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This paper describes a multilevel development life cycle of representation refinement for
knowledge-based systems that incorporates meta-knowledge at each level. The methodo-
logy uses formal techniques in the specification of the domain knowledge, the cognitive
aspects and the representation. The methodology provides the knowledge engineer with
a dynamic perspective of the system which can be used in conjunction with the static
aspects found in the representation abstractions. To provide perspective, the paper
details the refinement of one of the levels called the intermediate level, in which an
implementation-independent representation is created by the use of a knowledge filter.
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1. Introduction

Research and development in the area of methodologies for knowledge-based system
(KBS) development has often been approached in a piece-meal fashion. Frequently,
researchers focus upon single development areas such as knowledge acquisition (Madan,
1995), prototyping (Jones, 1995), verification and validation (Gamble, Roman, Ball
& Cunnigham, 1994; O’Leary, 1994; Plant & Preece, 1996), or on the development of
a particular application (Waterman, 1986). Recently, researchers have been placing
increased emphasis on more comprehensive development methodologies for KBSs
focusing upon the static functionality of the systems. In this paper, we move away from
a static perspective towards an alternative philosophy of system design, using meta-
knowledge, that relies upon formality and specification refinement. The paper will present
an overview of this approach and indicate how meta-knowledge can be obtained and
used to assist in the design and validation processes.

1.1. KBS DEVELOPMENT METHODOLOGIES

An examination of previous research in the development of methodologies for know-
ledge-based systems identifies eight major models: Buchanan’s (Buchanan et al., 1983),
Davis’s (Davis & Lenat, 1982), Grover’s (1983), Alexander’s (1986), Miller-IS Model
(1990), AISE (ANSI, 1992) and CommonKADS (ESPRIT 5248). These models can be
assessed against the TRILLIUM

K
evaluation scale, a scale that assess the rigor and

formality of a methodology on a scale of one to three (Preece, 1995). The assessment of
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TABLE 1
TRILLIUM

K
quality assessment matrix

Methods and scores

Phase Buchan Davi Grover Alexander Weitze Miller AIS CKA
Problem 2 2 2 3 2 3 3 3
Conceptual 2 1 2 3 2 2 3 3
Design model 1 1 2 — 2 3 3 3
Implemented 1 1 2 — 2 3 3 3
Verification 1 1 1 — 1 2 1 2
Validation 1 1 2 — 2 2 2 2
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the methodologies against this scale has been studied (Plant, 1994) and the results are
summarized in Table 1.

The development methods for knowledge-based systems are focused upon the use of
increasingly formal aspects of system development, such that the proof obligation for
systems can be ultimately determined and met (Baughman & Gamble, 1996; Gamble
& Shaft, 1996). These development mechanisms are at or approaching the TRILLIUM

,
Level 2 capability† with certain aspects moving towards Level 3 capability (Preece,
1993). The use of the TRILLIUM evaluation scale is useful in determining formality;
however, the most telling aspect of a systems rigor is the degree to which it can be verified
and validated.

From Table 1, we can see that even though methodologies exist that formalize their
development process, the evaluation surrounding these processes through their valida-
tion and verification has not yet reached the same level of formality.‡ Thus, this paper
attempts to show that through the use of meta-knowledge and a methodology based
upon refinement of that meta-knowledge, a higher degree of verification and validation is
ultimately achievable.

Section 2 outlines both the rationale for using meta-knowledge in system creation and
a four-stage development methodology. The section also introduces the concept of
a composite specification, a mechanism for combining the partial specifications of
individual aspects of the system. The composite specification is an approximation of the
formal specification of the whole system.

Section 3 details the use of meta-knowledge in a complete life-cycle model, in which
four levels of abstraction characterize the system development, each connected to the
other through the meta-knowledge model. This approach draws upon the philosophy of
both representational refinement and Newell’s knowledge level.
† TRILLIUM
,
: a framework of assessment developed by Preece for Bell Canada (Preece, 1993) that

increases from Level 1 where informal development is used to Level 4 where a completely formal approach is
used; see Appendix.

‡Validation can be defined as ‘‘are we building the right system’’ and verification as ‘‘are we building the
system right’’. The area validation and verification has an extensive literature (Preece, 1993; Plant, 1994;
Gamble & Landuaer, 1995).
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Section 4 examines the intermediate level in more detail and considers the relationship
that the meta-knowledge plays in refining the elicited knowledge through to the formal
level. This is achieved in part through the use of a knowledge-filter concept and the use of
formal methods to create independent domain, cognitive engineering and representation
specifications.

The final section discusses the applicability of the approach in practice and
the contribution the meta-knowledge approach makes to improved validation and
verification.

2. The specification of knowledge-based systems

The natural point from which to develop any software system is the creation of
a specification. The specification should ideally detail every aspect of the system in
unambiguous terms that all interested parties can consider. The task of creating such
a specification for knowledge-based systems is, however, far from easy for any but the
most trivial of systems. In the light of this problem, knowledge engineers have been often
forced to proceed with only a minimal specification or no specification at all. This is a less
than ideal situation and a source from which many subsequent developmental problems
emanate.

2.1. A MULTILEVEL REFINEMENT PHILOSOPHY

In order to overcome the problem of weak specifications in knowledge-based system
development we combine several techniques and approaches. First, the lifecycle is based
upon multiple levels of refinement as illustrated in Figure 1.

Through these levels the problem is taken from its abstract outline form, starting with
a definition of that problem at the conceptual level in the form of an operational concept
(Miller, 1990). This baselines the problem for the rest of the development. Elicitation of
knowledge is then performed upon the problem space. The intermediate level captures,
consolidates and distills the knowledge from the multiple elicitation techniques utilized.
FIGURE 1. Development levels in KBS development.
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The intermediate level attempts to capture the knowledge in a form suitable for further
refinement. The refinement process to the third level, the formal level, is the normalization
of the elicited knowledge held in the intermediate representation. This process creates
three formal specifications that capture the domain knowledge, the cognitive aspects of
the system and the representation. The final level, the implementation level, is the
consolidation of all the formal specifications into an implementation.

