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Expert System Development and Testing: 
A Knowledge Engineer’s Perspective 

R. T. Plant 
Department of Computer r~fo~atio~ Systems, Unkersiry of Miami, Coral Cables, Florida 

This article discusses the problems found in the vali- 
dation and verification of a knowledge-based system 
for equity selection. These problems include the selec- 
tion of test data, poor methodology, and the difficulties 
associated with using prototypes. The article then 
examines the possible techniques available to the 
knowledge engineer for improving validation and veri- 
fication. The article discusses exhaustive testing, 
case-based testing, formal specifications, functional 
programming, critical testing, mutation testing, and 
reliability. Finally the article discusses the approach 
that the knowledge engineer would take in rewriting 
the equity selection system, one based on a rigorous 
development methodology that uses as many formal 
validation techniques as possible to raise the quality 
of the software produced. 

INTRODUCTION 

In this article we examine an aspect of expert system 
development with which we encountered difficult 
during the creation of a knowledge-based system for 
equity selection-validation and verification. In cre- 
ating our system, we underestimated both the 
amount of testing and resources required to ade- 
quately test the system so that it would satisfy user 
requirements. 

The first section of this article details our original 
approach to validation and verification of our sys- 
tem, i.e., using random test data, and we discuss the 
weakness of this approach. A discussion of the alter- 
native strategies to random testing and how each is 
applicable to testing different aspects of the system 
follows. We conclude by advocating the use of a 
rigorous development methodology that incorpo- 
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rates validation techniques and promotes software 
quality. 

INITIAL SYSTEM DEVELOPMENT 

The initial development of our equity selection and 
portfolio advisory system was undertaken using an 
approach similar to that advocated by Hayes-Roth et 
al [l] which involved an iterative five-stage model: 

1. Identification: characterize the important aspects 
of the problem, e.g., 
l Participant identification and roles 
l Problem identification 
l Recourse identification 
l Goal identification 

2. Conceptualization: the key concepts and relations 
identified in the first phase are made explicit, e.g., 
l What knowledge types to be used? 
l What is the interreIationship of the objects in 

the domain knowledge? 
l What is the heuristic content of the knowl- 

edge? 
l What are the constraints? 
l What is the information flow? 

3. Formalization: the third phase of development 
aims at creating a model of the solution process. 
This is done through looking at characteristics of 
the data and the domain, e.g., 
l Is there a need for certainty factors? 
l Is the data reliable? 
l Is the information a heuristic? 
l Is temporal information important? 
- What are the elicitation considerations? 

4. Implementation: the mapping of the formalized 
conceptual info~ation onto more concrete rep- 
resentations and their associated control struc- 
tures. 

5. Testing: the use of test examples in validating the 
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system with the aim of locating errors in the 
control structure, knowledge base, and inference 
rules. 

This approach was followed and resulted in the 
creation of a working system that we considered to 
be a prototype. However, we found that the size and 
complexity of our prototype was too large to easily 
facilitate the recreation and experimentation neces- 
sary to achieve satisfactory results at low cost. To a 
large extent, this was because the system was written 
in LISP 121 and had extensive I/O operations. Thus, 
we learned that (1) it is extremely difficult to achieve 
a balance between scale and complexity such that 
the results of a prototyping operation are sufficiently 
significant and not applicable only to a trivia1 subset 
of the domain, and (2) proto~ping should be ap- 
proached through the use of a shell or environment 
as this would facilitate change more easily than a 
customized LISP system. 

Having created a large prototype system, we then 
began to test it. The initial testing mechanism, advo- 
cated in the literature 11, 31 was a case-based ap- 
proach in which cases solved by the system are 
compared to the same cases solved by a human 
expert. This approach is severely limited in its test 
coverage, as only the most widespread of conditions 
are considered. In testing our system we applied this 
method in conjunction with our expert, who checked 
the system’s responses. We found that this approach 
promoted the testing of obvious situations but did 
not facilitate the testing of unusual, complex, or 
boundary conditions. Furthermore, because of the 
unstructured nature of the testing strategy, the 
method used a significant amount of the expert’s 
valuable time, mainly because there was no testing 
plan from which the knowledge engineer and do- 
main expert could test the relevant aspects of the 
system in a structured manner. We decided that for 
our final version it was necessary to create such a 
plan and this required investigation into other ap- 
proaches to validation and verification. 

TEST STRATEGIES 

Validation and verification have been delined as 
follows: “Validation: The process of evaluating soft- 
ware at the end of the software process to ensure 
compliance with software requirements”; “the pro- 
cess of determining whether or not the products of a 
given phase of the software development cycle fulfill 
the requirements established during the previous 
phase” 141. 

