
Using KBS verification techniques to demonstrate the existence of rule
anomalies in ADBs

A.V. Paia, R.F. Gamblea,* , R.T. Plantb

aDepartment of Mathematical and Computer Sciences, University of Tulsa, 600 South College Avenue, Tulsa, OK 74104, USA
bDepartment of Computer Information Systems, School of Business Administration, University of Miami, Coral Gables, FL 33124, USA

Received 6 November 1996; received in revised form 25 February 1999; accepted 4 March 1999

Abstract

As the field of verification and validation for knowledge-based systems (KBSs) has matured, much information, technology, and theory
has become available. Though not all of the problems with respect to KBSs have been solved, many have been identified with solutions that
can be used in an analogous manner in situations where the application is not necessarily a traditional KBS. As one example, the ‘‘active’’
component in an active database (ADB) consists of rules that execute as a result of database accesses and updates. In this paper, we
demonstrate that anomalies found to impact the correctness of a KBS can also exist in ADBs. We first compare the rule structure of a KBS
with the rule structures of various ADBs. To show their existence, we convert the rule syntax of the ADBs into a consistent format for
analysis and anomaly detection. Once converted, we apply KBS verification techniques to isolate these anomalies. Due to the more
increasing use of triggered rules in ADBs, this work illustrates the danger these anomalies can pose and the ever increasing need for
ADB verification techniques to exist.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Knowledge-based systems; Rule verification; Active databases

1. Introduction

An active database (ADB) is a database that dynamically
executes specified actions when certain conditions arise,
without any user interaction. ADBs have grown in impor-
tance because they can be used to enforce integrity
constraints, trigger actions based on occurrences of a parti-
cular database state or transition between states, and
perform knowledge based processing within the database
system [1]. Oracle 8 is one such widely used, commercial
database. The ‘‘active’’ component in an ADB consists of
rules that execute as a result of database accesses and
updates. The incorporation of an ‘‘active’’ component or a
rule system to a passive database increases the overall
power of the database by promoting inference with the
data available. This additional power provides the flexibility
of interpreting information from data that would otherwise
have little meaning.

Verification involves demonstrating that the system
behaves as expected. We use the term ‘‘anomaly’’ for an
execution or structural attribute of the system that causes

unexpected behavior. Not all anomalies lead to errors.
Knowledge-based system (KBS) verification includes
examining the structure and semantics of a knowledge
base, which mainly consists of sets of rules. Primary verifi-
cation tools generally analyze the knowledge base for
anomalies, which may be logical, epistemological, or
semantic, and often fall into the following categories
[2,3]: redundancy, inconsistency, and incompleteness.
Redundancy is the presence of rules that add no new knowl-
edge to the database. Inconsistency refers to conflicts among
rules when more than one rule can execute but with contra-
dictory consequences. Incompleteness occurs when the rule
system cannot achieve a goal state from a legal initial state.
These categories of anomalies and methods of their detec-
tion have already been widely researched for various types
of KBSs, including rule-based and hybrid systems that may
include objects, message passing, and procedures e.g. [2–
10]. We use these definitions to determine whether reliabil-
ity can be compromised with respect to the rule activation
and execution in ADBs.

In this paper, we demonstrate via KBS verification tech-
niques that anomalies exist in rule execution of an ADB that
can go undetected. The paper is organized as follows:
Section 2 provides brief background material on ADBs.
Section 3 discusses verification as it is applied to the rules

Information and Software Technology 41 (1999) 627–638

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00017-8

* Corresponding author. Tel.:1 1-918-631-2988; fax:1 1-918-631-
3077.

E-mail address:gamble@utulsa.edu; (R.F. Gamble)



in KBSs. This section also includes an examination of the
verification anomalies: redundancy, incompleteness, and
inconsistency. Section 4 compares the rule structures of
KBS rules to ADB rules, showing that the overall rule
formats between these systems are the same. In addition,
this section presents our method for demonstrating these
anomalies exist, which includes placing the ADB rule in
an intermediate representation and using KBS verification
analysis over that representation. Section 5 demonstrates the
existence of rule anomalies in ADBs and discusses their
impact on its integrity. Section 6 concludes the paper with
discussion.

2. Active databases

The dynamic properties of an ADB, that cause specified
actions to occur automatically when certain conditions in
the database arise, can be extremely useful to programmers.
For example, consider an inventory database with a large
number of instances of products, containing the quantity on
hand, threshold, and reorder flag for each product. In a
traditional database, as products are sold, the quantity on
hand is continually updated. An ADB goes one step further
by monitoring the quantity on hand such that if it falls below
the threshold, the reorder flag is set. Atrigger or rule,
containing an event, condition, and action is placed on the
quantity on hand field. When its associated event (an update
to the quantity on hand) occurs, the condition of the trigger
is evaluated. If the condition evaluates to true, the action is
executed, and the reorder flag is set accordingly. The ability
to detect events and evaluate/execute rules over a large
amount of data make active databases more flexible than
traditional database systems [11]. The ability to manipulate
data with rules indicates the need for a sound rule processing
component to ensure the overall integrity.

In another inventory example, assume that a trigger is put
in place by one programmer to reorder ten widgets when the
quantity is low. More than ten widgets would require unne-
cessary additional space and cost, since ten widgets usually
last in stock for several months. Unknowingly, another
programmer places a trigger to reorder ten widgets when-
ever the quantity is low and five widgets have been
purchased during a single week. If no restrictions are placed
on this redundancy by the database system, then when the
latter rule is triggered, the former rule is also triggered.
Together they each cause the reordering of ten widgets,
for a total of twenty widgets. If the error is not caught
through some manual intervention, additional costs will
incur—either to accept or return the extra widgets—or
more space will need to be allocated to hold them.

The development of active databases began with ON
conditions in theCodasyl Cobol database systems [12]
and in SYSTEM R which utilized triggers in integrity
constraints [13]. The refinement of active databases through

prototype and experimental systems has continued through
the 1980s and 1990s, with systems such as:

• HiPAC (High Performance Active DBMS) [14,15]
subsequently extended into an Object form [16–19]

• POSTGRES Rule System [20,21]
• Ariel [1,22]
• The STARBURST Rule System [23].

Detailed examination and discussion of the rule proces-
sing components of each of these prototypes can be found in
Refs. [14,24–27].

These prototypes and experimental systems have resulted
in several commercial systems and are available from
Oracle [28], Sybase, Commercial INGRES, and Interbase,
[11].

Researchers have examined the language [1], semantics
[20], and execution [14] of the rule processing component of
various ADBs, such as Ariel, Postgres, and HiPAC.
Research shows how the outcome from the activation of a
rule set is dependent upon the characteristics of the
‘‘active’’ component of the ADB in question. While current
research examines how the execution and outcome of a rule-
set is highly dependent on characteristics of the rule proces-
sing component, there is limited research available that
focuses on whether the outcome resulting is indeed reliable.