2.2. A COMPOSITE SPECIFICATION PHILOSOPHY

As mentioned in Section 2.1, the creation of an operational concept or initial specifi-
cation provides the knowledge engineer with a problem description from which to
develop the system. This development is based upon the creation of a composite-
specification, a set of specifications, each of which focuses upon a particular aspect of the
development process such as the domain-knowledge or the representation. The com-
posite attempts to overcome the lack of a total formal specification from which to derive
the system.

We illustrate the four areas where specifications can be created in relation to a know-
ledge-based system, with varying degrees of formality.

In Figure 2, two distinct types of specifications are present: the dynamic specifications
and the static specifications. Dynamic specifications refer to aspects of the system that
are under constant change or for which the interaction of the components are undeter-
mined due to factors such as: combinatorial complexity, incompleteness in the know-
ledge base or use of heuristic information. Static specifications refer to those aspects that
do not change, but rather remain consistent over a period of time. Thus, there are four
static specifications: the initial specification, the domain specification, the representation
specification and the cognitive engineering specification. The dynamic specification is that
information captured in the meta-knowledge model. The meta-knowledge model is
dynamic because it holds information about the behavior and inter-relationships among
the other static specifications. Since the behavior and relationships are defined during
refinement, the meta-knowledge model is changing as development proceeds. The
FIGURE 2. A composite specification.
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meta-knowledge model is the facilitator of refinement between the levels associated with
Figure 1.

We will now briefly consider the relationship between meta-knowledge and the
philosophy of design as utilized in the methodology of this paper. A more detailed
discussion of their inter-relationships is presented later.

2.3. META-KNOWLEDGE

In order to see, therefore, the relationship between the creation process of knowledge-
based systems and their subsequent verification and validation, two perspectives of the
system need to be considered: the static perspective and the dynamic perspective. The
static aspect refers to the structure of the knowledge, while the dynamic aspect refers to
the behavior of that knowledge during execution. These perspectives are analogous to
the static and dynamic specifications presented in Section 2.2. Thus, static knowledge
supports the verification process, i.e. showing the system was built right and moves
toward formal functionality in system design. The dynamic knowledge supports the
validation research, i.e. showing the right system was built.

There is an established and growing literature on the verification of systems, much of
which has been performed on the static structure of the rules (Preece, 1993; Plant, 1994;
Gamble & Landuaer, 1995; Schmolze & Vermesan, 1996). This research includes verifi-
cation tools which identify inconsistencies and incompleteness in the knowledge base
(Plant, 1997). A system is inconsistent if it asserts something that is not true of the
modeled domain. A system is incomplete if it lacks deductive capability (Morell, 1989).
Thus, the question arises as to what we are to verify our knowledge-based systems
against, given the difficulty of obtaining a complete/total specification for the domain.

The approach advocated in this paper is the creation of a composite specification of
the system functions that are known and which can be defined formally as discussed in
Section 2.2. However, in order to support a composite or partial specification, additional
information about the knowledge base needs to be obtained, such as the history of
development, expert conflicts, etc. This dynamic support knowledge, termed meta-
knowledge, is vital for verification (Morrell, 1989) and is derived using the knowledge-
elicitation process.

The concept of meta-knowledge is most commonly used in relation to knowledge
representation and can be defined as ‘‘structures that describe other structures’’ (Barr,
Bennett & Clancy, 1979). The use of meta-knowledge in this way was extensively covered
by Davis (1980), who divided knowledge into two types: (1) object-level, which com-
prises information about a task domain and (2) meta-level, which comprises information
(meta-knowledge) about the object-level. Davis advocates the attachment of meta-know-
ledge to rules, such that the meta-knowledge can be used to control rule firing for
performance enhancement. However, from the aspect of knowledge acquisition for
cognitive modeling, meta-knowledge captures intrinsic, commonplace properties in
human cognition that are central to an understanding of knowledge and intelligence
(Barr et al., 1979).

An example set of categories into which a knowledge engineer may use meta-know-
ledge in knowledge-based system development is accuracy, applicability, source and
reliability (Morell, 1989). Meta-knowledge may also be found in a structural engineering
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knowledge base, where the framework allows for the structural engineers to annotate
a design by explaining why changes were made to the design, the history of those changes
and any interrelationships among the information that had also changed. Other meta-
knowledge may be included, such as the life span of the domain knowledge of the
structure, sources of knowledge and history of knowledge-base maintenance. From this
it can be seen that meta-knowledge can be a useful mechanism to assist in validating the
process of system development, as well as supporting system verification.

The need to incorporate meta-knowledge into a system design is therefore essential;
however, this aspect of the design process has tended in the past to be overlooked. This
was perhaps overlooked due to the simplicity of the methodologies being deployed and
the nature of the systems being created.

The value of meta-knowledge to the entire development process is reported by other
researchers to be extremely high (Hayes, 1973; Sandewall, 1975; McCarthy, 1979; Doyle,
1980; Weyhrauch, 1980; Warren, 1981; Brown, 1982; Gallaire & Lasserre, 1982;
Genesereth & Smith, 1982). However, to derive maximal benefit from the information,
a model of the meta-knowledge needs to be placed within the context of a rigorous
development methodology such that the meta-knowledge can be obtained and applied
appropriately during the development. In this paper, we incorporate into each level
(defined by its representative specification) a component that models the meta-know-
ledge at that level. The meta-knowledge model aids in specification refinement within
a level and between levels.

2.4. NEWELL’S KNOWLEDGE LEVEL

We have so far outlined two design philosophies upon which the methodology is based:
that of multilevel refinement utilizing a composite specification paradigm and that of
meta-knowledge in which the levels and specifications of the methodology are held
together. In order to justify this approach further, we will take a third philosophical
stance and relate the philosophy of design utilized here to that of Newell’s Knowledge
Level (Newell, 1982).

In order to understand the basis upon which Newell postulated his Knowledge-Level,
it is necessary to consider the following two questions: ‘‘What is the nature of knowledge?
How is it related to representation?’’ (Newell, 1982). The answers to these questions are
complex and have many different perspectives. We present an overview of these issues in
order to appreciate the use of the knowledge-level paradigm in the context of this paper.

