
 Int . J . Human – Computer Studies (1996) 44 , 127 – 144

 On the validation and verification of production
 systems : a graph reduction approach

 S TEPHEN M URRELL

 Department of Computer Science and Mathematics , Uni y ersity of Miami , Coral
 Gables , FL 3 3 1 2 4 , USA

 AND

 R OBERT P LANT

 Department of Computer Information Systems , Uni y ersity of Miami , Coral Gables ,
 FL 3 3 1 2 4 , USA . email : rplant ê umiami .miami .edu

 This paper takes a parallel processing approach to the implementation of rule-based
 systems using a graph-reduction architecture , and investigates the consequences of
 this architecture in relation to the validation and verification of knowledge-based
 systems . The paper improves on the traditional sequential approaches to the
 development of knowledge-based systems and the limited validation and verification
 techniques that are applicable . This is contrasted with a graph reduction implemen-
 tation of knowledge-based systems development based on an ALICE-like machine .
 The advantages of this style of programming in relation to systems development and
 program correctness are discussed . The paper shows that significant benefits could
 potentially be achieved through the use of graph-reduction techniques in the
 development of these systems . ÷ 1996 Academic Press Limited

 1 . Introduction
 This paper presents a parallel graph-reduction approach to the implementation of
 knowledge-based systems . This approach relies upon a specification of the system in
 terms of decision tables , and enables the automatic generation of programs that
 implement the knowledge encoded in those tables . These automatically generated
 programs are written in Malice (Murrell , 1989) , a generic graph reduction program-
 ming language . Automatic generation of programs from decision tables eliminates
 the possibility of programming errors being included , and thus reduces the
 validation , verification , and testing overhead .

 The system takes decision tables as specifications of correct behavior , and
 therefore relies upon a correct formulation of those tables . However , it is inevitable
 that in real-world applications , human errors will occur , and result in inconsistent ,
 incomplete , or incorrect decision tables . It is accepted that the decision table could
 be incorrect ; the paper addresses the impact of decision table errors on the system as
 a whole . This system has a degree of robustness uncommon in conventional
 implementations , and will continue to function even with a conflicting data set .

 Traditionally y alidation has been defined as determining whether an appropriate
 product is being created ; y erification is the process of checking that product has been
 created correctly (Boehm , 1981) . The technique we use is primarily one of
 verification , together with in-system run-time consistency checks . Due to the
 concurrent nature of the parallel implementation , there is generally no run-time
 overhead caused by the consistency checks .

 127

 1071-5819 / 96 / 020127 1 18$12 . 00 / 0 ÷ 1996 Academic Press Limited

 S . MURRELL AND R . PLANT 128

 After a review of existing works on validation and verification , and parallel
 implementations , for rule-based systems , we briefly introduce (in Section 3) the
 ideas of graph reduction implementations of decision tables , then , in Section 4 ,
 examine the consequences of decision table errors , and show how their impact can
 be minimized .

 2 . Background to validation and verification for parallel knowledge
 based systems .

 Research into validation and verification of knowledge-based systems has been
 progressing since the mid 1980s , when the need for techniques that considered the
 completeness and correctness of rule-based systems became a concern to commer-
 cial developers .

 The foundations of the research into validation , verification and testing can be
 traced back to work on testing in relation to conventional systems and its
 extrapolation to the testing of early rule-based systems such as MYCIN (Suwa , Scott
 & Shortlif fe 1982) . The creation of tools to assist in the process was soon to follow ,
 one of the first being applied to the R1 / XCON System (Soloway , Bachant & Jensen
 1987) . From these beginnings we can break the research into five broad areas , each
 of which has its own extensive literature , examples of which are cited below .

 $ Expert System Validation (Green & Keyes , 1987 ; Naser , 1988 ; O’Leary , 1988 ;
 Rushby , 1988 ; Geissman & Schultz , 1988 ; Rushby & Whitehurst , 1989 ; O’Keefe
 & O’Leary , 1992 ; Coenen & Bench-Capon , 1993) .

