclusions, it is
possible (Section 4) to specify the actions of the
whole system. Once a basic definition for simple
rule-base systems has been presented, additions to
cover more complex possibilities are discussed (Sec-
tion 5).

2. A SIMPLE RULE-BASED SYSTEM

To avoid the specific details and idiosyncrasies of
any particular implementation, we initially assume a
generic rule-based system. A program in this hypo-
thetical system consists of a collection of rules and
their associated declarations.

The following are the only metaconstructs used in
the syntax specifications:

[A] means that A is optional

[AIBJC . . .] means a choice between A, B, or C

Furthermore,

(rule) +

(cond) +

(relat)*

(expr) +

(acts) +
(act) +

(expl) +

IF (cond) (acts) [BECAUSE

(=d>l
(identifier)
(relat)
(cond) AND (cond)l(cond) OR
(cond)(NOT (cond)

((cond))
(expr) = (expr)l(expr) <

(exw)l(expr> 5. <ywr>
I (expr) + (expr)l(expr) >

(expr)I(expr) 2 (expr)
(identifier)I(constant)

I ((expr>)
I lex;r;l; (pexpr)l(expr) -

ex r ex r
I :ex;r)Z) X (expr>l(expr) +

ex r
(act)[AND(acts)]
DEDUCE
(identifier)[=](expr)
(string-constant)

I (expr)
I (expl) + (expl)

Examples:

IF weight> classX 2240
DEDUCE tooheavy TRUE
BECAUSE “weighs more

than" +class + “tons."
IF unemployed DEDUCE salary=0

2.1 Modes and Declarations

Although most rule-based systems do not provide
type checking of operands, this specification does. It
is easier to ignore an unwanted feature than to
make use of an unprovided one. The equations in
Section 3.2 leave explicitly undefined the behavior
when type errors occur.

To enable type checking, a declaration is required
for every variable used. The declaration associates a
type, a mode, and an accessibility with each identi-
fier. For the sake of completeness, declarations are
permitted to specify an initial value for an identifier.

(decl) + (acc)(mode)(type)(defs)
(act) + [MODIFIABLE]
(mode) + ASKEDIDEDUCED
(type) + NUMBERIBOOLEANISTRING
(defs) + (defn)[,(defs)]
(defn) +(identifier)[= (expr)]

Examples:

MODIFIABLE DEDUCED NUMBER x, y=O, z
ASKED BOOLEAN HasHeadaches

Type is used in its traditional sense to specify the
set of values that an identifier may take on; natu-
rally, the system may easily be extended to include
more types than shown here. Mode is used to specify
a basic but flexible interface with the user. An
identifier that is declared as deduced may only be
given a value as the result of executing an (act). An
identifier that was declared as asked may also re-
ceive a value in this way, but if it is ever needed
before it gets a value, the user may be queried.

Access simply defines whether or not an identifier’s
value may ever change. To conform to the most
common rule-based systems, once an identifier has
been deduced to be true, it remains permanently
true, and any later attempt to give it a different
value is a sign of inconsistency and therefore an
error. However, it may be desirable to have identi-
fiers that behave like variables, so the option is
permitted.

2.2 Programs

With these definitions, it is sufficient to state that a
program is simply an arbitrary mixture of rules and
declarations. It may be the case that the order in
which rules are entered has some effect on the
system’s conflict resolution strategy, but that is not
reflected in the syntax.

(prog) + empty
I (component)(prog)

(component) + (decl)

I (rule)

Formal Semantics for Rule-Based Systems

3. SEMANTICS Examples:

3.1 Domains

The behavior of any rule is dependent on the cur-
rent state of the system (i.e., the values associated
with identifiers), so before the semantics of rules
may be defined, a representation for the state must
be selected.

An identifier naturally has five components: its
name, accessibility, mode, type, and value; addition-
ally, it is possible to keep track of the reasons for the
current value (in systems that do not support rea-
sons, this component may be ignored). Only the
value and reason may change while a program is
running; the other components are tixed.