Research in the area of active database integrity and
correctness has been performed and documented in several
areas:

• Formal semantics and specification of active database
systems [29–33].

• Active database language design [26,34].
• Tools for the validation, visualization and debugging of

active database behavior [35–40].
• An area of significance to the validation of ADB systems

has been the research upon termination behavior. Baralis
defines this as ‘‘A rule set is guaranteed to terminate if,
for any database state and initial modification, rule
processing cannot continue forever’’ (i.e. rules cannot
activate each other indefinitely), [41]. Several
approaches to the analysis of rule termination have
been suggested. Selection of an appropriate technique
depends upon the underlying rule model. In a syntactic
approach Bararis et al. [42] build upon this method by not
only analyzing the information from the triggering graph
but also the activation graph. This decreases the number
of false cycles detected. Bararis also examines the effect
of defining the rule prioritization and sequences showing
that without prioritization it is not possible to make any
assumptions on the execution ordering of rules and that
activation will be non deterministic, as chosen by the
system. An alternative approach to the termination
problem has been suggested by Kovadimce and Urban
[33] who reduce every event condition action rule to term
re-writing systems to which known techniques for termi-
nation are applied. A model theoretic approach to ADB

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638628



termination, conflict and non determinism has been
considered by Bidot and Maabout, [43] whom define a
well founded semantics in relation to static and transition
integrity constraint enforcement.

This is in addition to the extensive literature on the
construction, use and application of active database systems
[44–54].

2.1. Rules and Triggers

The experimental platform used in this research to inves-
tigate the presence of rule anomalies in active databases is
the widely used Oracle 8 ADB.

The Oracle 8 architecture is similar to that of traditional
relational database. However, as an active database Oracle 8
represents triggers, which embody condition and action
statements, like rules. A trigger is viewed as a procedure
similar to a stored procedure and is processed by Oracle’s
RDBMS. As a result, when a trigger is created, a parsed
procedural representation is stored in the database. When
the trigger is activated the procedure is loaded into the
System Global Area (SGA). The PL/SQL Engine and
SQL Statement Executor then combine to process the state-
ments within it.

A database trigger in Oracle is defined as a rule and an
associated event–condition–action (E–C–A) procedure
that is associated with a table, written in PL/SQL, stored
as a PL/SQL block. It is implicitly executed when an
INSERT, DELETE, or UPDATE event is issued against
the table for which the trigger is defined. A trigger can
only fire when it is enabled. It can also fire other enabled
triggers, producing a cascading effect. The basic format of a
database trigger consists of a triggering event, a trigger
restriction, and a trigger action and is depicted in Fig. 1.

A triggering event is the SQL statement that causes the
trigger to fire. A trigger restriction specifies a Boolean
expression that must be TRUE for the trigger to fire. A
trigger action is the procedure that contains the code to be
executed when the trigger restriction evaluates to true.

There are two types of triggers:

Row triggers
A row trigger is fired each time a table is affected by the
triggering statement. For example, if an UPDATE statement
is issued for a table, the row trigger is fired for each row
affected by the UPDATE statement.

Statement triggers
A statement trigger is fired once on behalf of the triggering
statement, regardless of the number of rows in the table that
the triggering statement affects, even if no rows are affected.
For example, if a DELETE statement deletes several rows
from a table, a statement-level DELETE trigger is fired
once, regardless of how many rows are deleted.

When a trigger is defined, a coupling mode is specified to
indicate when the triggering action is to be executed in
relation to the triggering statement:

Before triggers (immediate mode)
BEFORE triggers execute the trigger action before the trig-
gering statement.
After triggers (deferred mode)
AFTER triggers execute the triggering action after the trig-
gering statement is executed.

As a result four types of triggers can be created: BEFORE
statement triggers, BEFORE row triggers, AFTER state-
ment triggers, and AFTER row triggers.

Multiple triggers can be associated with a single table and
can be fired either concurrently or as part of a cascade of
triggers. For example, a BEFORE statement trigger and a
BEFORE row trigger can be defined for an identical
command. Conflict resolution strategies have been defined
to manage the interrelationships among the four trigger
types allowed. Our paper illustrates that there are remaining
anomalies from concurrent firing or cascading firing that are
not detected.

3. Verification of knowledge based systems

Assuming a correct valid specification for a KBS has been
achieved, establishing the correctness of that systems imple-
mentation, against the specification, is termed theverifica-
tion task and includes examining the structure and semantics
of its knowledge base. Primary verification tools generally
analyze the knowledge base for anomalies, which may be
logical, epistemological, or semantic, and often fall into the
following categories [2,3]:redundancy, inconsistency, and
incompleteness(which includescircularity and errors of
omission).

Below we provide brief definitions for the potential
anomalies that can be found among KBS rules. We use
the term potential because there may be cases where the

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638 629

Fig. 1. Abstracted Oracle Trigger [28].



developers caused the anomalies purposely. For instance,
redundancy may be used to address distribution of perfor-
mance issues, inconsistency may be used to allow for non-
determinism, and errors of omission may not be a concern
for KBSs that evaluate partial information. For each cate-
gory we discuss why these anomalies can impact negatively
the reliability of a KBS.

• Redundant rules: This anomaly occurs if a rule is present
and executable but does not contribute to the knowledge.
Redundantly executing rules can cause problems in two
ways. The first is through unexpected behavior such as a
value is double what is expected. The second concern is
when the knowledge is no longer considered appropriate
or useful resulting in deletion of the rule. Hidden redun-
dant rules that are not deleted will now execute based on
inappropriate knowledge. Types of redundancy include:

—Duplication: Two rules are completely identical.
—Subsumption:One rule is a generalization of another.
—Reducible: Two rules can be reduced to a single rule
accomplishing the same task.
—Indirect: Two deductive paths lead to the same
result.

• Inconsistent rules: This anomaly occurs when simulta-
neously firable rules produce inconsistent or conflicting
results. One type of inconsistency may be that the same
fact is added and deleted in a single execution. Another
type of inconsistency may be that two incompatible
results are present but do not directly conflict. For
instance, there may a constraint that only one ball is
allowed to be stored, no matter what its color. If two
rules are allowed to execute from the same starting
state such that one asserts a blue ball and one asserts a
red ball, then there is an inconsistency in the rules. Reso-
lution, in this instance, would be that a check for an
existing ball be part of the rule condition and the removal
of the existing ball be an action performed prior to assert-
ing a new ball. Hence, in many cases, detection of
conflicting rules requires certain meta-rules that define
system constraints.

• Incomplete rules and information: This anomaly cate-
gory encompasses common errors that originate from
structuring knowledge base or configuring the rules and
data. Some of the anomalies will not directly affect relia-
bility, but may affect understandability and efficiency.
The category is divided into two major parts.