 $ Knowledge-base Verification (Suwa et al . , 1982 ; Nguyen , Perkins & Laf fery ,
 1985 ; Ginsberg , 1987 ; Marcot , 1987 ; Cragun & Steudel , 1987 ; Stachowitz ,
 Chang , Stock & Coombs , 1987 ; Morell , 1988 ; Schultz & Geissman , 1988 ;
 Botten , Kusiak & Raz , 1989 ; Radwan , Goul , O’Leary & Mof fitt , 1989 ; Lehner ,
 1989 ; Miller , 1990 ; Ayel & Laurant , 1991 b ,c ; Preece , Shinghai & Bataekh , 1992 ;
 Antoniu , 1993 ; Preece , 1993 ; Valiente , 1993 ; Bench-Capon , Coenen , Nwana ,
 Paton & Shave , 1993) .

 $ Tools (Freeman , 1985 ; Ginsberg & Rose , 1987 ; Cragun & Studel , 1987 ;
 Krishnamurthy , Padalkar , Sztipanovits & Purvis , 1987 ; Loiseau , 1989 ; Kang &
 Bahill , 1990 ; Vanthienen , 1991 ; Zlatarova , 1991 ; Ayel & Laurant , 1991 a ;
 Charles & Dubois , 1991 ; Cuda & Dolan , 1991 ; Preece & Shinghal , 1991 ;
 Becker , Green & Bhutinager , 1991 ; Steib , Small , Castells & Schofield , 1991 ;
 EPRI , 1993 ; SENTAR , 1995) .

 $ Development (Chen , 1976 ; Guttag & Horning , 1978 ; Davis & Lenat , 1982 ;
 Grover , 1983 ; Buchanan et al . , 1983 ; Carpenter & Murine , 1984 ; Wielinga &
 Breuker , 1984 ; Alexander , Freiling , Shulman , Staley , Rehfuss & Messick , 1986 ;
 Ince & Hekmatpour , 1987 ; Breauker et al . , 1987 ; Boehm , 1988 ; Humphrey ,
 1989 ; Weitzel & Kershberg , 1989 ; Plant , 1991 ; ANSI , 1992 ; TRILLIUM , 1992 ;
 Breuker & Van de Velde , 1994 ; Gold & Plant , 1994 ; Plant & Tsoumpas , 1994 ;
 Akkermans , Schreiber & Weilinga , 1994 ; de Hoog , Martil , Weilinga , Taylor ,
 Bright & Van de Velde , 1994) .

 $ Formal Methods (Bezem , 1987 ; Dahl , 1990 ; Bolonga , Ness & Siverstsen , 1990 ;
 Breu , 1991 ; Fox , 1993 ; Herre , 1993 ; Meseguer , 1993 ; Hors & Rousset , 1993 ;

 GRAPH REDUCTION AND VALIDATION 129

 Rousset , 1993 ; Roman , Gamble & Ball , 1993 ; Krause , Fox , O’Neill &
 Glowinski , 1993 ; Rousset , 1994 ; Gold & Plant , 1994 ; Ourston & Mooney , 1994 ;
 Vermasan & Wergeland , 1994 a ,b ; Bouali , Loiseau & Rousset , 1994 ; Krause ,
 Byers & Hajnal , 1994 ; Murrell & Plant , 1995 a) .

 The application of Parallel Processing to Artificial Intelligence has been primarily in
 the areas of vision processing , image analysis and robotic systems , areas with high
 computational demands . The utilization of parallelism in the development of
 knowledge-based systems has as a general rule been limited to prototype systems in
 the areas of medical diagnosis (Plant , Murrell & Moreno , 1994 ; Murrell & Plant ,
 1995 b ; Todd , Stamper & Macpherson , 1995) . The extension of parallel processing
 into the area of knowledge-based systems development with a focus on the
 validation and verification issues currently has only a small literature (Murrell &
 Plant , 1995 b) .

 The authors of this paper wish to extend the research into the application of
 parallel processing for knowledge-based systems as it is our belief that there is a
 fundamental problem with validating rule-based systems that have been imple-
 mented in traditional programming styles such as LISP , CLIPS or OPS5 . It is our
 premise that these environments inhibit testing due to the complexity of the
 implementations’ syntactic structures , and that the validation of the system should
 be performed automatically where possible , and at run-time by the system , thus ,
 relieving the programmer of this overhead . Further , the system should be specifi-
 able . In order to achieve these two goals the authors advocate the specification of
 the systems’ rules in a simple decision table form that can be automatically
 translated into an ALICE † graph-reduction-machine program that is executable in a
 multi-processing environment .