Identifiers are represented by a Cartesian product:

ID = NAMEXACC XMODEXTYPEXVAL
X REASON

NAME = String
ACC = {Var, Fix}

MODE = (Ask, Ded}
TYPE = (Num, Bool, Str)
VAL = Real+ {True, False}+String+

{Undefined}
REASON = String

STATE =
invariants:

RULE =
PROG =

J. SYSTEMS SOFIWARE 253
1995; 2925-259

(“weight", Fix, Ask, Num, 3371, “user
input")
(“class", Fix, Ask, Num, 1, "user in-
put")
("tooheavy", Fix, Ded, Bool, True,
“weighs more than 1 tons")

In this definition, the VAL component is drawn
from one of four basic domains, the first three
representing the sets of real numbers, Boolean val-
ues, and strings. The fourth, which does not corre-
spond to one of the user-declarable types, contains
just one value, known as undefined; its only pur-
pose is to take the place of the value for a variable
that has none. It is not appropriate to use I
instead of undefined, because the condition that it
represents must be detectable.

For each of the possible identifier types T, a
membership function is, is provided:

i%Jum (x) =x E RealV x=Undefined
isBool(x) EXE {True, False} Vx

=Undefined
is Str(~) =x E StringV x=Undefined

The state of a system at any time is simply the set
of all currently known identifier representations, with
the requirement that there may be at most one
unique record for each identifier in the state, and
that its value is consistent with its type.

set(ID)
Vs:State, V(n, a, m, t, v, r),(n', a', m', t', d, r') E s,

(n=nl)*(a= a> A (m=m) A (t =t’) A (v=Tj) A (r =2)
Vs:State,V(n, a, m, t, v, r) E s,is,(v)
(cond) X (acts) X (expl)
set(RULE)

Each rule is reduced to a triple containing its
three essential syntactic components, and the whole
program (for run-time purposes) is considered to be
a set of such rules.

3.2 Evaluation Functions

evaluation. 8 is subscripted with the expected type
of its result, a formal detail, which, as a side effect,
provides a type-checking mechanism.

Given a state, conditions and expressions may be
evaluated. The function 8 defines the result of this

It is not possible for the evaluation of any expres-
sion to result in a change to the state of the system,
so a straightforward applicative model is possible:

g+(expr) X STATE
ZT(k:(constant)),

Z?&:(identifier)),

8N,,(e,:(expr) + e,:(expr>),

VAL
intuitive meaning of k, if i sT (k)
not defined otherwise
lookup,(n, s)

254 J.SYSTEMSSOFTWARE
1995;29:251-259

In this traditional notation for semantic functions,
the STATE parameter, s, is reduced to a subscript to
make the important parameter-an expression-
more prominent. Of course, the state is a vital
parameter, but in terms of understanding, 8 is
considered to be a function from syntax to meaning.
The concepts of denotational semantics are covered
fully in Stoy (1977).

There would normally be a partial definition for 8
corresponding to each of the possible syntactic forms
for an (expr), but due to the confines of this
format, only significantly different cases are shown
here. Syntactic labels are retained to disambiguate
the cases; the definition ZY&:(identifier)), =
lookup,(n, s) means that if n is syntactically an

S. Murrell and R. Plant

identifier, then 2Y&>, = lookup, (n, s) . In other
words, if a result of type T is expected, and n is an
identifier, and the current state is represented by s,
then the meaning of n (when seen as an expression)
may be obtained by looking up the identifier n in the
state s, demanding a result of type T.

Cn, a, m, t, v, r) E s A v Z Undefined
ti lookup,(i, s) =v

The state invariant makes this definition of lookup
unambiguous; it also leaves the value of an unknown
identifier undefined. Semantics for specific systems
may specify different behaviors with minimal modi-
fication,

iFB,,,(el:(expr> I e,:(expr>), = True,if gNum(e,), I 8'Nu,,,(e2),
False, otherwise

8'B,,,(cI:(cond)AND c,:(cond)>, = True, if 2F’~ool(cl)s = True A 8BO01(c2)s = True
False, otherwise

The definition of 8 for Boolean expressions does
not specify whether fulZ or short-circuit evaluation is
to be used. Nor could it, because 8 simply specifies
the correct result, which is the same in both cases.
The distinction may be made in the design of 0,
below.