—Circularity: This anomaly is present when there is a
circular chain of executing rules. Most conflict resolu-
tion strategies preclude circularity at execution time.
However, if the design is circular, then the KBS will
not reach a conclusion. It will either be thwarted from
infinitely looping by conflict resolution or it will loop
indefinitely and not converge.
—Errors of omission: This anomaly is a subcategory
that covers instance when missing information or

knowledge prevents the system from reaching a goal
state. Within this category are the following detailed
anomalies.

Missing rules: The set of rules does not cover all pos-
sible inputs.
Unused inputs and outputs: If rules are not missing,
then these unnecessarily clutter the storage area.
Unfirable rules: A rule’s condition can never be satis-
fied.
Impossible combinations: Input conditions are stored
that cannot coexist. This is similar to the inconsistency
problem, except that rules have not fired to produce
these conditions, they are there at the start of execution.
Dead end rules: Rules exist that do not lead to any
conclusions.

Though there are many execution models of KBSs, the
structural configuration and interaction of the rules can
often be abstracted to show where anomalies exist [2]. In
this paper, we focus on the above categories of redundancy
and inconsistency. Circularity is internally prevented by
Oracle. Errors of omission in ADBs require distinctive
tests because it must be assumed that all the information
available is present at the time of execution or has a definite
point of interaction. We discuss how the understanding of
rule structure can serve as the bases for determining the
potential existence of anomalies in the rules of an active
database.

4. Obtaining a workable ADB rule representation

The logical form of a typical KBS rule and an active
database rule is similar, however the rule processing within
an ADB differs from the rule processing in KBSs. A KBS
typically uses a match–select–execute cycle in which the
knowledge base holds the rules, the working memory holds
the available facts, and the inference engine deduces new
information by comparing the contents of working memory
to the rules. If the conditions in the left-hand side (LHS) of
the rule hold, then the actions in the right-hand side (RHS)
of the rule are performed against the contents of working
memory. An ADB uses coupling mode information that
indicates when the conditions and actions of rules are to
be evaluated and executed relative to the event.

In this section, we examine the rule processing of an ADB
and compare this to the processing of KBSs. We illustrate
that a subset of the above anomalies can go undetected in
ADBs, resulting in the possibility of the ADB not satisfying
its verification criteria.

4.1. Knowledge representation in ADBs and KBSs

The rule structure of KBSs consists of

IF Condition THEN Action

statements (C–A). If the condition is satisfied then the

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638630



action is executed. The condition is a Boolean expression
that is composed of predicates and logical operators that
must evaluate totrue prior to action execution.

The rules in ADBs consist of:

IF Event–Condition THEN Action

statements (E–C–A). The E–C–A statement is similar to
the C–A format of KBSs for verification purposes. The
event can be translated into a KBS rule condition using a
glossary to maintain the mappings. The distinction lies in
the time of rule firing. Rules in KBSs are fired whenever the
state of working memory matches the conditions set by the
rules. Rules in ADBs fire whenever the event specified by
the rule occurs. However, this distinction does not impact
the analysis we present in this paper. Thus, we can transform
an Oracle rule into a KBS format. For example, starting with
an Oracle rule:

Rule 5
CREATE TRIGGER rchain 1
AFTER UPDATE OF quantity
ON inv
FOR EACH ROW
WHEN (((new.QUANTITY - old.DEFECTED_QTY),
� old.THRESHOLD) AND (old.status� ‘UNPRE-

PARED’))
BEGIN

UPDATE stock
SET status� ‘MIN’
WHERE itemNo� :old.itemNo;

The Event, Condition and Action parts are:

Event: UPDATE OF quantity ON inv
Condition: ((new.QUANTITY-

old.DEFECTED_QTY), � old.
THRESHOLD) AND (old.status�
‘UNPREPARED’)

Action: UPDATE stock SET status� ‘MIN’
WHERE itemNo� :old.itemNo;

These can then be converted into predicates as:

Event: E1
Condition: P(x, y, z) AND Q(w)
Action: E7 AND T(v)

which can be stated in KBS rule format

Condition: E1 AND P(x, y, z) AND Q(w)
Action: E7 AND T(v)

In this third step, the event of an ADB rule is translated to
part of the condition statement of a KBS rule normalizing its
final format.

4.2. Demonstrating anomalies in active databases

Having understood the structural similarities between
typical KBS and ADB rules, in order to determine if the
anomalies are carried over to ADBs and if there are any
safeguards against them, we adhere to the process in
Table 1. In phase 1, we identify the entities to abstract in
an ADB to create a KBS rule format for analysis. This leads
to phase 2, where the individual rule-processing compo-
nents are transformed to the KBS rule format. We use estab-
lished KBS definitions for the existence of a potential
anomaly along with a sample ADB rule set to identify
according to KBS standards, where potential anomalies
occur in phase 3. The anomalies are then tested using the
original rules in Oracle 8 in phase 4. Whether or not the
anomalies exist in the commercial ADB and their impact on
its behavior is reported in phase 5.

4.2.1. Intermediate representation generation
The second phase in Table 1 requires conversion to a

KBS rule format. However, due to the nature of program-
ming language syntax and semantics, it is difficult to exam-
ine programs directly for anomalies, and as in other aspects
of computer science, it is necessary to develop and utilize an
abstracted level of the system in which to reason about the
program. Thus we need to develop an intermediate repre-
sentation prior to full conversion.

The intermediate representation serves as a generic
language in which to convert different ADB representations
of rules into a consistent form for analysis. By abstracting
away the particular syntax of an ADB rule set we can effi-
ciently isolate potential anomalies.

Analyzing the conjunctive normal form of the rules,
the intermediate representation consists of the major
components:

1. Rule Id: which refers to a unique rule name
2. TheEvent triggerwhich consists of:

• the event id—unique for each event,
• event list—at most one legal event that triggers the

rule,
• relation—the database relation affected by the event,

and

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638 631

Table 1
A process for anomaly identification

Phase 1 Identify events, relations, and attributes relative to the ADB and
rule set

Phase 2 For all rules in the rule processing component
Generate RuleID statement
Generate Event Trigger statement
Generate Rule Condition statement
Generate Rule Action statement

Phase 3 Determine using KBS verification techniques the existence of
potential anomalies and their categories

Phase 4 Test for anomalous behavior original rules within Oracle 8

Phase 5 Report actual existence and impact



• attribute list—the attributes within the relation that
the event affects. All the components of theevent
trigger reflect the tuple(s) that have been instantiated
as a result of evaluating the triggering event.

