
Factors in software quality for knowledge-
based systems

R T Plant

The paper consider.s the need.lor quality knowh,dge-hased solt-
n'are s.rstems. The paper defines quality in terms ola manr{l~wtur-
ing process and then relates the creation qlsO[?u'are to manulae-
turi#rg. It then eonsith'rs the aspects that ,go towards the creation
o/a quality kmnrh, dge-hased system: the ,spee(lieation, the deve-
lopment metho~hdog.r, and the validation and ver(/ication pro-
eesses that cheek that a prmhwt meets its ,spee([ieation. The paper
ehms this hi' eonsideri#rg a set ¢~/henehmarks aga#rst which the
h" vel Of quality can he measured and then how each 0[the aspects
contributes to heighten each 0[the./~wtors that contribute to the
h'vel o/qualit3'. The paper proposes that the .spec(~eation, nwtho-
dology, and ralMation criteria can all heighten the h, vel 0[' cor-
rectne,vs and that (/they are used colleetiveh" then tire eorrecmess
O/a .svstem and hence the qualitr]evel can he raised sign(tieantly.

soltu'are quality, knouh, dge-based systems, specflication.
#m'thodologie.~, validation, verf/ication, sO/hrare testing

This paper discusses the need for software quality in the
area o f knowledge-based systems. These are systems that
a t tempt to perform at the same level o f performance as a
human expert over a given domain. However, they differ
from the traditional procedural software systems in the
type o f domain they a t tempt to model and the techniques
through which these models are created. The primary
considerat ion that distinguishes knowledge-based
systems from their more traditional counterpar ts is that
their domains cannot be fully specified before the crea-
tion o f the system and thus cannot be argued about in the
formal styles available to the conventional software
developer.

This inability to specify fully the systems has impeded
the creation o f adequate development models for know-
ledge-based systems, whose declarative nature does not
lend them to creation through the conventional software
development methodologies. These two factors have
been the pr imary cause for the creation o f poor-qual i ty
knowledge-based systems that are o f low reliability and
of consequently limited use. Therefore the areas o f speci-
fication and methodology are considered in conjunct ion
with other techniques to raise the level o f quality o f
knowledge-based systems.

Department of ('omputer Informalion Systems, University of Miami,
Coral Gables, FL 33124. LISA

D E F I N I T I O N S OF Q U A L I T Y

The term quality has been defined in
ways. for example:

many different

'Quality is a judgement by customers or users of a product
or service: it is the extent to which the customers or users
believe the product or service surpasses their needs and
expectations. "~

This defines quality in terms associated with a cus tomer ' s
or user's perception o f its worth, with implicit reference
to other products o f a similar nature.

It is possible to go further and define quality in a more
specific way:

"Quality is conformance to requirements. Deviation from
specification implies a reduction in quality.':

Here the definition has associated with it a context based
on a manufactur ing approach.

This definition can be used to consider the problem of
quality as related to software, as the product ion o f soft-
ware can be viewed as a manufac tur ing process. A defini-
tion that helps do this is:

"Testing is a measurement of software quality. "~

Hetzel goes further and provides a useful working defini-
tion of testing:

"Testing is tiny activity aimed at evaluating tin attribute or
capability of a program or systern. "~

Thus a relationship between testing and quality can be
seen. To have a quality product, which in this case is
software, it needs to be ensured that it meets its require-
ments. This can be considered a validation and verifica-
tion process and can be approached through the use of
testing, where the use o f more accurate testing mecha-
nisms leads to increases in the level o f system correctness
and hence increases in quality.

Q U A L I T Y - A S S U R A N C E M E A S U R E S

To assess the quality level a software system has reached,
there need to be benchmarks against which the quality
level can be measured. The benchmarks can be used for
both knowledge-based and conventional systems; how-

vo133 no 7 september 1991 0950 5849/91/070527 10',~", 1991 Butterworth Heinemann Ltd 527

ever, the imprecise nature of knowledge-based systems
makes it more difficult for these systems to have metrics
applied to them and an analysis of the results made. For
example, knowledge-based systems cannot be precisely
specified and as such the correctness of a system becomes
difficult to assess, as the correctness of a system can only
be assessed when the system is measured against its speci-
fication. However, the use of quality metrics is still of
importance for knowledge-based systems, and it is useful
to survey some of the approaches available.

A set of quality factors has been defined by Garvin 2,
who sets out his 'eight dimensions of quality' as:

• performance
• features
• reliability
• conformance
• durability
• serviceability
• aesthetics
• perceived quality

He uses these factors to determine the quality of a pro-
duct, e.g., a program, in relation to other products that
perform a similar or identical role, and as such the
factors are at a higher level than those necessary to assess
the quality of an individual knowledge-based software
system. They would be useful, however, for assessing the
variance between two or more expert system shells, for
example.

A set of benchmarks that attempts to measure the level
of quality a software system has attained, by measuring a
set of attributes associated with the software has been
proposed by Carpenter and Murine 4, who put forward a
software quality assurance (SQA) methodology; these
attributes have been termed 'quality factors'. The 12
factors proposed by Carpenter and Murine 4 are:

• correctness
• reliability
• efficiency
• integrity
• reusability
• useability
• maintainability
• testability
• flexibility
• portability
• interoperability
• intraoperability

Carpenter and Murine define these factors and state that
there are metrics available to measure them (they do not,
however, define these metrics). They also state a useful
axiom that the weighting associated with each factor is
not going to be equal in value, a problem that has to be
addressed with all metric-based quality models, whether
applied to knowledge-based or conventional software.