Newell viewed computer systems as being at a series of levels, as illustrated in Figure 3.
These levels start at the bottom with the device level, through the logic level, to the
program level or symbol level, finally to the configuration level (processor memory
switch level). A level was defined as follows: ‘‘A level consists of a medium that is to be
processed, components that provide primitive processing, laws of composition that permit
components to be assembled into systems and laws of behavior that determine how
system behavior depends on the component behavior and the structure of the system’’
(Newell, 1982). The levels were also defined in two more ways: (i) ‘‘a level can be defined
autonomously, without reference to any other level’’ and (ii) ‘‘each level can be reduced
to the one below it, such that each aspect of a level—medium, components, laws of
composition and behavior can be defined in terms of systems at the level below’’ (Newell,



FIGURE 3. Computer system levels (Newell, 1982).
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1982). Finally, the levels are constrained by further two issues: ‘‘Each computer system
level is a specialization of the class of systems being described at the next lower level’’ and
‘‘computer system levels are approximations’’ (Newell, 1982).

Having defined the notion of levels, Newell then placed a further layer onto the model
and proposed a knowledge level that resides above and is separate from the symbol level.
This level is characterized by the knowledge level hypothesis: ‘‘There exists a distinct
computer systems level, lying immediately above the symbol level, which is characterized
by knowledge as the medium and the principle of rationality as the law of behavior’’
(Newell, 1982).

The philosophy of levels and the assertions that denote their formulation are a natural
mechanism for the methodology we describe in this paper. It can be seen that the
operational concept of the initial specification defines the very highest abstract level
a system can take, and that this system, refined through intermediate levels, can be
transformed into the data structures and control mechanisms of the symbolic level. Thus,
to quote Newell once again in an attempt to answer the two postulates at the beginning
of this section, we aim at drawing the three philosophies described in Section 2 together
and, hence, provide the basis for the methodology to follow: ‘‘The theory of the
knowledge level provides a definition of representation, namely, a symbol system that
encodes a body of knowledge. It does not provide a theory of representation, which
properly exists only at the symbol level and which tells how to create representations
with particular properties, how to analyse their efficiency, etc. It does not suggest a useful
way of thinking about representation is according to the slogan equation Representa-
tion"Knowledge#Access’’ (Newell, 1982).

3. Defining a complete life-cycle model

In this section, we present a four-phase life-cycle model describing the overall develop-
ment process for a knowledge-based system. The intention is to show, at a high-level,
how specification refinement can occur within each level and between levels, provided
a meta-knowledge model is included in each level and refined between levels. There is no
exact prescription for the internal development of each level due to the variances between
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systems being created. However, each level does require particular components that are
application or user-defined through a suitable or familiar representation.

This section describes the components and representational medium for successful
level refinement and transition in each level. However, we first present an overview of the
whole life cycle, followed by an overview of the nature and role of the meta-knowledge
model.

The four-phase (level) model of knowledge-based system development is depicted in
Figure 4. The approach to the description of each level is similar to the principles that
Newell described in the levels of a computer system (Newell, 1982). Each level has
a representation medium, components, laws of composition and laws of behavior that
are defined abstractly. Refinement must take place within each level, with the meta-
knowledge accumulating sufficiently to refine the specification to the next level. Thus,
there are no feedback lines between levels. If it is necessary to return to a more abstract
FIGURE 4. A development methodology for knowledge-based systems.
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level of specification, the entire life cycle should be repeated with the new knowledge
entering as meta-knowledge at the top level. This allows for more complete verification
and validation at each level and between levels because of the constancy of the
information.

The methodology can be seen as composed of four levels: the conceptual design level,
the intermediate level, the formal level and the implementation level. These levels of
refinement encompass the five specifications that define the composite specification:
the initial specification, the domain, the cognitive engineering and representation speci-
fications, together with the meta-knowledge model. The meta-knowledge model is
transformed into subsequent versions of itself in three different levels of the systems
development.

3.1. THE META-KNOWLEDGE MODEL

In the development of a knowledge-based system, the knowledge engineer is obligated
to not only elicit the staticdomain-specific knowledge, but also has the task of eliciting
the dynamic meta-knowledge associated with the domain knowledge, and maintain
a separate specification for this knowledge; this is the role of the meta-knowledge
model.

The meta-knowledge model plays an important role in a support capacity to the static
specifications that are developed during system development. The models aim to provide
information about the static knowledge that will enable the static knowledge to be
refined at each level in a consistent manner. The meta-knowledge model will act as an
oracle to the knowledge engineer detailing the history of data and knowledge items, as
well as information that is not represented directly in the static nature of the specifica-
tion. An example of this may be the life span of the information contained within the
specification and the source of that information. This may be important if, for example,
the domain is that of a medical database and the drugs in that database have expiration
dates or change in reaction after a certain period (potency). The meta-knowledge model
may also contain past versions of the information contained in the specification, thus
assisting the knowledge engineers in any potential analysis of the system, whether this is
a system upgrade, a verification process or retrospective analysis.

The meta-knowledge model needs to be as robust as possible because its current
information is refined and new information is accumulated throughout its use in the
three layers. As the model moves into the intermediate level, not only will the informa-
tion pertaining to the refinement of the initial specification be captured in the meta-
knowledge model but also, for example, design decisions on the role, nature and choice of
elicitation techniques, who performed them, for what duration and side issues such as
reliability of expert testimony, focus of the testimony and information on why some
information became part of the encoded knowledge while other information was left out.
Hence, the use of formality is encouraged through the use of a formal notation such as
Z or VDM (Jones, 1980). Formal modeling will enable the relationships between the
static domain knowledge and the meta-knowledge be correctly specified and identified.
However, it is clear from the variety of information and data formats that not all
information can be encoded in a formal notation and, hence, the meta-knowledge model
will itself be composed of a variety of data/information representations.
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Having identified the significance of the composite specifications in the creation of
knowledge-based systems, we will now discuss how these specifications can be integrated
together through the use of a rigorous development methodology, and show how these
specifications may be equated to knowledge levels.