It follows, therefore, that one of the keys to effec- 

tive evaluation of the software and, consequently, to 
having valid and verified software, is to use effective 
techniques. Testing “is the process of executing a 
program (or part of a program) with the intention of 
finding errors” [5]. The basic principal on which 
testing is based is the application of test data (input) 
to the program in order to examine the correctness 
of the output with respect to the function of the 
program over that input. 

Output = Program{ Input} 

One approach to software testing is to test all 
possible inputs and validate their subsequent out- 
puts. This has the fundamental problem that for a 
practical system (even if finite in nature), the num- 
ber of test paths necessary is extremely high; even 
with the aid of test data generators, the task for 
nontrivial systems is infeasible. 

This problem is magnified for expert systems such 
as our equity selection system, as they tend to be 
nondeterministic; they represent partial rather than 
total functions. In addition, as expert systems often 
have to reason with incomplete input data, this 
raises the number of test cases. Therefore, it is our 
supposition that the use of exhaustive testing is at 
present implausible. 

An alternative testing strategy is the “case” 
approach, in which the test data are based on some 
criteria. For example, the following criteria may be 
used: 

l functional 

l structural 

l data 

* random 

l extracted 

l extreme 

In compiling test data for each criterion, the 
knowledge engineer must consider different aspects 
of the system, the data types of the system, and its 
specification, depending on the aspect to be exam- 
ined. 

The data used in “functional” cases is obtained by 
examining the functionali~ of the specification; for 
“structural” cases the logical structure of the code is 
examined; the test set for “data” cases originates in 
examining the data elements of the program; while 
the data used in “extracted” cases are obtained by 
examining other implementations~ for example the 
prototype. The default strategy that we originally 
used can be classified as a “random” case strategy 
that uses random test data. 
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An especially important test case strategy is test- 
ing “extreme” cases, as it is at the boundary condi- 
tions that knowledge-based systems are at their most 
valuable, yet also their most vulnerable, if there is 
not enough support knowledge to make correct de- 
ductions. Testing extreme cases is difficult, for the 
location of the boundaries is not always known be- 
cause to a large extent this depends on the interac- 
tion of the knowledge in the knowledge base. 

Thus, each of these testing strategies examines a 
different aspect of the system, and collectively they 
are valuable in raising the level of system correct- 
ness. However, note that even when all the strate- 
gies are used together, this does not guarantee total 
correctness. 

THE FORMAL APPROACH 

An alternative approach to software development is 
to specify the software system in such a way that it is 
correct at the design level. This approach, some- 
times called “mathematical validation” 161, uses a 
formal specification style based on a formal lan- 
guage to produce a specification that can be rea- 
soned about. Through a series of refinement steps, 
this specification can then be transformed into an 
implementation-fulfilling the program’s “cor- 
rectness argument” [7]. A number of proven meth- 
ods are currently being applied to real world appli- 
cations; these include VDM[7] and Z [S]. 

The language Z has been applied to the problem 
of specification within artificial intelligence. The lan- 
guage was inherently suitable to game playing, as 
these domains are finite and have well-defined struc- 
tures. Teruel [9] has shown how Z could be applied 
to this problem domain by specifying games such as 
Ludo, Orthello, and Best of Three. 

The use of a formal specification language such as 
Z can also be demonstrated by specifying the repre- 
sentations and the inference mechanisms that ma- 
nipulate them. Gold [lo] has given formal specifica- 
tion of a production system. The Z language can 
also be applied to the specification of knowledge 
bases and, as we experienced difficulties in maintain- 
ing the consistency of our prototype knowledge base, 
it was decided to develop a formal specification for 
the large-scale implementation of our system. This 
will allow us to ensure that there will be as little 
ambiguity, incompleteness, or inconsistency in the 
knowledge base as possible. This will also allow us to 
update the knowledge base easily, as the implemen- 
tation-independent specification will ensure that any 
knowledge added, deleted, or modified is consistent 
with the previous knowledge base. 

The use of formal specification is therefore lim- 
ited to the static aspects of the system, i.e., mechan- 
ics such as conflict resolution, the structure of the 
rules, and the rules themselves. However, it is not 
possible to specify fully the system’s dynamic as- 
pects, i.e., the interaction of the rules, the self-mod- 
ification of the rule base, or the heuristic nature of 
the rules. This is due to the nature of the systems 
themselves-the developer cannot know what the 
system is going to do for all situations and interac- 
tions of knowledge. This is analogous to the testing 
paths problem. Furthermore, even if it were possible 
to specify a large real world system, there are signif- 
icant problems in refining this to an implementation. 