The function 0 is used to check that an expres-
sion or condition is being evaluated within its do-

main and will not result in an invalid operation. This
is not simply to make the system under definition
more robust, which would be unrealistic modeling,
but also to ensure that these semantic functions do
not become inconsistent. The other semantic func-
tions (particularly 8 and J& have their domains
implicitly restricted to only those states for which 0
would return True.

g&(expr)X STATE + {True, False}
B,(k:(constant)), = True,ifis,(k)

False, otherwise
B,h(identifier)), = True,if(n, a, m, T, v, r)E s A v# Undefined

False, otherwise
0~Jq:<expr> + e2:(expr>), = O~Um(e,), A0N,,(e2),

0,,,,(q:(eWX> I e,:(expr)), = 0,,,(q), AONU,,,(e,),

OB,,,(cI:(cond) AND c,:(cond)), = ~BOOl(cI)s A (8BOOl(ct)s = False VOBool(cz)s)

Formal Semantics for Rule-Based Systems

The definition for AND specifies that A AND B is
only valid if A is valid and false, or if A and B are
both valid, that is, short-circuit evaluation, which is
essential if Askable variables are to be usable. A
similar definition holds for OR:

=9B,,,(c,:(cond) OR c,:(cond>), =9Bool(~l)s A

(~BOOl(cl)R = True V9Bool(~2)s)

Finally, the obviously wrong expressions must be
excluded:

a,,,,(el:(expr) + e,:(expr>>, = False

gN,,(e,:(expr) 5 e,:(expr)), = False

9Nu,(cl:(cond) AND c,:(cond)), = False

J. SYSTEMS SOFTWARE 255
1995; 293-259

A nonsubscripted variant of 9 is used for checking
actions when no result value is produced; this is
defined in Section 3.5.

It should be noted that implementations are not
required to check 9, which would represent a great
deal of wasted computation. 9 is only used to
restrict the domain of the semantic model so that
the results of invalid operations are not specified.

3.3 Variables

The function P’: (expr)X State + set(Iden-

t i f i er) provides a list of those identifiers that are
required for the evaluation of an expression, but are
still both undefined and askable. In other words, 7’
determines which questions might usefully be asked.

Y'"(n:(identifier)), = (n}if(n, a, Ask, t, Undefined, r) E s

{ } otherwise
Y"(k:(constant)), = { }

Y(e,:(expr) f e,:(expr)), = Y(e,>, U Zr(e2)s

YXe,:(expr) 5 e,:(expr>>, = FTel)s U Y?e,>,

+{I V(c,:(cond) AND c,:(cond)>, = Ye if ECU
NcJs if Y/(c,),
{ } otherwise

= (1 A~Bool(~l)s A tYBool(cl)s = True

#{ 1
= {) A~Bool(~l)s A ZBool(cl)s = False

Y(c,:(cond) OR c,:(cond)), = Y(cljs if Y(c,),
NC& if Y?cl&
1 } otherwise

Y(NOT c:(cond)), = T(C),

The definition for A AND B should be read thus:
If A contains unknown values, then those are the
unknown values required for A AND B (the un-
knowns in B are not necessarily required; A may yet
evaluate to false). If A has no unknowns, is valid, and
evaluated to True, then the unknowns of B are
required.

The purpose of 7 is to determine which ques-
tions may be asked of the user as a precursor to the
firing of a rule. Y and 9 together determine
whether a rule may even be considered for firing,
and 8 (applied to the rule’s condition) makes the
final determination of firability and aids in the calcu-
lation of the effects of any rule that is fired.

3.4 Selection

In the context of a set of rules that are under
consideration for possible firing, the subset of rules
that may be fired immediately may be determined.
They are those rules for which no still-to-be-asked
variables appear in their conditions, the current
state satisfies the domain constraints for all three

parts (condition, actions, reason), and the condition
evaluates to True.