3.2. CONCEPTUAL DESIGN LEVEL

The aim of this level is to formalize an operational concept of the system to be developed.
This operational concept or initial specification will act as the baseline document for the
rest of the development process. Following Miller (1990), this phase utilizes iterative
prototyping on the initial ‘‘problem concept’’ towards a specification. This phase does
not end until all parties Mcustomer, developer, userN agree that they finally understand
what the system is intended to do, and in particular how it is supposed to do it; what
Miller terms ‘‘the Operational Concept’’ (Miller, 1990).

The prototype process is primarily intended to establish the boundaries of the solution
space. It is very important that prototyping is used only to this end, as it is extremely
detrimental to consider the more complex development issues at this stage, e.g. repres-
entation, interface, etc. These decisions would be made on incomplete knowledge of the
domain and environment.

To help establish the boundaries of the solution space, the research in cognitive
engineering (Woods & Roth, 1988; Mancini, Woods & Hollnagel, 1988; Johnson
& Westwater, 1996), which aims to provide design principles in the creation of person—
machine systems is made use of (Norman, 1981; Wise, Hopkins, David & Sager, 1993) the
use of these cognitive engineering principles will ultimately, later in the development
process, produce a specification of all the human—computer interactions involved
within the system. However, at this early stage in the life cycle the aim is to influence
the creation of the initial specification, such that it accommodates the difficulties that
will occur during system creation, as well as alert and arm the knowledge engineer
during this process. This aspect of system creation is often overlooked as Roth and
Woods note:

‘‘One of the main reasons that (intelligent) systems failed is that the designers took a narrow
view of the knowledge acquisition task. They focused on mimicking how experts solved
specific problems rather than attempting to develop a formal specification of the range of
problems that arise in the domain and the factors that contribute to problem difficulty’’
(Roth & Woods 1989).

They describe four pitfalls in building intelligent systems.

f Failing to appreciate the demands of the task.
f Failing to support the human problem solver.
f Assigning user responsibility but not the control of the system.
f Mimicking sub-optimal coping strategy.

In order to overcome these problems, they must first be recognized as actual problems
by the knowledge engineer. Once this understanding has been reached, the cognitive
engineering techniques can be utilized in this developmental level as well as in
subsequent levels. For example, five techniques that assist the knowledge engineer
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understand the design process and the interaction of these processes, both in terms of the
processes themselves and with the user, are as follows.

f Specification of the human—computer interface.
f Cognitive task analysis.
f Knowledge encoding.
f Competence modeling.
f Performance modeling (Roth & Woods, 1989).

The resultant of these will ultimately comprise the specification of the cognitive
engineering aspects of the system design. However, it is the understanding that these
factors are strong constituents of the development as a whole, which is their main
contribution at this level, as they help to shape and influence the initial specification.

The information gathered and created around the cognitive engineering aspect of the
initial specification is held in the meta-knowledge model along with the other concep-
tual-level design-decision information. This information is invaluable in the creation
process as a whole and the subsequent maintenance aspects. The meta-knowledge model
holds information regarding the process by which the ultimate initial specification was
derived, and other information that is not normally held in a specification.

The analogy of this level to Newell’s knowledge level is as follows. The medium is data,
information and knowledge, the primitive processing occurs over the medium in the form
of prototyping, while the laws of composition permit components to be assembled
into systems. At this level, the components are a variety of representational forms
that compose the initial specification, e.g. math functions defining a potential input set
and sets of relations identifying sub-systems within this input set. The laws of
behavior may simply be a decision table defining potential condition—action relations
within the initial specification, as well as the meta-knowledge which defines the domain
in terms of its boundaries and complexity.

3.3. INTERMEDIATE LEVEL

The second of the four levels is the intermediate level. This level is covered exten-
sively in Section 4 and illustrates the use of the knowledge-level paradigm in detail;
however, for completeness, an overview of the major concepts in that section will be
introduced here.

The intermediate level fulfils a very important function of the life-cycle model, in that it
acts as a transformational level, taking the operational concept of the initial specification
and through knowledge elicitation and knowledge acquisition, produces a representa-
tion of the domain knowledge from which the system will ultimately be constructed. This
representation is termed the intermediate representation.

The process can be outlined as in Figure 5.
Having obtained a specification of the systems requirements in Level 1, the task at

Level 2 is therefore to extract from the domain expert: knowledge, information and data,
upon which the system can be constructed. This is the function of the knowledge-
elicitation process: the resultant of which is the creation of a set of knowledge representa-
tions, each corresponding to the outcome of different elicitation sessions and process.
Information pertaining to the elicitation task itself being captured separately in the
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meta-knowledge model, e.g. its success, nature of the elicitation, sector of the domain that
was under consideration, reason for choosing the technique, etc. The elicited representa-
tion is then subjected to a knowledge-acquisition process in which the elicited form is
analysed and knowledge is extracted, becoming transformed into an intermediate repres-
entation. The aim of the intermediate representation is to add structure, definition and
formality to the knowledge and enable verification to be performed upon it more easily
than could be performed on the raw elicited form. The transformation process again
feeds back into the meta-knowledge model information regarding, for example, the
match between the elicited knowledge and the representations used, the nature and
applicability of the information and verification status metrics. The meta-knowledge
model then feeding back into the elicitation process itself, thus acting as a control
mechanism.

The final outcome is an intermediate representation that will itself be capable of
transformation into the next level: the formal level. The intermediate representation
acting as a consolidator of the knowledge and medium through which the knowledge can
be adequately judged for verification properties.

3.4. FORMAL LEVEL

The second level of the development methodology resulted in a stable and well-defined
specification of the systems knowledge: the intermediate specification. From this the
knowledge engineer can move forward to the creation of the remaining three rigorous
specifications that together with the third refinement of the meta-knowledge model, form
the composite specification.
(1) Domain specification. The aim of the domain specification is to capture the informa-
tion, data and knowledge of the domain in a formal model. This formal model is based
upon the final intermediate representation upon which transformational processes are
performed. The rationale for the use of a formal domain specification is that the notation
used at this level can be more rigorous than at the previous levels. The methodology does
not prevent formal notations being used at higher levels of the life cycle; however, the
premise of representational refinement underlying the approach advocates that when
a domain knowledge is not suitable for immediate mapping to a formal notation then
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intermediate steps should be used. This preserves the integrity of the information and
knowledge.