A second formal approach to specifying a program 
is functional programming, in which the developer 
produces an “executable specification” about which 
mathematical proofs can be performed [ll]. Many of 
the expert systems produced today by hand coding 
(as opposed to shell-based development) are still 
produced in LISP [2], which in its pure form, e.g., 
LISPKIT [12], can be classified as a functional lan- 
guage, yet there has been little or no documented 
effort in the production of proofs for these systems. 
This may be in part because most working LISPS, 
such as the FRANZLISP we used for implementing 
our equity selection system, are not pure but heavily 
dependent on side effects. However, it is possible to 
convert systems into pure LISP and so benefit from 
the formality imposed on them. This is a direction 
we are currently investigating; however, note that 
there is a significant overhead associated with the 
conversion process. 

We feel that the use of formal specifications is 
currently limited to adapting the formal specification 
languages to enable partial system specifications to 
be made, e.g., the knowledge base, while the speci- 
fication of the whole system is, in all but trivial 
domains, limited, if not impractical. However, the 
creation of such specifications considerably raises 
the level of system correctness. For example, speci- 
fication of the knowledge base enables any inconsis- 
tencies in the domain knowledge or incompleteness 
in the representation to be identified and corrected. 

STATISTICAL APPROACH 

In the previous sections we have attempted to indi- 
cate why the techniques available to the knowledge 
engineer-testing formal specification and func- 
tional programming-are in reality severely limited 
in their ability to detect errors in large knowledge- 
based systems. An alternative approach to testing or 
specification is to use a statistical approach. This 
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entails attaching values to each item of knowledge, 
the values indicating the degree of certainty associ- 
ated with that knowledge, then as the knowledge is 
manipulated, a certainty factor algebra can be used 
to combine certainties and produce a value indicat- 
ing the degree of certainty associated with the result. 
This approach is not unique to knowledge engineer- 
ing is extensively represented in the statistical deci- 
sion theory literature. 

Knowledge engineers initially used Bayes theorem 
on problems with attached conditional probabilities 
and the P-Function to manipulate these probabilistic 
measures. However, as Shortliffe [13] stated with 
regard to the MYCIN project, these approaches had 
to be abandoned “because there are large areas of 
knowledge that, although amenable in theory to the 
frequency analysis of statistical probability, defy rig- 
orous analysis because of insufficient data and, in a 
practical sense, because experts resist expressing 
their reasoning processes in coherent probabilistic 
terms.” Following this, several other approaches to 
the statistical evaluation of system knowledge have 
been considered, including the theory of fuzzy sets 
proposed by Zadah [14]. However, experts also find 
this an unnatural mechanism in which to relate their 
knowledge, and thus it has found limited pragmatic 
use. Artificial intelligence works have also attempted 
to use confirmation theory [15] and the theory of 
choices [16], but these have also not met with total 
success. This led to the adoption of the Dempster- 
Shafer theory of evidence, a model that has many of 
the advantages of the certainty factors approach but 
a stronger mathematical basis [171. 

In the creation of our equity selection system, we 
encountered difficulty in the area certainty factor 
algebra. At first we decided that a simple certainty 
factor algebra would be best, as the domain expert 
indicated that this was the way he worked in making 
decisions. However, as the system grew in sophistica- 
tion, it was necessary to adopt more complex alge- 
bras for different aspects of the system’s reasoning, 
e.g., the Bonczek-Eagin method was used in one 
area and the probability sum method in another [181. 
The use of these different certainty factor algebras 
meant that much effort was expended in tuning the 
system, and even though the expert found it natural 
to associate certainties with data, he found it diffi- 
cult to define the certainty factor algebra necessary 
to reason with combined knowledge items. Conse- 
quently, modelling the expert’s subjective reasoning 
became very difficult. The problem was compounded 
when we used a second expert to correlate some of 
the findings because the second expert often did not 
use exactly the same certainties or algebras and thus 

was not always sure that our system’s deductive 
strategies were correct, even when the results indi- 
cated that it was performing accurately. 

The use of statistical methods can be seen as 
positive in that they can assist the domain expert to 
express subjective or heuristic judgements and allow 
the user to know the degree of certainty a system 
has for a result. Alternatively, the use of approaches 
such as certainties can cause problems because they 
do not have a complete theoretical foundation and 
are open to interpretation. In reflection, we feel that 
we should have spent more resources in consolidat- 
ing a certainty factor algebra from our experts be- 
fore system creation and so attempted to minimize 
the subjective heuristic judgements made by the 
expert and promote a solution strategy based on a 
theoretical framework. 

ALTERNATIVE STRATEGIES 

The conventional approaches to validation and veri- 
fication discussed above have shown us that al- 
though each of the techniques have certain strengths, 
each is severely limited in its ability to move toward 
a statement of total system correctness. Two alterna- 
tive strategies that can be considered in relation to 
knowledge-based systems and that are currently ar- 
eas of focused research are critical testing, in which 
research focuses on adaptive techniques for optimiz- 
ing the data sets used in the case approach to 
testing, and reliability theory, in which developers 
can use and create models that predict the failure of 
their systems. 