237 set(RULE)XSTATE+ set(RULE)

firr), ={(c, a, r) E rr19B001(c)s Agl(a),

A9Strb-), A Y'-(c), ={ 1

A\BOOl(c)s = True)

This specifies that a rule may not be fired if so
doing would cause an error when evaluating the
actions or the reason. Typical systems do not look
this far ahead. For a more accurate model in these
cases, the conditions may be relaxed.

In the same context, of a set of rules under
consideration, the set of variables that could usefully
be asked of the user may also be determined. If
there are already firable rules, then there is no point
in asking any questions; otherwise, any variable re-
turned by Y” for one of the rules is a candidate.

@:set(RULE)XSTATE+ set((identifier))

@(rr), = I 1 if fin), + I I
= {i:(identifier)l

3(c, a, r)E rr. i E Y(c),} otherwise

256 J. SYSTEMS SOFTWARE-m
1995; 29:251-259

S. Murrell and R. Plant

In general, a system will ask just one of the ques-
tions returned by d before reconsidering what step
to take next, by reevaluating 9X

3.5 Actions

An addition to B is required to ensure the validity
of a deduction. This variant is not subscripted, be-
cause there is no result and therefore no type to
check.

Naturally, a multiple action is only valid if all of
its components are valid. The first component’s va-
lidity may be tested under the current state of the
system, but all subsequent components will be exe-
cuted in the state as modified by the prior execution
of the first component. JY’ models the result of
performing a deduction, and must be used here.

The deduction of a new value for a variable is
valid only if the type of that value is the same as the
declared type of the variable. It is also required that
the variable either has no current value or was
declared as modifiable.

.59_(a,:(act) AND a,:(acts>),
= False, if 9(al), = False
(9(a,)o.&a,)), otherwise

L&DEDUCEn:(identifier) = e:(expr)>,
=9-,(e), if (n, a, m, t, v, r) E s

and (v = Undefined)
V(a = Var)

False otherwise

JX’ itself has a relatively simple definition. The do-
main of .B! is assumed to contain only those combi-
nations of actions and states for which 9 returns
True, so no further checking is required.

The result of an action is a modification to the
state of the system, so the result type of LZ’ is STATE.
When multiple actions are performed, the first is
performed in the initial system state, but all subse-
quent actions are performed in the resultant modi-
fied state, so a composition of functions is used, as
with 9.

.!&:(acts)X STATE
tia,:(act> AND a,:(acts)>,

.&DEDUCEn:(identifier) = e:(expr)BECAUSEr),

+ STATE

= Ma,>~=da,>>,
= Assign(n, e, r)s

(n, a, m, t, v, r> E s Aa,(A9st,(r), *

Assi9-n(nf et 4 = s @ (n, a, m, t, Zt(e)., g(r).)

In the above definition, o is a simple updating
operator that removes any existent record for a
particular variable, replacing it with a new one. It
could be formally defined thus:

s 8 (n, a, m, t, v, r>=
{(I-!, a', m', t', 6, r') E sin # n'}

U{(n, a, m, t, v, r))

The definition of Assign specifies that only if the
variable already exists and has the appropriate type

may an assignment take place; when it does, the
value and reason associated with the variable are
replaced, but the other information remains un-
changed. Such type checking is unnecessary in this
context, because the prior use of B ensures that no
type errors will occur, but in later uses of Assign,
this protection is not available.

9 is a simple string-evaluating function used to
construct reasons. Using I1 as a string concatenation
function:

Z(expl) X STATE
L%'(k:(string-constant)),
LNe,:(expl) + e,:(expl)),

He:(expl)),

=%nh)

String

~~e,W~e,~
91,,(gN,,(e>,>if gNw(e),
~Bool(~Bool(e>,> if ~Bool(ds, etc.
L%&it(n) ifn < 10
sInt([n + 10j)l19~i,i,(nmod10) otherwise
“O", etc.
“True"
“False"