A formal notation that has been utilized in practice is the ‘‘Z’’ notation (Spivey, 1990;
Gold & Plant, 1994; Murrell, Plant & Gamble, 1996). A specification in a language such
as this produces several advantages. First, the Z notation in which it is written is clear,
concise, unambiguous and allows for both a technical and non-technical readership.
Second, the use of a formal notation has significant maintenance benefits, such as
allowing knowledge engineers to keep a correct document of the domain information in
an implementation-independent form; this, for example, facilitates maintenance, changes
in language or representational form.

The use of formal methods for the representation of the domain knowledge will be
significantly beneficial from a verification perspective. The details of the system verifica-
tion at this level can be captured in the meta-knowledge model, facilitating future system
revisions and maintenance.
(2) Cognitive engineering specification. As briefly mentioned earlier, embedded within
the initial specification development process is an aspect of cognitive engineering known
as cognitive task analysis (Roth & Woods, 1989). This process describes the cognitive
demands imposed by a particular task, along with the sources of good and poor
performance with respect to that task (Woods & Hollnagel, 1987), where the union of
these tasks represents the problem space the KBS covers. The aim of cognitive task
analysis is to allow the knowledge engineer to determine why a problem is hard, what the
typical errors domain practitioners make and how a KBS can reduce error and improve
performance (Roth & Woods, 1989). The results of this task analysis are therefore a part
of the meta-knowledge model for the conceptual design level and utilized in the inter-
mediate level to perform successful elicitation. Again the task analysis data are captured,
held and refined by the meta-knowledge model. This approach to task analysis has also
been used effectively in the CommonKADS methodology by Wielinga, Breuker and
others in their model of expertise (Breuker & Weilinga, 1987; Hesketh & Barett, 1990;
ESPRIT.5248).

The cognitive engineering specification, as we have already noted, is composed of
many aspects, including: specification of the human—computer interface, cognitive
task analysis, knowledge-encoding, competence and performance modeling. The
combined effect of utilizing these cognitive components is very powerful, and can
be considered as a significant factor in maintaining the semantic correctness of the
system throughout the development process. The cognitive analysis at the formal level
processes the intermediate knowledge representation and the meta-knowledge model
from that representation. The outcomes can similarly be partitioned in two ways: to the
cognitive engineering specification itself and to the meta-knowledge model at the formal
level.

The primary artifact that is within the cognitive engineering specification is the
specification of the human factors associated with the system, primarily its human—
computer interface. The specification of this can be subjected to formal techniques, as
demonstrated by Sufrin and He (1990), who use the ‘‘Z’’ notation to specify an interface,
and Jacob (1983), who formally specifies a human—computer interface.

The meta-knowledge model at the formal level, in addition to the artifacts surround-
ing the domain specification, contains several artifacts that surround the cognitive
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engineering process itself, the first of which, the task analysis model, has already been
described. Two other models may also be included.

f ¹he competence model: it provides a model of the required competence expected
from the model in the domain (Roth & Woods, 1989).

f ¹he performance model: it describes the knowledge and strategies that characterize
good and poor performance in the domain (Roth & Woods, 1989).

The adoption of these two models, building upon the understanding gained in the first
two levels and within the formal level itself, allows the designer to understand the system
boundaries more accurately at which performance may degrade. A study by Roth
‘‘revealed the brittle performance that can result when systems do not support the human
in adapting to problem-solving to different sources of unanticipated variability’’ (Roth
& Woods, 1989). Hollnagle and others, in the field of human factors, have also con-
sidered the reliability of the human in terms of cognition and human—system operation
(Hollnagle, 1992).

The utilization of these differing cognitive aspects of the systems design allows the
knowledge engineer to construct a human—computer interface that maps to the cognitive
model used by the problem solver, allowing for more accurate and flexible explanation
capabilities. It increases the understanding of the user’s needs as an operator and, by
defining the interface formally, the variance in the interpretation of the system or its
behavior is reduced.
(3) Representation specification. The third of the formal specifications is the representa-
tion specification. The aim of the representation specification is to identify which (if any)
classical or hybrid representation is the most suitable form around which to base the
representation specification, where the classical representations are ‘‘frames’’, ‘‘production
systems’’, ‘‘semantic networks’’, etc. In order to find the most suitable form, several
influencing factors must be taken into account.

f Information obtained from performing knowledge acquisition upon the intermedi-
ate representation.

f Information pertaining to representation selection that can be obtained from consid-
ering the composition of the domain specification.

f Information resulting from the cognitive engineering processes.
f Information from the meta-knowledge model.

Each of these information sources provide valuable insights on the selection of
a representation scheme and control architecture for the domain under consideration.

The meta-knowledge model will already contain results of the analysis performed
during the creation of the intermediate representation detailing the rationale and metrics
behind the form chosen. For example, an intermediate representation that is a complete
decision table will indicate a production system may be applicable, while a decision tree
may indicate inheritance and the use of a frame-based representation. This can also be
refined by considering the composition of the meta-knowledge model, the framework in
which the meta-knowledge is represented and the data typing indicated by the formal
notation. For example, an intermediate representation of a decision table may have an
associated meta-knowledge model framework of hooks or slots containing meta-
knowledge that would facilitate meta-rules to be attached to a production system
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architecture, and this can then be accommodated in the semantics and syntax of the
representation.

Further refinements to the specification will also result from the consideration of the
formal domain specification and cognitive engineering specifications; the former indicat-
ing specific data typing and structural requirements as well as issues pertaining to the
nature of the solution space. For example, will certainty factors, probability analysis or
statistical analysis be required to overcome incompleteness in the domain knowledge or
data requirements? Similarly, cues from the analysis of the cognitive engineering speci-
fication may lead to changes in the representation from the norm to accommodate
domain-specific or human factor requirements. The information surrounding these
design issues and constraints are captured and represented in the meta-knowledge model
at the formal level.

Once the knowledge engineer has determined the representational needs for the
system, it can then be formally specified in terms of its semantics (Lassez & Maher, 1983;
Murrell & Plant, 1995) and syntax (Gold & Plant, 1994), which forms the representation
specification (Craig, 1991). The advantages of having an independent formal specification
of the representation in conjunction with the meta-knowledge model are that any
changes to the system can be done in light of an understanding of the consequences that
change may have on any other aspect of the system. Furthermore, there may be a need to
change the representation at some point, and that can be reasoned over too.