3. TheRule Conditionspecifies all the predicates that must
evaluate to true in order for rule execution

4. TheAction of the rule executes on the tuple set.

The intermediate representation allows for both predi-
cates and functions. A predicate in Oracle can have an
embedded function, such asabs�p2:time2 p1:time� , 30.
For simplicity, we assign to an embedded function identi-
fiers whose variables receive the return value of the func-
tion. In the intermediate form, this identifier is assigned an
entire predicate. Any function calls, variables, and attributes
evaluated within the predicate are considered parameters.
Thus, the intermediate form for the predicate,

abs�p2:time2 p1:time� , 30

would be

P�x�
whereP represents the identifier for the entire predicate and
x represents the return value of the embedded function call.

The rule actioncontains an action list that contains other
events that may be triggered upon the evaluation and

execution of the current rule. The Backus Naur Form
(BNF) for the intermediate representation is detailed in [25].

4.2.2. The transformation process
This section considers the transformation of the Oracle

rule set into the intermediate form. This is illustrated
through Rule 1 as described in Table 2.

Each rule as stated earlier is assigned:

1. A Rule Id,
2. An Event Trigger Statement,
3. A Rule Condition Statement,
4. A Rule Action Statement.

Consider Rule 1 in Table 2, the following procedure is
required for the transformation.

Rule Id: We assign ‘R1’ as the identifier of Rule 1.
In the Event Trigger Statement, a unique event id is

assigned to each of the events that cause the trigger to
fire. We assign E1 since the event list consists of only one
event that causes the rule to fire (UPDATE, in this case).
The relation being updated is INV, and the attribute updated
in the INV relation is quantity.

TheRule Condition Statementconsists of two predicates,
(new.QUANTITY - old.DEFECTED_QTY) ,�
old.THRESHOLD) and (old.status� ‘UNPREPARED’).

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638632

Table 2
A sample mapping of an oracle rule to the intermediate representation

Oracle rule Intermediate representation

RULE 1 RuleId ::� R1
CREATE TRIGGER rule 1 Event Trigger statement ::�

E1 : UPDATE INV
(quantity)

AFTER UPDATE OF quantity Rule Condition statement
:: � P(a, b, c) AND Q (d)

ON inv Rule Action statement :: E2
: UPDATE
ON_REORDER

FOR EACH ROW (?q1,q2*2,q3,q4)
WHEN (((new.QUANTITY-
old.DEFECTED_QTY)

, � old.THRESHOLD)
AND

(old.status�
‘UNPREPARED’))
BEGIN

reorder(:old.itemNo);
END;
CREATE PROCEDURE reorder

(itemNum in VARCHAR2)
AS BEGIN

UPDATE on_reorder
SET QTY_RECORDER�

qty_reorder *2
WHERE itemNo�

itemNum;
END reorder;

Table 3
A second sample mapping of an Oracle rule

Oracle rule Intermediate representation

RULE 2 RuleId ::� R2
CREATE TRIGGER rule2 Event Trigger statement ::�

E1 : UPDATE INV (quantity)
AFTER UPDATE OF quantity Rule Condition statement ::�

P(a,b,c) AND Q(d) AND R(e)
ON inv Rule Action statement ::� E2

: UPDATE ON_REORDER
(?q1, q2*2, q3, q4)

FOR EACH ROW
WHEN

(((new.QUANTITY-
old.DEFECTED_QTY)

, �
old.THRESHOLD) AND

(old.status�
‘UNPREPARED’) AND

(old.ON_RECALL_LIST�
‘TRUE’))
BEGIN

reorder(:old.itemNo);
END;
CREATE PROCEDURE reorder

(itemNum in VARCHAR2)
AS BEGIN

UPDATE on_reorder
SET QTY_REORDER�

qty_reorder *2
WHERE itemNo�

itemNum;
ENDreorder;



Each predicate is assigned an identifier. We assign P to the
first predicate and Q to the second predicate. In addition,
each attribute involved in the predicate is assigned a
parameter.

Finally, all the events executed in the action are stated in
the Rule Action Statement. Note that the action of the rule
may contain function calls that execute INSERT, DELETE,
or UPDATE statements. As a result, these functions are
examined to assure that all events executed in the action
of this rule have been identified in therule action statement.
The rule action statement consists of an event id for each
new event executed, the event, the relation affected by the
event, and the tuple instantiated in the relation. The instan-
tiated tuple is represented by identifiers for each attribute in
the tuple. The attributes that represent the key are preceded
by ‘?’. If particular values are being assigned by the
(INSERT, DELETE, UPDATE) event, these values can
directly replace the attribute identifier. For example, the
attribute q2 in Table 2 is updated by this event to q2*2.

As an additional example, we show the intermediate
representation for Rule 2 in Table 3.

5. Anomaly occurrence in ADBs: an example rule set

To determine if the KBS verification anomalies can occur
in an ADB, we developed a sample rule set for execution in
Oracle 8. The KBS abstraction of the rules is used to convey
the existence of a potential anomaly. The original rule set
purposely contained anomalies for redundancy, inconsis-
tency, and incompleteness [25], though we restrict our
presentation here to the first two categories. Rules 1 and 2
from Tables 2 and 3, respectively are part of the rule set.

5.1. When it is an anomaly

We present only the pertinent subset of rules that exhibit
particular redundancies and inconsistencies and discuss
their behavior when executed in Oracle 8. The rules and
corresponding KBS representation are presented in Table 4.

Duplication: R1 and R3 are duplicate rules because they
have identical LHSs and RHSs. These rules fire when an
UPDATE to the quantity field of the INV table occurs. Both
rules state that if the quantity in the inventory table (INV) of
a product falls below the threshold and preparations to reor-
der have not been made then to reorder the item. The reorder
function assigns the quantity to be reordered in the
ON_REORDER table. Upon enabling these triggers
(named rule1 and duplication), the event, event1, is
executed.Event1performs an UPDATE to the INV table
causing both triggers to activate. Since the inventory is

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638 633

Table 4
An example rule set

Oracle ADB rule set KBS rule set

RULE 1
CREATE TRIGGER rule 1 R1: E1, P(x,y,z), Q(w)!E2
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN
(((new.QUANTITY-old.DEFECTED_QTY)

, � old.THRESHOLD) AND
(old.status� ‘UNPREPARED’))
BEGIN reorder(:old.itemNo);
END;

RULE 2
CREATE TRIGGER subsumption R2: E1,P(x,y,z),Q(w),

R(v)! E2
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN
(((new.QUANTITY-old.DEFECTED_QTY)

, � old.THRESHOLD) AND
(old.status� ‘UNPREPARED’) AND
(old.ON_RECALL_LIST� ‘TRUE’))
BEGIN reorder(:old.itemNo);
END;

RULE 3
CREATE TRIGGER duplication R3: E1,P(x,y,z), Q(w)! E2
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN
(((new.QUANTITY-old.DEFECTED_QTY)

, � old.THRESHOLD) AND
(old.status� ‘UNPREPARED’))
BEGIN reorder(:old.itemNo);
END;

RULE 4
CREATE TRIGGER unnec_if R4: E1,P(x,y,z),: Q(w)!