Formal Semantics for Rule-Based Systems .I. SYSTEMS SOFTWARE 257
1995;29:25-259

3.6 Initial State

The initial state of the system may be obtained from

Aprogram){ I(); 9 builds up an initial state and a
representation of the rules in its second and third
(subscripted1 parameters as it scans the program,
finally returning the two as a pair:

3 (prog) X STATE X PROG
+ STATEX PROG

Aempty),, p = 63, P>
J?IF c:(cond) a:(acts)

BECAUSE r:(expl) p~:(prog)),~

= ~PPL, (PUl(C, a,
da:(acc) m:(mode) t:(type)

I-)))

n:(identifier) pp:(prog)),,
= ({ }, (1) if (n, d, m', t', d, r') E i

APP) (sU((n.a,m,t,Undefined, (L ")l),p otherwise
Aa:(acc> m:(mode) t:(type)

n:(identifier) = e:(expr)pp:(prog)),,,
= (1 },{ 1) if (n, d, m', t', d, 9) E s
(I I,{ 1) if a,(e),) = False
fiPP> lsU((n,a,m,t,I,le),), . . ,,)lx p otherwise

In the above four clauses, the second adds a new
rule to the rule base, the third adds a new variable
after checking that the variable in question has not
already been declared, and the fourth adds a new
variable with an initial value after first checking that
the expression for the value is valid. The first clause
returns the accumulated results as a pair when the
whole program has been processed.

4. THE EXECUTION CYCLE

The execution cycle of a typical system, after the
initial state has been constructed, would be as fol-
lows:

Sr is used to determine which rules may fire imme-
diately.

if none, d is used to determine which questions
may be asked.

if none, execution halts.
otherwise, one question is asked, and 9
reevaluated.

The process is repeated until a firable rule is
found.

& is used to determine the results.

This procedure validly describes systems in which
there is no concept of askable variables; in such
cases, ~9 always returns { }.

To model a complete system, including user inter-
actions, one final compound state is introduced: SYS

is a compound of four parts, representing the cur-

rent state (set of records for variables), the program
under execution (a set of rules), the user input yet to
be read (a list of values), and the output so far
produced (a list of strings). As normal execution
progresses, the state component is updated as the
result of deductions, and rules are removed from the
program as they fire. When interaction with the user
is required, a question is added to the end of the
output list, and an answer is taken from the head of
the input list.

The input list is considered to be predetermined
in that inputs are taken from it at the same time as
outputs are put onto the output list. This may not
seem to correctly model user interaction, but it
should be borne in mind that the semantics are
intended to specify the correct result from any given
conditions; the time at which those conditions came
into existence is not relevant.

SYS = STATE X PROG X IN X OUT
IN = list(VAL)

OUT = list(String)

The function Step : SYS --t SYS modes a single
step in the running of a system; it is defined with
three mutually exclusive conditional clauses:

%pls # 1 1 * 3r ES7(p),.

St&s, P, i, o)=(&-),,p \ r, i, 0)

This first clause states that if there are any firable
rules, then one of those rules is executed to update
the state and removed from the program to prevent
multiple firings.

d(p), Z I 1 * 3v E d(p),. Step(s, p, i, 0)
= (Assign(v, hd (i), “input"),,

p, tl(i>, ollvl1,‘?")

The second states that if there are any askable
questions (which implies that there are no firable
rules), then one of those questions (i.e., variables) is
appended to the output list as a question, and the
head of the input list is assigned to be the new value
of that variable in the updated state.

9(P), = (1 A d(P), = { 1 -
Step(s, P, i, o)= (s, P, i, 0)

The final clause states that if there are no firable
rules and no askable questions, then nothing hap-
pens.

The function Run may now be defined as the least
upper bound, or fixed point of step, to describe a
complete run of the system from an initial state.
This is possible because each of the useful opera-
tions of Step is guaranteed to change the system.

Run= UStep

258 J. SYSTEMS SOFTWARE
1995; 29:251-259

5. VARIATIONS

The specification presented above makes a number
of assumptions that are not valid in most real sys-
tems. The variations required to describe the most
common real cases are generally very slight.