In an important paper, Boeh, m also attempted to
define software quality in terms of seven software charac-
teristicsS:

• reliability
• portability
• efficiency
• human engineering
• testability
• understandability
• modifiability

As Conte notes, however, 'precise definitions of these
subjective characteristics are very difficult '~'. Conte makes
three points to illustrate the difficulty of associating qua-
lity measurements with software. First, some of the char-
acteristics are potentially contradictory. Second, there
are significant cost-benefit trade-offs that must be con-
sidered in attempting to maximize any particular charac-
teristic. Third, it may be difficult to define a particular
metric to measure a particular characteristic.

An alternative set of SQA measures has been given by
DunnT:

• ensuring compliance to defined standards
• tracking corrective action
• reliability analysis
• measurements
• customer (or user) feedback
• pareto analysis
• vector surveys and vendor surveillance
• product qualification
• quality improvement

in this set of factors, several important characteristics of
any effective QA methodology can be identified:
standards. In many organizations, the software is created
by following a series of guidelines or 'house-standards"
that lay down definitive guidelines for the specification,
design, implementation, and maintenance standards
required by that organization. The aim of these
standards is to promote the production of quality soft-
ware and in doing so to ensure that all developers use the
same approaches, thus avoiding a plethora of styles,
methodologies, and strategies for development. In many
applications the software created is of a critical nature,
for example, defence, aeronautics, and energy systems: it
is therefore in these areas that the most rigorous
standard definitions have been developed (see Table I).
Software quality standards have been reviewed ~.9.

These standards and reports define the approaches
and procedures to be taken when performing a certain
aspect of the software development task. The reports,
however, focus on the task of developing conventional,
procedural, algorithmic software, and as such their
applicability to the creation of knowledge-based soft-
ware is limited. An example of this is the DOD-2167A
military standard, which:

"Establishes uniform requirements for software develop-
ment throughout the system life-cycle"

and even though the standard states that it does not
intend to discourage use of any particular software deve-
lopment method, such as rapid prototyping, the findings

528 information and software technology

Table I. Standard definitions and reports on software quality

NATO
A Q A P 14 1981

'Software quality control requirements"
A Q A P 14 1984

'Guide for the evaluation of a contractor's software quality control
system for compliance'

ANSI/IEEE
824 1983

'Standard for software configuration management"
730 1984

"Standard for software quality assurance plans"
829 1985

"Standard for software documentation'
983 1986

"Guide for software quality assurance planning'
DOD
M I L S ~52779A 1979

"Software quality assurance program requirements'
MIL H D B K 334 1981

"Evaluation of a contractor's software quality assurance program'
DI R 3521 1892

'Software quality assurance plans'
NRC
EPRI NP 5236/1987

'Approaches to the verification and validation of expert systems for
nuclear power plants'

EPRI NP 5978/1987
'Verification and validation of expert systems for nuclear power
plant applications'

N S A G 39/1981
"Verification and validation for safety parameter display system'

NUREG/CR 4640/1987
"Handbook of software quality assurance techniques applicable to
the nuclear industry'

NUREG 0653/1980
"Report on nuclear industry quality assurance procedures for safety
analysis computer code development and use'

by practitioners in the field of knowledge-based systems
development are that:

'Knowledge-based systems applications are almost never
based on a solid definite set of requirements; they are usually
somewhat ill defined, and they almost always change signifi-
cantly during development. In any event, even if there were
stable requirements the knowledge-based contents are
inherently not easily decomposable into separate and inde-
pendent functional components. Rather knowledge-based
elements typically are employed for multiple functions and
purposes."

and thus it is Miller's conclusion that:

"The standard 2167A life cycle thus seems ill suited for
knowledge-based system development. "l°

The creation of knowledge-based systems therefore
needs to be regarded as a special case within software
development, and as such these systems require special
metrics and effort to achieve satisfactory quality levels.
This has necessitated the IEEE and AIAA to develop
new standards solely for knowledge-based systems ~ L

The tracking of corrective actions taken by a developer
entails the auditing of error maintenance. This is an
aspect of software quality that can be of significant bene-
fit, yet one that is too often neglected. It has been shown
by Boehm that 25% of all software defects can be
attributable to defects in the documentation deliverable

to customers ~2. Thus the tracking of error correction and
formalization of update procedures can significantly
raise the level of software quality. The relation of this
corrective action tracking to knowledge-based systems
does, however, run across several problems from the
standpoint of documentation. The level of documen-
tation is either ineffective, such as that found in several of
the military standards, where the focus is intended for
algorithmic procedural systems, or of limited applic-
ability to error tracking, as the development methodolo-
gies typically do not enforce formalized document
requirements. Thus, when considering an aspect of soft-
ware quality for knowledge-based systems that could be
of substantial benefit, the employment of rigorous docu-
mentation standards into a development methodology
could be advantageous.