E2
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN
(((new.QUANTITY-old.DEFECTED_QTY)

, � old.THRESHOLD) AND
(old.status� ‘PREPARED’))
BEGIN reorder (:old.itemNo);
END;

RULE 5
CREATE TRIGGER rchain 1 R5: E1,P(x,y,z), Q(w)!

E7, T(v)
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN
(((new.QUANTITY-old.DEFECTED_QTY)

, � old.THRESHOLD) AND
(old.status� ‘UNPREPARED’))
BEGIN UPDATE stock
SET status� ‘MIN’
WHERE itemNo� :old.itemNo;
END;

RULE 6
CREATE TRIGGER rchain2 R6: E7,T(x)! E2
AFTER UPDATE OF status ON stock
FOR EACH ROW WHEN (new.status�
‘MIN’)
BEGIN reorder(:old.itemNo);

Table 4 (continued)

Oracle ADB rule set KBS rule set

END;



evaluated to be low for the items in the INV table, both of
the trigger actions are executed. Duplicate rules are an
anomaly because they succeed in the same situation and
give the same results. Further, both rules affect the integrity
of the database because these redundant rules cause the
quantity of an item to be reordered twice.

Subsumption: R2 subsumes R1. R2 is the more restrictive
of the subsumed rules because it has the additional condi-
tions, (old.ON_RECALL_LIST� ‘TRUE’), which must be
satisfied for its activation. Upon enabling these triggers
(rule1 and subsumption), the event,event1, is executed
similar to the duplication example above. When the restric-
tive rule, R2, succeeds, the less restrictive rule succeeds
also, causing a redundancy. The execution of both rules
causes the quantity of an item to be reordered twice, once
again compromising the reliability of the database.

Reducible: R1 and R4 portray reducible rules because of
unnecessary conditions. R1’s condition (old.status�
‘UNPREPARED’) and R4’s condition (old.status�
‘PREPARED’) show that one rule contains the positive
form of status and the other rule contains its negative
form. R4 executes on an UPDATE to the INV table when
the inventory of an item falls below the threshold and the
status of the reorder is ‘PREPARED’. Since the status of an
item can either be ‘PREPARED’ or ‘UNPREPARED’, these
conditions on the status are unnecessary and ineffective in
determining which rule should fire. The implication of these
rules is that a reorder of the product can be made regardless
of their status.

Indirect: R1, R5, and R6 represent a potential chained
redundancy since R1 and R5 have identical LHSs, and the
consequent of R1 is reached through a series of deductions
from rules R5 and R6. R5 is triggered when an UPDATE to
the quantity field of the INV table occurs. The only differ-
ence is that R5 updates the stock table to indicate that the
status of the item is low (status� ‘MIN’). This UPDATE of
the status field in the Stock table triggers R6 to execute and
reorder this item. When R5, R6, and R1 are enabled, and the
UPDATE event on the INV table is executed, a reorder to
the items satisfying the conditions of these rules are made
twice, thus displaying incorrect information in the database.

Table 5 summarizes the redundant configuration by
grouping the rules according to the type of redundancy
that occurs.

Contradicting actions in ADBs can take the following
command forms: UPDATE-DELETE, UPDATE-INSERT,
INSERT-INSERT, and UPDATE-UPDATE, falling into
two types of conflict. The first type of conflict,direct
conflict, occurs when one of the two rules (who have iden-
tical conditions and events) attempts to perform an
UPDATE to an attribute in a relation and the other rule
attempts to perform a DELETE action on the same attribute
and relation being updated by the first rule.

Rules R7 and R8 below are directly conflicting. The
LHSs of these rules are identical, but the RHSs require
contradictory actions be taken. For example, when an

UPDATE to the qty_reorder attribute of the On_Reorder
table occurs, these triggers are evaluated. When executed
the trigger actions of R7 performs an UPDATE to the
Def_Stock table and Items_To_Return table for a desig-
nated tuple. The trigger actions of R8 delete the same
tuple updated by R7 in the Items_To_Return table. An
update action and a delete action of the same tuple(s) can
result in unexpected behavior from the conflict.

Actual results in Oracle show that R8 succeeds in its
deletion. The indication that R7 also was executed is
shown by the UPDATE to the Def_Stock table. R7 also
performed an Update to the Items_To_Return table, but
this update was overridden by R8’s actions. The data that
results, in this case, are from the trigger action of R8 since it
was executed last. Such conflict can result in the uninten-
tional modification or deletion of information and questions
the reliability of the database (Table 6).

The second type of conflict,semantic or complex conflict,
can occur in multiple situations. The first situation occurs
when two rules with identical event triggers and event
condition statements attempt to update the same tuple of
the same relation with different values (UPDATE-
UPDATE). The second situation occurs when two rules
with identical event trigger and event condition statements
attempt to insert different tuple values into the same relation
(INSERT-INSERT). The third complex conflict situation
occurs when one of two rules with identical event trigger
and event condition statements attempts to update attributes
of a relation to a certain value, and the other rule inserts a
tuple in the same relation whose attribute values differ from
what is being reassigned by the first rule (UPDATE-
INSERT). We give an example of this conflict using the
following two rules (Table 7).

Rules R9 and R10 depict a complex conflict. The LHSs of
these rules can succeed when their conditions evaluate true,
however their RHS cannot be both true simultaneously. A
priori meta-knowledge is used over the potential values of
the variables that states that the dual update is unacceptable.
For example, when an UPDATE to the PrepareToMail attri-
bute for the Items_To_Return event occurs, these rules are
triggered. Given that the conditions evaluate to true, both
trigger actions are executed. The trigger action of R9 assigns
the shipment type attribute with the value ‘LOCAL’ while
the trigger action of R10 assigns the same attribute the value
‘US’. These assignments are semantically conflicting.

Actual results in Oracle show that R9 succeeds in assign-
ing ‘LOCAL’ to the shipment type of the tuples meeting the
condition of the trigger. In order to verify that R10 was also
executed, additional tests were needed. In these tests, addi-
tional update statements were placed in the trigger actions of
R9 and R10. These update statements modified attributes of
different tables. By examining whether these statements
were executed in the appropriate tables, it was determined
that in the case of conflicting rules, both rules are executed.
However, the data that results, in this case, is from the
trigger action of R9 since it was executed last. The reliability

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638634



of the database is at stake when semantically contradicting
values are being assigned by internal mechanisms of the
system since it is unclear which assignment will take
precedence.

When there are only two values for an attribute, meta-
knowledge can be applied easily to detect and resolve
conflicts. However, in the cases in which a variable has
more than two values, the analysis becomes more complex.
Meta-knowledge would be used to examine seemingly
inconsistent rules to determine if the actions of the rules
assign distinct values to the same variables.