The specification of the representation allows the knowledge engineer an opportunity
to consider and identify those aspects of the knowledge-representation language to be
used and specify them in a formal manner, in terms of its denotational semantics and
syntax. For without these, it is extremely dificult to reason about a domain descrip-
tion/representation with any certainty. The selection of a representation involves difficult
considerations and on which there is an extensive literature (Brachman & Levesque,
1985; Doyle & Patil, 1989; Davis, Shrobe & Szolovits, 1993).

3.5. IMPLEMENTATION LEVEL

Having created all aspects of the partial specification, we are now at a point at which
these specifications can be combined into a form that will allow us to move towards
implementation. This stage is known as the concrete specification.

The creation of the concrete specification is in stages: first, the domain knowledge is
transformed from its ‘‘Z’’ specification into the form advocated by the representation
specification and second a formal specification of the control architecture that is
associated with the representation is created.

It should be noted that this is not the implementation, since the representation is
a hybrid between a high-level version of what is to be implemented and a formal
specification in the style suggested by the syntax and semantics of the representation
specification (e.g. pseudo-code). The aim is to produce an implementation-independent
representation of the system. This will allow the knowledge engineer to have a simplified
version (minus the complex syntax) with which to reason out the implementation later in
the life cycle, e.g. maintenance.

Having created the concrete specification, it is then used as the basis of the system
implementation; the interface issues being resolved by the referral to the meta-knowledge
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model at the formal level, the cognitive engineering specification and man—machine
interface specifications.

It should be noted that the implementation level does not have a meta-knowledge
model of its own, but utilizes the meta-knowledge contained in the formal level. This is
due to the directness of the mapping between the formal level and the implementation.
A meta-level could be created if desired to hold the selection criteria for the implementa-
tion language. All other maintenance decisions emanate from the higher levels of the
specification and, thus, the top three meta-knowledge models would all capture the
decision-making surrounding these changes.

The implementation of the system should be the most straight-forward of all the
stages, due to the high degree of structuring and refinement that has been performed
upon the system in the previous phases. The mechanism through which the system is
implemented is left open to the knowledge engineer.

4. Detailing a specific level of abstraction

In this section we discuss in more detail the level of specification abstraction called the
intermediate level.

4.1. THE KNOWLEDGE ELICITATION PROCESS

The unique nature of knowledge-based systems is that they utilize domain-specific
information that is ‘‘expert’’ in nature, in that the information may in itself unique, scarce
or uncommon. However, it is the way that the expert employs that information which
makes the information valuable. Thus, one of the most important tasks befalling the
knowledge engineer is to ensure that as much useful structural control and relational
knowledge is elicited from the expert source as possible. This process forms the basis
of the knowledge elicitation task upon which the knowledge-based system development
is performed. In the elicitation process, the knowledge engineer can extract both
static domain knowledge, e.g. facts, rules, heuristics, etc., and select a representation
(the elicited knowledge representation) in which to manipulate this knowledge. Thus,
the knowledge engineer’s task in elicitation can be seen as two-fold: the elicita-
tion of static-domain-specific knowledge and the elicitation of dynamic meta-
knowledge.

The choice of elicitation technique, for which there is an extensive literature (Welbank,
1983; Diaper, 1989; Scott, 1991; Madan, 1995) will depend heavily upon the domain
under consideration, the type of knowledge to be extracted and the point the elicitation
has reached; the meta-knowledge model being used to control and direct the elicitation
process. For example, the elicitation may commence with the knowledge engineer
performing a series of unstructured interviews to extract high-level conceptual know-
ledge. This may then be followed by structured interviews where the relationship of the
domain, its structure and more detailed information are obtained. This may then be
followed by a series of focused interviews to fill in the low-level information of a fine grain
size. Several frameworks for the analysis of these techniques have been proposed (Burton,
Shadbolt, Hedgecock & Rugg, 1987; Dhalival & Benbasat, 1990), including cognitive
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mapping and knowledge encoding, two aspects of Woods’ cognitive engineering paradigm
(Woods & Roth, 1988; Roth & Woods, 1989).

The resultant of the elicitation process, depending upon the technique employed, will
be, what we have termed the elicited representation. This will, for example, be a tran-
script in the case of an interview or an on-line report. The aim of this stage in the life cycle
is to provide a permanent record of the knowledge, in the form in which it was extracted.
This will enable the knowledge engineer to follow an ‘‘elicitation trail’’ later if necessary
in conjunction with the meta-knowledge model (e.g. maintenance phase).

The process of eliciting the different knowledge types, often from different sources,
with differing knowledge levels, using different techniques, at different periods of time
means that there will be a set of elicited representations which together form a historical
database of elicited knowledge. It is the integration of these differing forms of knowledge
and representations that is the focus of the knowledge acquisition process, in which we
utilize the concept of a knowledge filter to isolate different aspects of knowledge, the type
of that knowledge, the inter-relationships, the heuristics and meta-knowledge associated
with each item of the domain knowledge. The knowledge filter attempts by using
different techniques upon different elicited forms to extract the maximum information
from the knowledge, which then gets integrated together to form the intermediate
representation; we will discuss this further in the next section.

4.2. THE KNOWLEDGE FILTER

To handle distinct elicited forms in practice, a knowledge filter is needed. In order to do
this, we introduce the software development process called the Knowledge Filter. The
filter comprised of a series of sub-processes, each of which processes the elicited repres-
entation in order to distill a resultant output that reflects the sub-process function. For
example, if the elicited representation were a transcript, one of the sub-processes utilized
would be conversational coherence in order to obtain an understanding of the alignment
within the dialogue (Ragan, 1983). The sub-processes can then be utilized in the
subsequent system development.