The use of software metrics enables a series of measur-
ements to be collected, by which the developer can form
a parametric model of the system under consideration.
The model can then be used as a gauge for alterations to
the system and to view whether improvements in quality
have been achieved. Central to these metrics is the mea-
surement of software failures, and through this system
reliability can be considered. The area of software relia-
bility has been covered extensively u ~5, however, the
focus has been on the reliability of conventional, proce-
dural, deterministic, algorithmic systems and as such is
of limited applicability to the domain of knowledge-
based systems. There has been a move in current research
towards developing a theory of knowledge-based system
reliability 16.t7. This work is in the early stages, but should
be of significant benefit to knowledge engineers on
maturity.

A technique that can be used to raise the level of
quality of a system as quickly as possible is that of pareto
analysis. The principle of this is based around the idea of
'the vital few versus the trivial many', e.g., most
problems in a system emanate from a relatively small
number of significant faults, and once these have been
solved there will remain only a small number of problems
of a trivial nature Is. Lakelin's rule can be applied to the
application of the pareto principle with regard to soft-
ware ~9, in that 80% of the errors result from 20% of the
faults in the code 2°. To isolate the errors and judge their
significance, a pareto diagram can be constructed, which
is a bar chart in which the frequency of error types is
plotted I. This assumes the availability of testing tech-
niques, for which knowledge-based systems require alter-
native strategies from those associated with the testing of
conventional systems. These will be considered in the
following section.

It can be seen from the models discussed above (and in
other software quality models 2Lz2) that the keys to
achieving favourable quality factors in knowledge-based
systems are the employment of validation, verification,
and testing techniques in association with a rigorous
development methodology that uses specification wher-
ever possible, and these aspects of QA are considered in
the remainder of the paper.

vol 33 no 7 september 1991 529

VALIDATION, VERIFICATION, AND
TESTING

Validation and verification have been defined as follows:

'Validation: the process of evaluating software at the end of
the software process to ensure compliance with software
requirements. '~2
'Verification: the process of determining whether or not the
products of a given phase of the software development cycle
fulfil the requirements established during the previous
phase.'12

Thus these definitions closely relate to those that define
quality.

It follows, therefore, that one of the keys to effective
evaluation of the software and consequently to having
valid and verified knowledge-based software is to have
effective testing techniques available.

Several approaches to the testing of knowledge-based
systems can be used:

• traditional approaches
dynamic testing
static testing

• formal approaches
specification
proof systems

• artificial-intelligence approaches
prototyping
certainty factors

• quantitative validation
paired t-tests
Hotelling's one-sample T 2 test
simultaneous confidence intervals

Each of these areas is now considered.

Testing

The testing of a program can be defined as the appli-
cation of test data (input) to the program to examine the
correctness of the output with respect to the function of
the program over that input.

Output = Program(Input)

This testing function can be used in several ways. The
most obvious way to achieve correctness would be to test
exhaustively every possible input against its output. This
is of course not feasible for any but the most trivial of
expert or knowledge-based system.

There is therefore a limit to the number of tests that
can be performed and, in the interest of maximizing the
return on the time spent testing, criteria must be looked
for with which to test by. There are two primary testing
strategies that are used by knowledge engineers: dynamic
testing and static testing.

Dynamic testing refers to those techniques that
necessitate observation of the behaviour of a system in
execution, while static testing is that which depends only
on scrutiny of the program or system text.

Examples of dynamic testing include:

• sensitivity analysis
• regression testing
• statistical analysis
• random testing

Examples of static testing include:

• structured walk-through
• mathematical validation
• anomaly detection
• fault tree analysis

First, consider dynamic testing where sensitivity analysis
uses test data to determine if similar input data produce
significantly divergent results, a potential indication of
instability or fragile behaviour. This technique is closely
related to the use of multiple sets of identical input data
that attempt to search multiple paths through the system
for possible redundancy or problems in conflict resolu-
tion. The underlying assumption associated with sensiti-
vity analysis testing is that 'small variations in input
should produce small consequent variations in output '23.
Thus knowledge engineers have to be critical of their test
data and the resultant output, performing a suitable
statistical distribution of the test data to meet their
sensitivity requirements. A variation of sensitivity testing
that can be performed on knowledge-based systems is the
variance of confidence factors, if used in a system, and
examining the effect that this has on the stability of the
system.

The dy~amic testing strategy of regression can be used
to effect after the location of an error, in that it demands,
in the use of strict regression, that all previous test cases
be reapplied. This is of course an expensive overhead to
impose on the testing scheme and it is often the case that
critical subsets of data are requested -'4. This approach has
been considered in relation to knowledge-based systems
by Downs 25, while other researchers are working on
regression testing tools, such as Scamboros's scenario-
based test-tool for examining knowledge-based expert
systems 26. Tools such as this will reduce the cost of
regression testing, encourage its use in relation to sensi-
tive and critical testing, and thus increase the quality of
the systems.

The use of statistical analysis of a software systems
performance is another mechanism through which a
system can be tested, and this has been examined in
relation to knowledge-based systems 27. Three techniques
are generally used: paired t-tests, Hotelling's one-sample
T 2 test, and simultaneous confidence intervals 2x. These
tests allow the knowledge engineer to compare the differ-
ence between the results of the system and another
source, such as the performance of a human problem-
solver. This technique, usually in its simplest form where
a direct comparison between the results produced by the
system and the results from an expert are made, has been
extensively used in the area of knowledge-based system
testing 29.