5.2. When it is not an anomaly

Analysis in the KBS format alerts the programmer as to
which rules need to be examined to assess the exact cause
behind the anomaly. Upon taking a closer look at the execu-
tion of the suspect rules in the original rule set, the anom-
aly’s existence is determined. For instance, circular rules
may be placed in the ADB and statically analyzed using
KBS verification techniques. However, during execution
of these rules, it was seen that Oracle has a built-in mechan-
ism to disallow circular triggering.

As stated earlier, this static analysis indicates the poten-
tial for an anomaly. Deeper analysis and testing determines
the actual extent and impact. For example, one type of static
representation may be an event dependency graph that
shows how rules link together in their execution. Such a
graph may be used by automated KBS anomaly detection
tools such as Cover [8] the KB-Reducer System [55], and
the Expert Validation Associate [56]. Each of these tools has
the capability of identifying all of the forms of redundancy,
inconsistency, and incompleteness discussed. Below is the
summary of events used by the subset of rules discussed that
form their connection. Fig. 2 depicts the graph for the rules
we have discussed in this paper, with the addition of a new
rule R0 discussed below. The crossbar on the arcs indicates
the ‘‘negative’’ event action, which may be direct or guided
by meta-rules.

EVENT SUMMARY LISTING
E1: UPDATE INV (?v1, quantity - 100, v3, v4, v5,

v6)

E2: UPDATE ON_REORDER (?q1, q2*2, q3, q4)
E3: UPDATE ITEMS_TO_RETURN (?i1, i2, i3, i4,

TRUE, i6,. i7, i8, i9, i10)
DELETE ITEMS_TO_RETURN (?i1, i2, i3,
i4, i5, i6, i7, i8, i9, i10)

E7: UPDATE STOCK (?s1, MIN, s3)
E9: UPDATE DEF_STOCK (?d1, d2, d3, LOCAL,

d5, d6, d7)
UPDATE DEF_STOCK (?d1, d2, d3, US, d5,
d6, d7)

E10: UPDATE DEF_STOCK (?d1, ret, d3, d4, d5,
d6, d7)

For example, if the rule R0, shown in Fig. 3, were a part of
this rule set, it would be seen in the diagram as an arc going
from E1 to E2. However, upon comparing this rule with the
other rules that are triggered by E1 and reach E2, it is
concluded that this rule is not redundant with the others
since the LHS of R0 and the other rules leading to event
E2 are not problematic.

6. Summary of implementation and impact

Once we found that these anomalies can exist in
ADBs, we determined what effect they had, if any, on
the reliable execution of ADBs. The rule set designed
reflects actions to be taken for inventory management.
For example, when the quantity for a particular product
falls below the desired threshold, then a reorder flag is
set. If a product is defective or has been recalled,

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638 635

Fig. 2. A sample event dependency graph.

Fig. 3. Rule illustrating additional analysis after anomaly detection.



proper measures are taken to ship these items back to
the supplier. The rule set also incorporates, as discussed
earlier, anomalies prevalent to KBSs.

Each rule is assigned the deferred mode of execution,
referred to as AFTER, indicating that the rules’ triggering
actions are executed after the triggering event has been
executed. The mode limitation allows us to determine
more clearly that the anomalies are a result of the rule
contents and structure rather than their execution modes.
The trigger type used to define the rules in the rule set are
row triggers.

The basic steps for testing include: identifying the
anomaly under test, isolating the rules or triggers causing
the anomaly, executing the events that cause these
triggers to fire, and examining how the anomaly effects
the data residing in the database as a result of trigger
execution [25].

The results indicate that each of the anomalous rules
execute when the appropriate event occurs. The execution
of these rules affect the final data values assigned to the
attributes in the database. For example, redundant rules
have the potential of updating an attribute twice. Inconsis-
tent rules have the potential of assigning different values to
an attribute depending on which rule executes last, which
may occur in random order. Thus, the consequences of these
anomalies have a negative impact on the integrity of the
database.

7. Discussion and conclusion

Database management systems are becoming more
sophisticated with the incorporation of rules and a rule
processing component. The advantage of this new capability
results from the implicit activation of the rule inference
process, thus making the system an ‘‘active’’ database.
This implicit processing forestalls users from observing
the changes being made to relevant data, thus heightening
the need for implementing correct rules. As a result, the
necessity to verify that the rules maintain the integrity of
the database.

We show that the verification anomalies once applicable
to KBSs are also relevant to ADBs. The rule syntax of an
ADB is converted to an intermediate form. We structurally
examine the rules according to KBS verification anomaly
definitions. We then confirm through an Oracle implemen-
tation that these anomalies question the integrity of the
ADB. For example, our test results show that redundant
rules can perform the same action on the specified attribute
twice, possibly inserting incorrect information in the data-
base. By executing these rule sets in Oracle and seeing that
in fact these anomalies can go undetected, there should be
some concern among the ADBs that the more complex the
systems become and the more developers there are to
encode applications, the reliability of the ADB results can
be impacted.

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638636

Table 5
Anomaly rule groups

Redundancy type Rule groups Result

Duplication R1: E1,P(x,y,z), Q(w)! E2 Both rules execute
R3: E1,P(x,y,z), Q(w)! E2 The qty_reorder attribute of the On_Reorder table updated for all attributes regardless of the

restricting conditions on the status of the Inv table

Subsumption R1: E1,P(x,y,z), Q(w)! E2 Both rules execute
R2: E1,P(x,y,z), Q(w), R(v)! E2 The qty_reorder attribute of the On_Reorder table updated twice

Reducible R1: E1,P(x,y,z), Q(w)! E2 Either rule executes independent of the value of Q(w)
R4: E1,P(x,y,z),: Q(w)! E2 The qty_reorder attribute of the On_Reorder table is updated in eachcase

Indirect R1: E1,P(x,y,z), Q(w)! E2 All three rules execute
R5: E1,P(x,y,z), Q(w)! E7, T(v) The qty_reorder attribute of the On_Reorder table updated twice as a result of R1 and R6
R6: E7, T(x)! E2

Table 6
Rule groups 7 and 8

RULE 7 RULE 8
CREATE TRIGGER direct_conflict1 CREATE TRIGGER direct_conflict2
AFTER AFTER
UPDATE OF qty_Reorder UPDATE OF qty_Reorder
ON on_Reorder ON on_Reorder
FOR EACH ROW FOR EACH ROW
WHEN (new.qty_reorder. 0) WHEN (new.qty_reorder. 0)
BEGIN BEGIN

PrepareForReturn(:old.ItemNo); PrepareForRestock(:old.ItemNo);
END; END;



Of the existing automated KBS verification tools, an
analysis of the direct applicability of these tools to ADBs
is required. Further, an automated tool to compile the
syntax of our intermediate representation and subsequently
generates an event dependency diagram requires further
development.