5.1 Evaluation of Logical Expressions

Commonly, logical expressions are subject to short-
circuit evaluation; the first operand of an AND or OR
operation is always evaluated first, and the second
operand is only evaluated if the value of the first
makes it necessary. In some implementations, full
evaluation is used. The two strategies are different
in two ways: the former frequently results in faster
execution (irrelevant to the semantics), and the lat-
ter may result in more run-time errors (consider the
expression A AND B, when A is False and B is
undefined. Short-circuit evaluation would return
False; full evaluation would attempt to evaluate B
and cause an error).

Full evaluation may be specified through some
simple alterations to the functions 9 and Y. First,
9 is changed to insist that the second operand of
AND or OR is valid, regardless of the value of the first
operand:

B,,,,(c,:(cond) AND c2:(cond)), =

-%ool(cl)s A%c&*)s
9,,,,(c,:(cond) OR c,:(cond)), =

%OOl(cl)s A%oOIWs

Second, 7, which determines the set of askable
variables that are essential in an expression, but still
undefined, is similarly altered:

V(c,:(cond) AND c,:(cond)>, =

7Iq>, U V(q),
Y(c,:(cond) OR c2:(cond>>, =

V(q), U Yle2)s

5.2 Undefined Variables

The function 8, returns false if applied to an unde-
fined identifier. This means that ~9’~ is never applied
to undefined identifiers, which in turn means that no
attempt is ever made to evaluate undefined values;
the possibility of run-time errors or default values
does not arise. If this is not the true behavior of the
system in question (and almost invariably, it is not),
simple modifications to the specification are again
possible.

The first is to remove the protection that 9
provides against ever looking at an undefined vari-

S. Murrell and R. Plant

able:

g&:(identifier)), =
True if (n, a, m, T, v, r)E s
False otherwise

If a run-time error is the correct behavior when an
undefined identifier is used, then it is sufficient to
specify I (“bottom”) as the result of lookup. As
the bottom of the semantic domains, a result of I
will be propagated through any functions or opera-
tors that subsequently receive it as an operand.

(n, a, m, t, v, r) E s A v # Undefined
* lookup,(i, s) =v

(n, a, m, t, v, r) E s A v = Undefined
* lookup,(i, s) =_L

The same result could be obtained more explicitly by
allowing lookup to return Undefined as its result,
and redefining all of the functions that could use the
result of a lookup to have Undefined as a 0.
However, such a change would introduce a very
large and unnecessary volume to the specification.

If a default value is to be returned for undefined
identifiers, that, too, may be built into the definition
of lookup:

(n, a, m, t, v, r)E s AvZUndefined
- lookup,(i, s) =v

h, a, m, Num, v, r) E s A v = Undefined
3 looku&,,,(i, s> = 0

(n, a, m, Bool, v, r)EsAv=Undefined
- lookup,,,,& s) = False

(n, a, m, Str, v, r)E s A v=Undefined
* lookup,,,(i, s) =“"

5.3 Conflict Resolution

The function Run is specified to just pick one possi-
ble firable rule, or one possible askable question,
leaving unspecified the exact method used to make a
choice (i.e., the conflict resolution strategy). Having
a nondeterministic choice may be the best answer,
but it is not the usual answer. Most systems give
priority to the rule that was entered first.

This requires four simple changes:

The domain PROG must be redefined as 1 ist
(RULE) instead of ~~~(RuLE).

PROG = list(RULE)

The initial-state-generating function 9 must
compile the PROG as a list, replacing the U
operator with a II.

Formal Semantics for Rule-Based Systems J. SYSTEMS SOFTWARE 259
1995; 291251-259

-a(ewW), , = (s,p)
AIF c : (co& &acts) BECAUSE dexpl) pdprog)),, p = APP),,(,,,~(~, a, 1.)D

etc.
3. The function gS should produce a list of firable

rules instead of a set.

fi(>), = 0
.fi(c, a, r)llO, = (c, a, r)lbW,
if 9BOOl(c), As_(a), AgStr(rjs

AY(c)s = {) A ii?Bool(c)s = True
9Q), otherwise

4. The partial definition of Step for a nonempty set
of immediately firable rules must be modified to
expect a list of firable rules, and always take the
first.