530 information and software technology

The random application of test data to a system to
ascertain its correctness has been shown by Currit, Dyer
and Mills to be as much as 30 times as effective as other
testing mechanisms 3°, such as structural testing. They
indicate the reason for this conclusion to be the enor-
mous variation in the rate at which errors lead to fai-
lures. The random test data approach is one of a set of
approaches known as case-based approaches, each of
which attempts to test a system's efficiency by placing a
focused emphasis on the cases presented. For example,
test data could be compiled to test the structure of the
inference engine, data to test the systems functionality,
etc. Several case-based approaches of this type have been
proposed:

• functional
• structural
• data
• random
• extracted
• extreme

One of the most useful is that of extreme case testing,
which helps the knowledge engineer examine the bound-
ary conditions of the knowledge-based system under test.
This is one of the most difficult aspects of testing for
knowledge-based systems as the absence of a full specifi-
cation makes it difficult to be precise when reasoning
about boundary conditions.

While dynamic testing tends towards addressing the
problems associated with validation, the static testing
mechanisms focus on the problem of verification, with
the aim of placing the system under review to locate
inconsistencies and omissions.

A widely used static testing strategy is that of the
structured walk-through. This entails the detailed exam-
ination of the specification, the code, or a model of the
system, depending on the level required or the problem
to be addressed. Various strategies can be taken towards
the walk-through, including the creation of a software
quality circle 3~. The use of the walk-through can be
applied best when applied to a high-level model of the
system behaviour, rather than, for example, examination
of the Lisp code, as the models allow the deep knowledge
to be more clearly represented 32. Further, while the
declarative nature of many of the representations used in
knowledge-based systems facilitates advantages such as
modularity, it has the disadvantage that the reasoning
may be difficult to follow easily, thus not facilitating
structured walk-throughs. The use and creation of trace
and debugging tools in the development environments is
an approach towards easing this problem.

A technique that is related to structured walk-through
is that of anomaly detection, which entails examination
of the system for consistency and completeness. This can
be performed at a variety of levels, but is usually based
on code inspections, which in a knowledge-based system
causes significant problems due to the lack of redundant
code that usually has no typing mechanisms or few facili-
ties for control or data structuring. To overcome this

problem, there is a move towards toolsets to assist in the
checking process; one such system is the ~Lockheed
Expert System' shelP ~.

The use of knowledge-based systems in critical- and
safety-oriented environments has promoted the use of
testing techniques that aim to reduce the occurrence of
failures. One technique that is concerned with this is that
of software fault tree analysis. This attempts to show
that the logic or design of a system will in some way
produce failures that are critical or not safe. This is based
on the principle of hazard analysis and has been docu-
mented by Leveson 34 36. The use of software fault tree
analysis can be at many levels of abstraction, from the
code upwards, and is of significant benefit to systems
developers in areas such as knowledge-based systems
where it is difficult to apply directly existing reliability
models tv.

Testing strategies outlined above each examines a
different aspect of the system and are collectively valu-
able in raising the level of system correctness. However,
note that even when all the strategies are used together
this does not guarantee total correctness. Further discus-
sion of testing can be found elsewhere 2~,~v,~.

Prototyping
The prototyping approach to software development is
not strictly a testing mechanism3L It can be used, how-
ever, to test ideas and aspects of the system design that
could not be practically tested in a full-size implemen-
tation, or aspects that are difficult to theorize about/test
without a working system. This includes experimenting
with different representations, inference architectures,
shells, certainty factors, etc. If the prototyping mecha-
nism is used constructively as part of a complete method-
ology then the conceptual testing at this stage can consi-
derably benefit the level of correctness achieved in the
final system and hence the quality of that system. How-
ever, should the prototyping approach be abused, such
as when the prototyping system is continued on to be the
final system, then this can lead to a poorly structured, ill-
designed system which can be extremely difficult to rea-
son about, leading to a system of limited quality that
may be difficult to maintain and result in a system with
diminishing quality levels. Alavi presents a useful assess-
ment of the prototyping approach to information
systems development 4°.

Formalized specifications
The ability to show that a product meets its requirements
was stated earlier in the paper by Garvin as a means of
demonstrating quality, assuming that the product
requirements are satisfactory. A means by which this can
be achieved for software is through the use of formalized
specification techniques.

There are currently three approaches to specification:

• the use of a logic programming language such as Pro-
log 41 or ML 42

vol 33 no 7 september 1991 531

• using an executable functional specification language
such as Miranda 43 or K R C 44

• the use of a formal specification language such as Z 45
or VDM 46

Each of these formalized styles of development has led to
successfully specified systems in conventional domains,
and each has been or could be applied to knowledge-
based systems domains to differing degrees. Now each
approach is briefly considered.

The use of logic as a means of specification is well
known to computer scientists and is documented in semi-
nal papers 47~9. These papers give a basis to the move-
ment away from 'trial and error ' programming to the
development of programs that can be proved to have the
desired capabilities - - hence quality systems. Thus from
the use of formal logic in specifying and proving pro-
grams correct to the use of a logic programming lan-
guage as a specification language is but a short step. A
keen proponent of Prolog and logic programming as a
vehicle for programming and specification is Kowalski
who states:

'[Formal logic] is ideally suited to the representation of
knowledge and the description of problems without regard
to the choice of programming language. Its use as a specifi-
cation language is compatible not only with conventional
programming languages but also with programming lan-
guages based entirely on logic itself. TM

Thus the use of logic as a vehicle for specifying know-
ledge-based systems can be seen. Kowalski amplifies this:

'In many cases, when a specification completely defines the
relations to be computed, there is no syntactic distinction
between specification and program. Moreover the same
mechanism that is used to execute logic programs, namely
automated deduction, can also be used to execute logic
specifications. Thus, all relations defined by complete speci-
fications are executable. The only difference between a com-
plete specification and a program is one of efficiency. A
program is more efficient than a specification. TM

it is therefore possible to achieve a specification in logical
terms for conventional and knowledge-based systems
based on the assumption that all the relations to be
computed can be completely defined, a process that is
significantly more challenging for knowledge-based
systems than for the relatively well defined domains of
conventional applications.