The intermediate representation we define captures
potential anomalies, such as those prevalent in KBSs, inde-
pendent of coupling modes. Though the intermediate repre-
sentation can be applied to rule sets using varying modes, it
does not directly capture anomalies that are a result of
coupling modes. Further analysis can be performed to deter-
mine the existence of these anomalies [25].

The importance of this paper is nothow to detect rule
anomalies in ADBs, but rather the demonstration that
these anomalies can exist and can cause unexpected and
unreliable behavior. Once an understanding of the abstrac-
tion needed for translation to a KBS rule format is achieved,
then ADB researchers can examine KBS automated detec-
tion and resolution techniques. These techniques can then be
extended to overlay particular ADB rule execution models.

Acknowledgements

This research was supported in part by the U.S. Depart-
ment of Energy, contract #DEAC22-93BC14894 and
DARPA CAETI program, contract #N66001-95-C-8628.

References

[1] E.N. Hanson, The design and implementation of the Ariel active
database rule system, Technical Report UF-CIS-018-92, Department
of Computer and Information Sciences, University of Florida, 1991.

[2] R.F. Gamble, T.M. Shaft, Eliminating redundancy, inconsistency, and
incompleteness in rule-based systems, International Journal of Soft-
ware Engineering and Knowledge Engineering 7 (4) (1996) 673–697.

[3] S. Murrell, R.T. Plant, A survey of tools for the verification and
validation of KBS—1985–95, Decision Support Systems 21 (1997)
4.

[4] R.T. Plant, Validation and verification of knowledge-based systems,
Workshop Notes AAAI. 1994, Seattle, WA, 1994.

[5] R.F. Gamble, C. Landauer, Validation and verification of knowledge-
based systems, Workshop Notes IJCAI-95, Montreal, Que. Canada,
1995.

[6] R. Mukherjee, R.F. Gamble, J.A. Parkinson, Classifying and detecting
anomalies in hybrid knowledge based systems, Decision Support
Systems 21 (1997) 231–251.

[7] D.E. O’Leary, Verification of frame and semantic network knowledge
bases, AAAI-89 Workshop on Knowledge Acquisition for KBSs,
1989.

[8] A.D. Preece, R. Shinghal, A. Batarek, Verifying expert systems: a
logical framework and practical tool, Expert Systems with Applica-
tions 5 (1992) 421–436.

[9] R. O’Keefe, D.E. O’Leary, Expert system verification and validation:
a survey and tutorial, Artificial Intelligence Review 7 (1993) 3–42.

[10] J. Schmolze, A. Vermesan, Validation and verification of
knowledge-based systems, Workshop Notes AAAI-96, Portland,
OR, 1996.

[11] S. Chakravarthy, A comparative evaluation of active relational data-
bases, Technical Report UF-CIS-TR-93-002, Department of Compu-
ter and Information Sciences, University of Florida, 1993.

[12] Codasyl Data Definition Language Journal of Development National
Bureau of Standards Handbook 113 US Government Printing Office,
(SD Catalog No c13.6/2:113), Washington, DC, 1973.

[13] K.P. Eswaran, D.D. Chamberlain, Functional specifications of a
subsystem for database integrity, in: Proceedings of the DM SIGMOD
Conference 1992, pp. 81–91.

[14] U. Dayal, Active database management systems, in: Proceedings of
the Conference of Data and Knowledge Bases, Jerusalem, 1988.

[15] U. Dayal, F. Manola, The HiPAC project: combining active databases
and timing constraints, SIGMOD Rec. 17 (1988) 51–70.

[16] N.H. Gehani, H.V. Jagadish, O. Shmueli, Event specification in an
active object-oriented data base, ACM SIGMOD, 1992, pp. 81–90.

[17] S. Gatziu, S. Dittrick, Events in an object-oriented database, in: N.W.
Paton, M.H. Williams (Eds.), Proceedings of the 1st International
Workshop on Rules in Database Systems, Springer, Berlin, 1994,
pp. 23–39.

[18] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.K. Kim, Composite
events for active databases: semantics, contexts and detaction, in: J.
Bocca, M. Jarke, C. Zaniolo (Eds.), Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, Morgan Kaufmann, Los
Altos, CA, 1994, pp. 606–617.

[19] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, Active rule manage-
ment in chimera, in: J. Wisdom, S. Ceri (Eds.), Active Database
Systems: Triggers and Rules for Active Database Processing, Morgan
Kaufmann, Los Altos, CA, 1996, pp. 151–175.

[20] M. Stonebraker, E. Hanson, S. Potaminos, The POSTGRES rule
manager, IEEE Transactions on Software Engineering 14 (7) (1988)
897–907.

[21] M. Stonebraker, L. Rowe, M. Hirohama, The implementation of
POSTGRES, IEEE Transactions on Knowledge Data Engineering,
March, 1990.

[22] E.N. Hanson, Ariel, in: N.W. Paton (Ed.), Active Rules in Database
Systems, Monographs in Computer Science, Springer, Berlin, 1999,
pp. 221–232.

[23] J. Widom, S. Finkelstein, Set-oriented production rules in relational
database systems, Association for Computing Machinery, 1990, pp.
259–270.

[24] E.N. Hanson, J. Widom, Rule processing in active database systems,
International Journal of Expert Systems 6 (1) (1993) 83–119.

[25] A.V. Pai, Verifying the rule processing components of active data-
bases, MS Thesis, Department of Mathematical and Computer
Sciences, University of Tulsa, 1995.

[26] S.D. Urban, A.M. Wang, The design of a constraint/rule language for
an object-oriented data model, Journal of Systems and Software 28
(1995) 203–224.

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638 637

Table 7
Rule groups 9 and 10

RULE 9 RULE 10
CREATE TRIGGER com_conf1 CREATE TRIGGER com_conf2
AFTER AFTER
UPDATE OF PrepareToMail UPDATE OF PrepareToMail
ON Items_to_Return ON Items_to_Return
FOR EACH ROW FOR EACH ROW
WHEN (new.PrepareToMail�

‘TRUE’)
WHEN (new.PrepareToMail�

‘TRUE’)
BEGIN BEGIN

UPDATE def_stock UPDATE def_stock
SET shipmtype�

‘LOCAL’
SET shipmtype� ‘US’

WHERE itemNo�
:new.itemNo;

WHERE itemNo�
:new.itemNo;

END; END;



[27] R. Elmasri, S. Navathe, Fundamentals of Database Systems, Benja-
min/Cummings, Redwood City, CA, 1989.

[28] Oracle, Oracle Corporation, Redwood Shores, CA 94065. Oracle 7
Server Manuals, Release 7.1, 1992.