The following two sections will outline the theory 
behind these areas and discuss them in relation to 
the testing of our equity selection system. 

Critical Testing 

A program can be defined as correct when the 
implementation matches the specification: 

P(D) =f(D) 

where D = input data (the domain), P = program, 
and f = formal specification. To do this it is neces- 
sary to perform exhaustive testing: 

P(dfl)J?d,) 

Where n can be very large, if not infinite; therefore, 
in practice we can only test a limited number of 
cases. Once tested, however, we can then state that 
the program will perform correctly with respect to 
this input set: 

P*(D) = f(D) 
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where P* = the program tested over the test data 
set. 

The selection of the test data is a critical opera- 
tion and, consequently, the criteria by which the 
critical test data for an application are selected has 
been the focus of much research. The area has been 
influenced by workers such as Gerhart and Goode- 
nough, who considered the theoretical aspects of 
procedures to select reliable and valid test data for 
conventional programs 119, 201. Their method is 
based in part on the construction of a “condition 
table,” which displays the logically possible combina- 
tions of conditions within the program. However, the 
large number of conditions found in knowledge- 
based systems can prohibit use of this technique. 

An alternative technique is the concept of “ade- 
quate” test data, which has been defined as “a test 
data set T is adequate if P behaves correctly on T 
but all incorrect programs behave incorrectly” 1211. 
However, it has been shown that from a theoretical 
standpoint, it is not possible to construct a general 
purpose test selection procedure for valid test data, 
as the function is not computable [22]. Thus, re- 
search is now focused on examining test data selec- 
tion in relation to particular error types, as this 
would allow the construction of a reliable data set 
for a certain error type that could then be used on 
the system. This could be useful in testing aspects 
such as deductions around thresholds where cer- 
tainty factors are involved. 

Another research direction is that of mutation 
testing 123-251, and indications are that it could be 
usefully applied to knowledge-based systems in the 
identification of both epistemological and structural 
errors. 

We will focus on these research themes when we 
develop the second version of our system, in that we 
shall use a focused case-based approach in conjunc- 
tion with mutation testing. The result will be greater 
test coverage than before with a low cost/test result 
ratio. This is important as we will be working from 
sets of test data that we have already established as 
valid. 

Reliability 

A second alternative approach to the measurement 
of program correctness is to employ a reliability 
measure. According to Musa et al. [26], “software 
reliability is defined as the probability of failure-free 
operation of a computer program in a specified 
environment for a specified time.” The mathemati- 
cal treatment of software, hardware, and systems 
reliability has been developing over the last 20 years, 

and it has been estimated that there are > 40 
models for software reliability alone. The problem 
therefore is in the selection of an appropriate model 
for evaluating the reliability of a knowledge-based 
system. Abdel-Ghaly et al. [27] have given an inter- 
esting evaluation of competing software reliability 
models. They state “that no single model can be 
trusted to perform in all contexts” and they advise 
software developers “to be eclectic: try many predic- 
tions systems and use the reliability metrics which 
are best for the data under construction.” 

One comparatively simple model that predicts 
failures as well as or better than any existing soft- 
ware reliabili~ model is that proposed by Musa and 
coworkers [26, 281, and we are pursuing research 
into the applicability of this model for our system. 
The approach may be useful, for we have compiled 
data on the failures that have occurred in the system 
and this can be used to help derive a reliabili~ 
figure. 

CONCLUSION 

This article has illustrated the techniques that are 
available to assist knowledge engineers in the valida- 
tion and verification of their systems. 

In creating our original system several errors 
occurred: (1) the deveIopment methodolo~ we used 
did not facilitate validation or verification; (2) our 
prototype was too large and complex to be refined 
easily; and (3) the testing approach we used with 
random data was weak. We hope that by following 
the guidelines given here and using a rigorous devel- 
opment methodology these errors will not recur. 

The methodology we encourage includes the use 
of formal techniques whenever possible, e.g., specify 
the requirements as far as possible, specify the 
knowledge base, and produce a denotational seman- 
tics and full syntax for the representation. The 
knowledge engineer should also be able to justify 
every step in the development and show how each 
step follows the previous one. It is advantageous to 
undertake this development through a well-defined 
prototyping approach for as many cycles as feasibly 
possible, each cycle being based on the data selected 
in the critical test data study. Finally, when prototyp- 
ing becomes impractical, then selective critical test- 
ing should be used to limit the amount of testing 
that has to be performed while maximizing the re- 
turn on that testing. While this development process 
is occurring, the knowledge engineer can compile 
data to produce reliability figures. This approach can 
be combined with some pragmatic techniques, such 
as ensuring that in critical situations the system is 
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fail safe or that multiple systems, developed inde- 
pendently, check each others’ results. This approach 
should enable creation of a higher quality knowl- 
edge-based system. 
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