An aspect of logical specification techniques that can-
not be ignored and that was mentioned earlier is that of
prototyping. To achieve quality systems, the benefits
gained through specification must not be negated by
employing a 'trial and error ' approach to development.
Thus care must be taken in the creation of the systems,
developing and following a suitably rigorous methodo-
logy.

A further class of executable specifications are those
based on functional programming languages. A func-
tional program, or as it is sometimes termed 'script' , is a
series of recursive equations that are based on the mathe-
matical idea of a function f, where for a given input x to

that function, the output f x is always the same. Func-
tional programs have several advantageous properties
not in conventional imperative languages. For example,
the equations have referential transparency, equivalent
equations possess the property of extensionality, the
underlying recursive nature of the equations lends them
to proof through inductive means, and the programs can
be transformed through refinement transformations.
Thus functional applicative languages are powerful yet
flexible forms through which domains can be specified.

Functional specifications fall into the category of exe-
cutable specification systems and are subject to the same
prototyping implementation-dependent problems as
logic specifications. A practitioner in the field who uses
Prolog states:

'Specifying and modeling the deeper levels of the system got
increasingly more difficult to keep crisp and consistent and
avoid an ever growing collection of ad-hoc procedures
usable at one and only one place. "'~

Similar arguments can be applied to executable specifica-
tions as they are also restrictive in the type of specifica-
tion that easily adheres to the functional notation.
Turner states:

'A functional language when considered as a specification
language suffers from the restrictions inherent in being
recursive: only computable functions can be denoted, so
there are some useful and interesting specifications that can
not be expressed within it. TM

An implication of Turner 's statement is that the incom-
plete, heuristic, nonfunctional nature of many know-
ledge-based systems may make a full specification in a
functional language a difficult process.

The third type of specification is that of the formal
approach and is characterized by such languages as
VDM 46 and Z 45. These languages at tempt to give a math-
ematical framework around which specifications can be
developed. A formal specification is a declaration of
what the system is required to do and not an algorithm of
how to do that task. Thus formal specifications are not
themselves executable, but there is ongoing research to
develop techniques that will enable specifications,
through a series of formal (hence provable) 'data refine-
ment ' steps to be turned into more concrete and ultima-
tely executable forms. Formal methods have in the past
been criticized for only being applicable to ' toy ' exam-
ples. However, research has been performed to alleviate
these criticisms and both VDM and Z have been used in
documented large-scale projects, such as the formal spe-
cification of IBM's CICS system in Z '2.

The use of formal techniques in knowledge-based
systems has not, however, been so straightforward. The
major constraining factors are associated with the diffi-
culty of specifying domains that are incomplete, nonfi-
nite, and poorly defined in nature, unlike their conven-
tional counterparts. This is not to say that the formal
methods cannot be used at all in developing specifica-
tions for knowledge-based systems. It is possible to use
these techniques for certain aspects of the system that are

532 information and software technology

Specify I problem
definition

Specify
user

I

I Specify
knowledge
base

Full specification I

Specify control I
architecture

man-machine quality
interface assurance

Figure I. Multiph, specialized speei)qeations that can be combined to form composite speegfication

not inherently knowledge-based. For example, the
knowledge base 5~, the user interface 5455 and the rep-
resentation 56 can be specified formally in a language such
as Z. Note that these specifications are of the static
aspects of the system rather than the dynamic aspects,
but that their use can considerably raise the level of
correctness for a system and consequently its quality.

Later it will be suggested how these approaches to
specification can be used through a development
methodology for knowledge-based systems to raise col-
lectively the correctness of such systems.

METHODOLOGY

A methodology that the author advocates is based
around the use of multiple specialized specifications that
when combined together can be thought of as a compo-
site specification.

Consider Figure 1. The knowledge engineer can spe-
cify seven areas of the system. The first is the specifica-
tion of the problem definition, the production of which is
extremely difficult for nontrivial knowledge-based
systems due to their inherent lack of procedural, determi-
nistic, algorithmic structure.

The second area where specification is needed is that of
the intended user; this can be performed through the
creation of a behavioural model.

The third part is the specification of the knowledge
base. It is possible to model this aspect, as the knowledge
elicited from the domain expert/knowledge source is
finite. Through the use of transformational processes this
can be specified formally. The specification of the know-
ledge base is vital if the system is to be maintained, while
the representational independence of the specification
promotes clarity and flexibility.

Fourth, it is vital that a suitable representation is
selected, and this is done by analysing the representation-
al needs of the knowledge base. Once selected, the syntax
and semantics of the representation can be specified.
Having specified the representation it is then possible to
select an appropriate control architecture, the operation
of which can also be specified.