[29] T. Coupaye, C. Collet, Denotational semantics for an active rule
execution model, in: Proceedings of the Second International Work-
shop Rules in Database Systems ’95, Glyfada, Athens, Greece,
September 25–27, 1995.

[30] N.W. Paton, J. Campin, A.A.A. Fernandes, M.H. Williams, Formal
specification of active database functionality: a survey, in: Proceed-
ings of the Second International Workshop Rules in Database
Systems ’95 Glyfada, Athens, Greece, September 25–27, 1995.

[31] M.L. Brodie, Specification and verification of database semantic
integrity, PhD Thesis, Department of Computer Science, University
of Toronto, Toronto, 1978.

[32] S.D. Urban, B.B. Lim, An intelligent framework for active support of
database semantics, Advances in Databases and Artificial Intelli-
gence, 1, JAI Press, 1995 pp. 167–208.

[33] A. Karadimce, S.D. Urban, Conditional term rewriting as a formal
basis for analysis of active database rules, in: J. Widom, S. Chakra-
varthy (Eds.), Proceedings of the Fourth International Workshop on
Research Issues in Data Engineering: Active Database Systems,
Houston, TX, February 1994, IEEE Computer Society Press, Los
Almitos, CA, 1994.

[34] R. Sturm, J.A. Mulle, P.C. Lockemann, Temporized and localized
rule sets, in: Proceedings of the Second International Workshop
Rules in Database Systems ’95 Glyfada, Athens, Greece, September
25–27, 1995.

[35] S. Chakravarthy, A visualisation and explanation tool for debugging
ECA rules in active databases, in: Proceedings of the Second Inter-
national Workshop Rules in Database Systems ’95 Glyfada, Athens,
Greece, September 25–27, 1995.

[36] E. Benazet, H. Guehl, M. Bouzeghoub, VITAL: a visual tool for
analysis of rules behaviour in active databases, in: Proceedings of
the Second International Workshop Rules in Database Systems ’95
Glyfada, Athens, Greece, September 25–27, 1995.

[37] O. Diaz, A. Jamie, N. Paton, Dear: a debugger for active rules in an
object oriented context, in: Proceedings of the 1st International Work-
shop on Rules in Database Systems, 1993, pp. 180–193.

[38] O. Diaz, Tool support, in: N.W. Paton (Ed.), Active Rules in Database
Systems, Monographs in Computer Science, Springer, Berlin, 1999,
pp. 127–146.

[39] T. Coupaye, C.L. Roncancio, C. Bruley, J. Larramona, 3D visualiza-
tion of rule processing in active databases, in: NPIV ’97, Proceedings
of the Workshop on New Paradigms in Information Visualization and
Manipulation, November 13–14, Las Vegas, NV, 1997, pp. 39–42.

[40] T. Rische, M. Skold, Monitoring complex rule conditions, in: N.W.
Paton (Ed.), Active Rules in Database Systems, Monographs in
Computer Science, Springer, Berlin, 1999, pp. 81–102.

[41] E. Baralis, Rule analysis, in: N.W. Paton (Ed.), Active Rules in Data-
base Systems, Monographs in Computer Science, Springer, Berlin,
1999, pp. 51–67.

[42] E. Baralis, S. Ceri, S. Paraboschi, Improved rules analysis by means
of triggering and activation graphs, in: Proceedings of the Second

International Workshop Rules in Database Systems ’95 Glyfada,
Athens, Greece, September 25–27, 1995.

[43] N. Bidot, S. Maabout, A model theoretic approach to update rule
programs, in: F. Afrati, P. Kolaitism, (Eds.), Database Theory—
ICDT ’97, 6th International Conference, Delphi, Greece, January
1977, pp. 172–202.

[44] S. Ceri, J. Widom, Deriving production rules for constraint mainte-
nance, in: Proceedings of the 16th VLDB Conference, 1990, pp. 566–
577.

[45] S.K. Das, M.H. Williams, Integrity checking methods in deductive
databases: a comparative evaluation, Proceedings of the Seventh Brit-
ish National Conference on Databases, Cambridge University Press,
Cambridge, 1989.

[46] L.M.L. Delcambre, K.C. Davis, Automatic validation of object-
oriented database structures, in: Proceedings of the Fifth International
Conference on Data Engineering, Los Angeles, CA, 1989, pp. 2–9.

[47] A. Karadimce, S.D. Urban, Diagnosing anomalous rule behaviour
with integrity maintenance production rules, in:J. Goers, A. Heuer,
G. Saake (Eds.), Proceedings of the Third Workshop on Foundations
of Models and Languages for Data and Objects, Aigen, Austria, 1991,
pp. 77–102.

[48] B.B.L. Lim, A formal framework for the specification and enforce-
ment of object centered constraints and triggers, PhD Dissertation,
The Center for Advanced Computer Studies, University of Southwes-
tern Louisiana, 1992.

[49] B. Martens, M. Bruynooghe, Integrity constraint checking in deduc-
tive databases using rule/goal graph, in: Proceedings of the 2nd Inter-
national Conference on Expert Database Systems, Tysons Corner,
VA, 1988.

[50] J. Qian, G. Wiederhold, Knowledge-based integrity constraint valida-
tion, in: Proceedings of the Twelfth International Very Large Data-
base Conference, Kyoto, Japan, 1986.

[51] J. Qian, G. Wiederhold, Integrity constraint reformulation for efficient
validation, in: Proceedings of the Thirteenth International Very Large
Database Conference, Brighton, England, 1987.

[52] S.D. Urban, L.M.L. Delcambre, Constraint analysis: a tool for
explaining the semantics of complex objects, in: K. Dittrich (Ed.),
Proceedings of the 2nd International Workshop on Object Oriented
Database Systems, Germany, September 1988, Lecture Notes in
Computer Science, 334, Springer, Berlin, 1988, pp. 156–161.

[53] S.D. Urban, M. Desiderio, Translating constraints to rules in
CONTEXT: a CONstrainT Explanation Tool, Proceedings of the
IFIP Working Conference on Database Semantics. Object-Oriented
Databases: Analysis, Design and Construction, Windermere, UK,
July 1990, North Holland, Amsterdam, 1991, pp. 373–392.

[54] Active rules in database systems, in: N.W. Paton (Ed.), Monographs
in Computer Science, Springer, Berlin, 1999.

[55] A. Ginsberg, Knowledge-base reduction: a new approach to checking
knowledge bases for inconsistency and redundancy, in: Proceedings
of the 7th National Conference on Aritificial Intelligence: AAAI 88,
vol. 2, 1988, pp. 585–589.

[56] C.L. Chang, J.B. Combs, R.A. Stachowitz, A report on the expert
systems validation associate (EVA), Expert Systems with Applica-
tions (US) 1 (3) (1990) 217–230.

A.V. Pai et al. / Information and Software Technology 41 (1999) 627–638638