The knowledge filter depicted in Figure 6 is an example of where the application of the
knowledge level principle assists in understanding, and correctly structuring a set of
processes. An examination of these processes in relation to Newell’s paradigm reveals
that the elicited representation acts as the medium to be processed. The sub-processes of
the knowledge filter act as components that provide the primitive processing. The analysis
of the information resulting from the primitive processing results in the meta-knowledge
model and the intermediate representation, both of which can be defined formally. The
formal processes themselves act as the laws of composition which permit the components
to be assembled into systems. The meta-knowledge model and the intermediate repres-
entation are also bound through formal descriptions of their behavior, e.g. what can and
cannot be added to them, and thus these form Newell’s laws of behavior. Further, each of
the representations can be considered in isolation or rigorously transformed into the next
representation, thus obeying Newell’s constraints. We can see, therefore, that these form
one level of a methodology which, when added to the other levels, provide a description
of a complete knowledge-based system development environment.
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4.3. THE META-KNOWLEDGE MODEL

As we have discussed in the previous section, the knowledge filter acts to isolate the
different aspects of information contained within the elicited representation. The result-
ants of this are the refined meta-knowledge model and the intermediate representation.

The meta-knowledge identified during the knowledge filtration process becomes an
aspect of the meta-knowledge model, where a formal notation is again advocated to
represent its information. The meta-knowledge is then fed back into the elicitation
process to enable the knowledge engineer to both control the elicitation process and
obtain the grain size and scope of knowledge required with meta-knowledge also being
generated further. The process is continued until a steady state in the elicited representa-
tion has been reached. This is similar in concept to the use made of explanations by Davis
(1980) in TEIRESIAS. However, the model presented here is abstracted from imple-
mentation constraints by virtue of containing its own formal model of the domains’
meta-knowledge.

In order to achieve a steady state, a meta-knowledge controller is used in conjunction
with a meta-system model. The meta-knowledge controller represents a feedback loop
that the knowledge engineer uses to identify desirable changes to the elicitation process
and, consequently, the elicited representation. This feedback utilizes the meta-knowledge
model to contrast the status of the elicited knowledge with the operational concept, by
which the system is bounded and the status of the intermediate representation. The
creation of the meta-knowledge level framework assists the knowledge engineer verify
the knowledge in the intermediate representation in terms of completeness, correctness
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and consistency. Thus, the knowledge engineer can assess more accurately the pro-
gress of the elicitation process towards a steady state as defined by the operational
concept.

The relationship between the elicitation of meta-knowledge and the system boundary
is a factor that needs careful consideration, as we need to ensure that the controller acts
to elicit only knowledge within what Checkland (1981) has termed the ‘‘relevant’’ system.
The concept of the ‘‘relevant’’ system is based upon Anaxagorus’s Theorem that ‘‘in
everything there is everything’’ and that ‘‘in all problems are to be found all problems’’,
such that we can, if we are not careful, elicit knowledge that although related to our
problem domain, is outside of the boundary that was defined in the operational concept.
This is important from a validation perspective; otherwise, we would have no limit to the
system domain. Gigch puts a systemic perspective on this dilemma:

‘‘if we push the system boundaries too far, we face the problem of having to consider too
many systems, the situation becomes too complex and unsolvable 2 if we do not push the
boundary far enough, we face the ‘environmental fallacy’ (Churchman, 1979) when not all
the relevant systems are taken into account’’ (Gigch, 1984).

Thus, the meta-knowledge controller has an important role in determining that the
grain size and scope of the knowledge is within the system boundary, and further, that
the boundaries be respecified if examination of the domain meta-knowledge determines
this to be necessary in order to achieve a validated and verified system. The meta-
knowledge controller can be defined in terms of Gigch’s three-part meta-system
paradigm.

(i) A hierarchy of problem-solving levels in which higher system levels can judge and
rate solutions at the lower level.

(ii) A framework to provide evaluation criteria in meta-language terms, i.e. a language
appropriate to judge lower systems solutions.

(iii) A guarantee of truth at each systems level, except the very last (or highest).

We can utilize this paradigm as follows.

(i) The hierarchy of problem-solving levels can be equated to Newell’s knowledge level
such that the knowledge elicited is fed into the elicited representation at a lower level, and
it in turn is fed into the intermediate representation at the next lower level, and so on
recursively. Davis (1980) recognizes this in his discussion of meta-rules at the application
level, where ‘‘rules at one level in the hierarchy, for instance, are used to control the
invocation of rules at the next lower level, while at the same time they are data to the
rules above which examine and reason about them’’. The meta-knowledge contained in
the meta-knowledge controller is used to judge and rate the validity of the elicited
representation.

(ii) The meta-knowledge model provides the framework for evaluation of the know-
ledge elicitation and the elicited representation.

(iii) The framework is formal, and as such facilitates the evaluation of the meta-
knowledge as well as the mapping of that knowledge through increasing levels of rigor as
the development moves from the conceptual level to the implementation level. Rigor is
possible at all levels except at the highest level where a formal specification of the system
cannot be created; thus, the correctness of the system cannot be guaranteed at this level.
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The meta-knowledge feedback loop can also be used to address a relationship between
the object-level and meta-level knowledge that Davis (1980) identified.

‘‘The forms of knowledge captured well at the object-level will similarly be easy to express at
the meta-level; those difficult to represent at the object-level will prove equally difficult at the
meta-level’’ (Davis, 1980).

If the elicitation of meta-knowledge proves difficult, this is an indication that the
elicitation and representation of the object-level is also weak and not yet at the steady
state and, thus, the elicitation needs to continue with perhaps the application of an
alternative elicitation technique. This is where the formalized representation of the
meta-knowledge proves valuable as it allows a more accurate determination of the status
of the representation to be made, in terms of completeness, correctness, consistency,
grain size, etc., without which only informal estimates can be made.

The aim of the meta-knowledge model, therefore, is to achieve a steady state, where-
upon the meta-knowledge model in conjunction with the intermediate representation
feeds into the next level, such that the formal domain, cognitive engineering and
representation specifications can be constructed. The advantage of using the
meta-knowledge model is that the knowledge engineer is no longer creating a system
based only upon static domain information, but also utilizing and controlled by meta-
knowledge through the paradigm of Newell’s knowledge level.