The fifth aspect that needs to be specified is the m an - -
machine interface. This can be fully specified through the
use of formal techniques, and several examples of such
specifications have been documented 54,55. The specifica-
tion of the interface allows the knowledge engineer and

user to have an unambiguous frame of reference,
through which interactions with the system can be
viewed.

The sixth component of the composite specification is
the need to specify the validation and verification
requirements, the definition of which will enable the
knowledge engineer to judge whether the levels of quality
reached are adequate for system use.

Therefore several aspects of an expert system can be
formally specified, each of which is fundamental to its
construction. It is briefly described how, from an initial
specification of the problem definition, these points can
be rigorously reached and combined together to form a
concrete specification from which the system can be
implemented.

The methodology as a whole can be introduced by
considering Figure 2. The development commences with
an initial specification, which acts as an informal soft-
ware requirements document. This gives a broad outline
of the systems parameters and boundaries, to be used by
the knowledge engineer as the basis of both the know-
ledge elicitation phase and the creation of the user model.

In the knowledge elicitation phase the most suitable
knowledge elicitation technique with which to extract
knowledge from the domain expert is selected. The
knowledge engineer then uses this extracted knowledge
as the basis of the elicited representation, an unprocessed
representation that usually has a textual form. The eli-
cited representation, however, is too coarse in nature to
act as the specification for an implementation, and so it is
necessary for the representation to undergo a refinement
process. The result of this is a more adequate represen-
tation, termed the primary representation. It is adequate
in the sense that an adequate level of completeness and
consistency has been reached, to allow major knowledge
processing of the representation to be performed. An
example of such a representation is a decision table.

The first process is to transform the primary represen-
tation into a formal representation of the knowledge
base, this being a mathematical specification written in
the Z specification language. The second process is an
analysis that examines what constituent characteristics
are present in the primary representation, before
attempting to match these with the characteristics of the
'classical' representations such as frames, production
systems, and semantic networks. From this matching
process, a specification of a suitable representation lan-

vol 33 no 7 september 1991 533

I Formal I
language [

Initial specification i T M

V
[Knowledoe elicitation phase F"l~

II ,,c,te representation 11 KnowIedgeacquisition,
+

[Primary representation
+

i sD°m if lcnati°n]

~i Specification of [
vl man-machine interface I

] I Knowledge acquisition II

Concrete representation

•]• Control]
architecture

"1-'
d v] Implementation]~

Secondary
representation

[
J Specification of [j Verification and
-] quality assurance I vl validation

LI-

~l Representation
v I specification -ff

E
.g
£r.

Figure 2. Development methodology/or knowledge-based systems

guage can be produced. This is known as the represen-
tation specification. Following this+ the domain and rep-
resentation specifications are drawn together to form the
secondary representation in which the domain know-
ledge from the domain specification is then represented
in the form advocated by the representation specifica-
tion. This, plus the specification of the control architec-
ture+ forms the concrete specification. This acts as a
specification for the implementation of the knowledge
base, which when combined with the man--machine
interface specification (which allows the human- -
computer interaction considerations to be understood)
provides the basis for implementing the whole system.
This methodology has been discussed in greater detaiW.

INFLUENCE OF THESE TECHNIQUES
ON QUALITY FACTORS

The techniques described above are each designed to
focus on certain aspects of software quality. However,
the maximum benefit of the techniques can only be
gained when they are used in unison. The most effective
means of achieving this is through a methodology such
as that described above.

The increased quality of knowledge-based systems
through the suggested approach to development can be
seen when considering the effect that the use of these
techniques would have on Carpenter's quality factors.

The most dramatic effect would be on the correctness
of the systems. This would be due to the ability of the
knowledge engineer to measure the correctness of the
system against its specifications and through the method-
ology show that the systems development tbllows from
one specification to another. The reliability metrics dis-
cussed could also be used to measure expert system relia-
bility and hence correctness. Again the use of multiple
independent specifications will enhance the knowledge
engineer's ability to locate and correct errors, so raising
the system reliability. The structured development pro-
cess in relation to the specifications will encourage an
efficient system to be created, but the independence of the

specifications will not detract from, or prevent, the
knowledge engineer from inspecting the implementation
with regard to efficiency. Further, if a functional
approach is used then the program could undergo trans-
formation processing to raise its efficiency while still
adhering to the specification.

The integrity of a system can also be improved
through the incorporation of integrity constraints into
the specification. The ability to reason about a system's
integrity without specifications is difficult as the know-
ledge engineer may not be aware of all the integrity gaps
for a nontrivial system.

The reusability of the system will improve as the sub-
functions of a system will be defined through the specifi-
cations and thus they can be reasoned about effectively
without the fear of unforeseen side-effects. The useability
of a system is also improved as the prospective user can
read the system specifications.

A major quality increase occurs indirectly, that of
system maintainability. The degree of effort required to
update a rigorously specified and developed system is
substantially lower than a traditionally or nonspecified
system.

The different approaches to testing have been con-
sidered in this paper and when used against a formalized
document, such as a specification, against which test
results can be compared, then substantial benefits can be
gained through use of appropriate tests at appropriate
places in development.

The ninth software quality factor, flexibility, is similar
to that of maintainability in that the effort needed to
modify a specified operational program is minimal, com-
pared to an unspecified program.

The implementational independence of the develop-
ment philosophy gives it the ability to remain abstracted
from portability considerations and facilitates implemen-
tation regardless of environment.