Y(p), f 0 * StepCs, p, i, 0) =
(M(r),, p 1 r, i, o>, where r = head(flp),)

If similar transformations were applied to the selec-
tions of the question to be asked if there are no
immediately firable rules, then the result would be
an entirely deterministic specification. This would be
a much more comfortable and satisfactory situation,
but unfortunately not necessarily realistic.

5.4 Refirable Rules

The specification of Step shows that a rule is re-
moved from the program once it has fired. This
prevents multiple firings and provides a guarantee of
progress during execution. Many systems behave in
this way, but many do not. If refirability is required,
then rules must no longer be removed from the
program after each firing:

23~1, # I I * 3r ESZ(p),.
Step(s, p, i, 0) = UCr),,p, i, o>

However, this could result in a situation in which an
application of Step to a state results in no change
to that state. In a nondeterministic system, this
would not imply that no further deductions are
possible, but would mean that the unchanged state is
a fixed point of the step function, and therefore
that Run may no longer be defined as the least fixed
point of Step. In such a case, it is better to provide
an explicit definition of Run stating that Step is
repeatedly applied until there are no firable rules
and no askable questions:

~~)~={}AB(p)~={}jRun(s, P, i, 0)
= (s, p, i, 0)

fip>,f{)v@(p>,f{ }*Run(s, P, i, 0)
=Run(Step(s, p, i, 0))

6. CONCLUSION

This article has shown that a rigorous, formal de-
scription of a production system is well within reach.

It is possible to give a complete definition of every
detail of the execution of a rule-based expert system
program, either for reference or to enable a proof of
correctness, or complete verification and validation.
Furthermore, the more subtle variations between
different implementations may be clearly described
as differences in the semantics.

For this development, the denotational (Milne
and Strachey, 1976; Stoy, 1977) style of semantics
was selected because it gives a very flexible frame-
work on which to build a direct specification. Future
work using an axiomatic approach is likely to be
equally rewarding and perhaps more generally ac-
ceptable, because the notation used to express ax-
iomatic definitions tends to be less intimidating to
the uninitiated.

REFERENCES

Gold, D. I., and Plant, R. T., Towards a formal specifica-
tion of an 0PS5 production system architecture, AAAI
Workshop on Validation and Verification, 1991.

Gordon, M. J. C., Models of Pure Lisp, Experimental
Programming Reports 31, Department of Machine In-
telligence, University of Edinburgh, 1973.

Gudeman, D. A., Denotational Semantics of a Goal-Di-
rected Language, ACM Trans. Progr. Lang. Syst. 14
(1992).

Henderson, P., Functional Programming, Prentice-Hall In-
ternational, London, 1980.

Jones, N. D., and Mycroft, A., A stepwise development of
operational and denotational semantics for prolog, in
Proceedings of 1984 International Symposium on Logic
Programming, IEEE Computer Society Press, Washing-
ton, DC, 1984.

McDermott, J., Rl: A Rule-Based Configure, Report
CMU-CS-80-119, Computer Science Department, Car-
negie-Mellon University, Pittsburgh, Pennsylvania, 1980.

Milne, R. E., and Strachey, C., A Theory of Programming
Language Semantics, Chapman and Hall, London, 1976.

Nicholson, T., and Foo, N., A Denotational Semantics for
Prolog, ACM Trans. Progr. Lang. 11 (1989).

O’Leary, D. E., Validation of Expert Systems-with Ap-
plications to Auditing and Accounting Deck. Sci. 18,
468-486 (1987).

Preece, A. D., Validation and Verification of Knowledge-
Based Systems, Working Notes, AAAI, Menlo Park,
California, 1993.

Shortliffe, E. H., Computer-Based Medical Consultations:
MYCZN, Elsevier, New York, 1974.

Stoy, J. E., Denotational Semantics, M.I.T. Press, Cam-
bridge, Massachusetts, 1977.