4.4. THE INTERMEDIATE REPRESENTATION

The second output of the knowledge filtration process is the production of the intermedi-
ate representation (Plant, 1991; Scott, 1991), a representation more structured than the
elicited representation in which to hold the elicited knowledge. The knowledge engineer
uses this intermediate representation as a focus point for the knowledge filter and
assesses its status in conjunction with the meta-knowledge model, through the control
mechanism described earlier. Intermediate representations are of the form: decision
tables, AND/OR graphs, decision trees, each of which encourage completeness, correct-
ness and consistency, allow for refinement and reduction while having clean yet concise
structures.

The creation of the dynamic meta-knowledge model and the static intermediate
representation allows the knowledge engineer to have a dual perspective in the re-
mainder of the system development. The aim of the intermediate representation is to
provide a more rigorous form than the elicited representation with which to reason over
the domain, while the meta-knowledge representation contributes by allowing the
knowledge engineer to understand and be more sensitive to the dynamic aspects of the
systems development, e.g. the use of meta-knowledge allows us to enhance our under-
standing of the systems explanation capability, as defined in our cognitive engineering
specification.

The meta-knowledge model and the intermediate representation are used in the
creation of three specifications at the next knowledge level: the domain specification, the
cognitive engineering specification and the representation specification as well as a con-
tinued development of the meta-knowledge model itself.
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5. Summary and conclusions

This paper has attempted to illustrate several points. First, when a development life cycle
of representation refinement is utilized, which follows the principles of Newell’s know-
ledge level, then the system development will become self-verifying.

The second issue addressed was the use of a meta-knowledge model. This model allows
for a dynamic perspective of the system to be obtained in conjunction with the static
aspects found in the other representations at each level.

The use of the knowledge filter to produce a better meta-knowledge model and
intermediate representation was introduced along with the meta-knowledge feedback
loop to induce the elicitation of further meta-knowledge and, hence, ultimately act as
self-verifying mechanism for the intermediate representation.

The paper intends to show that the ability to verify and validate knowledge-based
systems is not just a matter of static testing of the knowledge base, but must emanate
from a holistic knowledge-level development method incorporating meta-knowledge
and a knowledge-level philosophy.

In conclusion, the paper has demonstrated a methodology for the creation of
knowledge-based systems that attempts to utilize the rigor of software engineering with
the knowledge-level principles to achieve a higher degree of control over the knowledge
engineering process. The use of this approach to development should enable better
degrees of software quality in knowledge-based systems to be obtained in the future.

I wish to thank all those who have contributed ideas and thoughts to this paper at The
Programming Research Group, Oxford University, The Department of Computer Science at
Liverpool University, and particularly Dave Woods, Dan O’Leary, Alun Preece for their insights
on the Knowledge Level and the Meta-knowledge Debate.
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This paper is dedicated to the memory of Seymore Cray who died on 5 October 1996.
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Appendix

TRILLIUM
K

level 1 capability

Problem specification No explicit statement of requirements. No test plan. No
acceptance criteria

Conceptual model No documented conceptual model

Design model No documented design model for knowledge base.
Typically, a commercial shell is used; the reasons for
choosing this shell should be documented

hline implemented model Implemented knowledge base is the only complete
description of knowledge. Inference engine is typically
that of an existing expert system shell

Verification analyses Verification performed by informal proofreading—no
formal verification analysis conducted

Validation analyses Validation performed by ad hoc testing and informal
evaluations. No permanent recording to test suite

TRILLIUM
K

level 2 capability

Problem specification Informal statement of requirements, test plan, and
acceptance criteria

Conceptual model ‘‘Paper model’’ stated semiformal. Separation of concerns
achieved by isolating domain, task, and cooperative
knowledge components
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Design model Architectural design for system components. Semiformal
or formal designs for procedural parts of knowledge base,
and for inference engine

Implemented system Implemented knowledge base and inference engine is
traceable, where appropriate, to conceptual and design
models. When a third party shell is used, ensure that its
behavior conforms to that required

Verification analyses Knowledge base integrity and expression logic is checked
automatically, with all detected anomalies fully
documented and resolved

Validation analyses Testing using documented test suite is performed according
to problem specification. Semiformal evaluations of system
useability are performed and documented

TRILLIUM
K

level 3 capability

Problem specification Semiformal statement of requirements, including
minimum and desired functionality. Formal constraints
should be associated with all possible minimum
requirements. Test plan and acceptance criteria
associated with each functional requirement that cannot
be verified formally

Conceptual model Formal knowledge-level model (that is, with well-defined
syntax and semantics). Appropriate representation
languages used for domain, task and cooperative
knowledge base components

Design model Formal architectural design, module-interface
specifications, and internal module designs for all system
components, including interface engine, domain knowledge
modules, task knowledge modules, meta-level control
knowledge modules and external interface components

Implemented system Implemented system is fully traceable to conceptual and
design models or is derived automatically from them
using a correctness-preserving transformation procedure.
A third-party tool may be used only if rigorous
assurances are available of its correctness and reliability

Verification analyses Full inference logic is checked and all anomalies
documented and resolved. System compliance with all
minimum constraints is verified and documented if possible

Validation analyses Rigorous structural and functional testing is performed
according to problem specification. Test suite is executed
and maintained using support tools. Approved empirical
methods are used for usability and utility evaluations,
and results are fully documented


	TABLE 1
	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6

	1. Introduction
	1.1. KBS DEVELOPMENT METHODOLOGIES

	2. The specification of knowledge-based systems
	2.1. A MULTILEVEL REFINEMENT PHILOSOPHY
	2.2. A COMPOSITE SPECIFICATION PHILOSOPHY
	2.3. META-KNOWLEDGE
	2.4. NEWELLÕS KNOWLEDGE LEVEL

	3. Defining a complete life-cycle model
	3.1. THE META-KNOWLEDGE MODEL
	3.2. CONCEPTUAL DESIGN LEVEL
	3.3. INTERMEDIATE LEVEL
	3.4. FORMAL LEVEL
	3.5. IMPLEMENTATION LEVEL

	4. Detailing a specific level of abstraction
	4.1. THE KNOWLEDGE ELICITATION PROCESS
	4.2. THE KNOWLEDGE FILTER
	4.3. THE META-KNOWLEDGE MODEL
	4.4. THE INTERMEDIATE REPRESENTATION

	5. Summary and conclusions
	References
	Appendix