The final two software quality factors, interoperability
and intraoperability, are also far easier to undertake as
the developer can examine the subfunctions and the

534 information and software technology

effect that coupling them with another function will
have, either internally or externally.

CONCLUSION

It was the aim o f this paper to show that if specification
techniques are used in conjunct ion with a r igorous deve-
lopment method that uses rigid validation and verifica-
tion techniques, the quali ty level o f knowledge-based
systems can be raised significantly. It has been noted that
the area o f quality assurance for knowledge-based
systems demands alternative or amended strategies f rom
those associated with conventional systems and that not
all areas are as theoretically developed as required. Thus
the aim o f current and future research should be to build
the necessary theoretical foundat ions for formal quality
assurance to be carried out and further that the tech-
niques developed be integrated so that they all contr ibute
to the quality o f the systems developed.

REFERENCES
I Gitlow, H, Gitlow, S, Oppenhiem, A and Oppenhiem, R

Tools and methods ./~r the improvement Of qualio' Irwin
(1989)

2 Garvin, D 'What does 'product quality' really mean?' Sloan
Manage. Rev. (1984)

3 Hetzel, W The complete guide to so['tware testing QED
Information Sciences (1984)

4 Carpenter, C L and Murine, G E 'Measuring software pro-
duct quality' Qualio' Progress (May 1984)

5 Boehm, B W, Brown, J R and Lipow, M 'Quantitative evalu-
ation of software quality' in Proc. 2nd Int. Con[i So#ware
Engineering San Francisco, CA, USA (October 1976) pp
592 605

6 Conte, S D, Dunsmore, H E and Shen, V Y So[,tware engi-
neering nwtrics and models Benjamin/Cummings (1986)

7 Dnnn, R H 'Software quality assurance: a management
perspective" QualiO" Progress (July 1988)

8 Schulmeyer, G G 'Standardization of software quality
assurance' in Schulmeyer, G G and McManus, J I (eds)
Handbook ~1 so/,tware quality assurance Van Nostrand
Reinhold (1987)

9 Smith, D J and Wood, K B Engineering quality so/'tware
Elsevier (1989)

10 Miller, L 'A realistic industrial strength life cycle model for
K BS' in A A A I Workshop on Knowledge- Based Systems Ver-
(/~cation. Validation and Testing. Workshop Notes (29 July
1990) Boston, MA, USA

I 1 Freedman, M Smalltalk Newsletter AIAA: Artificial Intelli-
gence Technical Committee (February 1990)

12 Boehm, B W 'An experiment in small scale application
software engineering" IEEE Trans. S~?l't. Eng. Vol 7 No 5
(May 1981) pp 482 493

13 Kopetz, H S¢~[,tware reliabilio, Springer-Verlag (1980)
14 Littlewood, B So[?ware reliability: achievement and assess-

ment Blackwell (1987)
15 Musa, J A, lannino, A and Okumoto, K S~/,tware reliabiliOv

nwasurement, prediction, application McGraw-Hill (1987)
16 Hollnagel, E 77w reliabilio' ~[" expert systems Halstead

(1989)
17 Plant, R T 'Reliability of expert systems" in Proc. TIMS/

ORSA National Meeting Las Vegas, NV, USA (% 9 May
1990)

18 Juran, J Qualio' control handbook McGraw-Hill (1979)
19 MeCabe, J T and Schulmeyer, G G 'The pareto principle

applied to software quality assurance' in Schnlmeyer, G G

and McManus, J I (eds) Handbook ofsoj,tware quality assur-
ance Van Nostrand Reinhold (1987)

20 Beardsley, J F and Associates, International Inc. Quality
circles." member manual San Jose, CA, USA

21 Pettijohn, C L 'Achieving quality in the development pro-
cess' A T&T Tech. J. (March/April 1986)

22 Grady, R B and Caswell, D L Software metrics." establishing
a company-wide program Prentice Hall (1987)

23 Rushby, J 'Quality measures and assurance for At software'
NASA report 4187 NASA (1989)

24 Goodenough, J B and Gerhart S L 'Towards a theory of test
data selection' IEEE Trans. Soft. Eng. Vol 1 No 2 (June
1975) pp 156-173

25 Downs, T 'An approach to the modeling of software testing
with some applications' IEEE Trans. SoJ,t. Eng. Vol 11 No 4
(April 1985)

26 Scamboros, E T 'A scenario-based test-tool for examining
expert systems' in Proc. Int. Conj'. Systems, Man. and
Cybernetics I EEE (1986) pp 13 l-135

27 O'Keefe, R M, Balci, O and Smith, E P "Validating expert
system performance' IEEE Expert Vol 2 No 4 (Winter
1987) pp 81 90

28 Bowker, A H 'A representation of Hotelling's T 2 and
Anderson's classification statistic W in terms of simple sta-
tistics' in Olin (ed) Contributions to probability and statistics
Stanford University Press (1960)

29 Gashnig, J, Klahr, P, Pople, H, Shortliffe, E and Terry, A
'Evaluation of expert systems: issues and case studies" in
Hayes-Roth, F, Waterman, D A and Lenat, D B (eds) Build-
ing expert systems (1983)

30 Currit, A P, Dyer, M and Mills, H D 'Certifying the reliabi-
lity of software' IEEE Trans. So[,t. Eng. Vol 12 No 1 (Janu-
ary 1986) pp 3 11

31 Poore, J H "Derivation of local software quality metrics
(software quality circles)' So[,t. Pratt. Exper. Vol 18 No 11
(1988) pp 1017 1027

32 Neches, R, Swartout, W R and Moore, J D "Enhanced
maintenance and explanation of expert systems through
explicit models and their development" IEEE Trans. SoJ,t.
Eng. Vol I I No I I (November 1985)pp 1337-1351

33 Stachowitz, R A, Chang, C L, Stock, T S and Coombs, J B
'Building validation tools for knowledge-based systems" in
Proc. First Annual Workshop on Space Operations, Automa-
tion and Robotics (SOAR 87) (Houston, TX, USA, August
1987) NASA Publication 2491 (1987) pp 209-216

34 Leveson, N G and Harvey, P R 'Analyzing software safety"
IEEE Trans. So[,t. Eng. Vol 9 No 5 (May 1983) pp 569 579

35 Leveson, N G 'Software safety in computer controlled
systems' Computer Vol 17 No 2 (February 1984) pp 48 55

36 Leveson, N G "Software safety: why, what and how' ACM
Comput. Surv. Vol 18 No 2 (June 1986) pp 125-163

37 Weyuker, E J 'An evaluation of program-based software
test data adequacy criteria' Comman. ACM Vol 31 No 6
(June 1988) pp 668-675

38 Plant, R T 'The validation, verification and testing of know-
ledge-based systems' Heuristics: J. Knowl. Eng. (Spring
199O)

39 Boehm, B W S~[,tware eng#wering economics Prentice Hall
(1984)

40 Alavi, M 'An assessment to the prototyping approach to
information systems development" Commun. ACM Vol 27
No 6 (June 1984) pp 556-563

41 Clocksin, W F and Mellish, C S Programming in Prolog
Springer-Verlag (1981)

42 Gordon, M J C Edinburgh LCF Vol 111 (Lecture Notes in
Computer Science No 78) Springer-Verlag (1979)

43 Turner, D A 'Miranda: a non-strict functional language
with polymorphic types" in Proc. IFIP Conf Functional
Programming Languages and Computer Architectures Spr-
inger-Verlag (1985)

44 Turner, D A 'Recursive equations as a programming lan-

vol 33 no 7 september 1991 535

guage' in Darlington, J, Henderson, P and Turner, D A (eds)
Functional programming and its applications Cambridge
University Press (1982) pp 1 28

45 Spivey, J M Understanding Z Cambridge University Press
(1990)

46 Jones, C SoJ?ware development." a rigorous approach Pren-
tice Hall (1980)

47 McCarthy, J 'Towards a mathematical science of compu-
tation' in lnJbrmation Processing, Proc. IFIP Congress
North-Holland (I 962) pp 21 28

48 Floyd, R W 'Assigning meanings to programs" in Proc.
Amer. Math. Soc. Vol 19 (1967) pp 19-32

49 Hoare, C A R 'An axiomatic basis for computer program-
ming" Commun. ACM Vol 12 (1969) pp 576-583

50 Kowalski, R A ~The relation between logic programming
and logic' in Hoare, C A R and Shepherdson, J C (eds)
Mathematical logic and programming languages Prentice
Hall (1984) pp I I 27

51 Leibrandt, U and Schnupp, P 'An evaluation of Prolog as a
prototyping system" in Bnddle, R (ed) Approaches to proto-
typing Springer-Verlag (1983) pp 424-433

52 Hayes, I J 'Specification case studies' Technical monograph
PRG-46 Oxford University Computing Laboratory,
Oxford, UK (1985)

53 Plant, R T "A case study in expert system development' in
Proc. Second hlt. Symp. Methodologies ./or hTtelligent
Systems Charlotte, NC, USA (October 1987)

54 Jacob, R J K 'Using formal specifications in the design of a
human-computer interface' Commun. ACM Vol 26 No 4
(April 1983)

55 Sufrin, B A and He, J 'Specification, analysis and refine-
ment of interactive processes' in Harrison, M and Thimb-
leby, H (eds) Formal methods in human-computer interaction
Cambridge University Press (1990)

56 Gold, D and Plant, R T 'Towards the specification of expert
systems' Working paper CIS/90/2 University of Miami, FL,
USA (1990)

57 Plant, R T ~Utilizing formal specifications in the develop-
ment of knowledge-based systems" in Partridge, D (ed) Art#
.fieial intelligence and so[hrare engineering Ablex Press
(1990)

BIBLIOGRAPHY

Darlington, J "Program transformation' in Darlington, J, Hen-
derson, P and Turner, D A (eds) Functional programming and its
applications (1982)
Howden, W E 'Weak mutation testing and completeness of test
sets IEEE Trans. SO/L Eng. Vol 8 No 4 (April 1982) pp 371-379
Plant, R T ~A methodology for knowledge acquisition in the
development of knowledge-based systems' Doctoral thesis
University of Liverpool, UK (1987)
Shooman, M L Software engineering, design, reliability, man-
agement McGraw-Hill (1984)
Spivey, J M Ttle Z notation: a rq/~,rence manual Prentice Hall
(1989)
Weitzel, J R "A system development methodology for know-
ledge-based systems" IEEE Trans. Syst. Man Cvber. Vol 19 No
3 (May/June 1989)

536 information and software technology