 3 . Parallel processing and graph reduction

 With the movement of rule-based systems from the research laboratory into an
 industrial setting there has been a significant increase in the size of the rule-bases
 and a demand for faster processing . Any increase in processing speed has to be
 derived in one of two ways : either by adapting the representation [e . g . ordering the
 rules through techniques such as clustering (Mehotra , 1993)] , or by new implemen-
 tation platforms , such as parallel processing . There are many approaches to parallel
 processing that could be taken [e . g . the Hypercube architecture (Seitz , 1985) , Parlog
 (Clocksin & Mellish , 1984 ; Clark & Gregory , 1986) , the Connection Machine (Hillis ,
 1985) , Occam and the Transputer (Hoare , 1985 ; Jones , 1986) , Neural Nets (Minsky
 & Papert , 1969 ; McLelland & Rumelhart , 1986)) however few have been applied
 (Plant et al . , 1994 ; Todd et al . , 1995) to the implementation of knowledge-based
 systems . In this work , we combine both directions , making a parallel implementation
 based on an improved representation . The graph reduction architecture is based
 upon the representation of programs and data in an ef ficiently interconnected form ,
 which allows the elimination of any searching , and gives a very natural representa-
 tion of the decision structure .

 † We do not use ALICE itself , but a local implementation (MALICE) which follows the original very
 closely .

 S . MURRELL AND R . PLANT 130

 3 . 1 . GRAPH REDUCTION

 Graph Reduction systems (Darlington & Reeve , 1981 ; Townsend , 1987 ; Reeve &
 Zenith , 1989) provide a form of automatic concurrency in the execution of
 programs . Programs and data are encoded as graphs in which the nodes represent
 items of data and computational operations , and the arcs represent the structural
 relationships between items of data , the interdependencies of computational
 operations , and the application of operations to data . Eligible computational nodes
 are selected , by nondeterministic means , for execution ; if multiple processors are
 available , multiple nodes will be executed concurrently . Any algorithm translated
 into a graph reduction implementation can be expected to run with a degree of
 concurrency , but for optimal concurrency , some deliberate design ef fort is , of
 course , required . Graph reduction provides a high level conceptual base for program
 design ; the low level concerns of more conventional parallel platforms (such as the
 interprocess communications overhead , and protection of shared data) are abstr-
 acted away . As the concurrency is virtually automatic and transparent , it has no
 impact of its own on the validation and verification process .

 The general principle upon which this technique is built , is that a rule-based
 system , originally provided in the form of a decision table , may be directly and
 automatically translated into a graph . The graph itself may be understood as a
 program to be executed by a graph-reduction computer . A very simple example is
 shown below in Figures 1 and 2 , which are from Plant et al . (1994) where a detailed
 explanation may be found ; the technique is covered fully in Murrell (1989) and
 Murrell & Plant (1995 b) .

 Each node in the graph represents an executable ‘‘packet’’ . A graph-reduction
 machine in the style of ALICE (Darlington & Reeve , 1981) performs its computa-
 tion by repeatedly selecting at random such a packet , and replacing it be an
 equivalent (possibly empty) sub-graph of packets according to a set of programmed
 rules .

 Initially , only the ‘‘program’’ packet is eligible for selection ; as it is dependent
 upon two ‘‘conclude’’ packets , those two will become eligible . Eligibility of packets
 for selection is propagated through out the graph , according to the programmed
 rules , until some non-dependent packets become selectable .

 When non-dependent packets (e . g . ‘‘condition’’ packets) are executed they are
 replaced , according to the programmed rules , by what may be considered results ;

q1:
q2:
q3:

Y
N
Y

Y
Y
 -

N
N
N

X X
X X

c1:
c2:

1 2 3

 F IGURE 1 . A trivial decision table .

 GRAPH REDUCTION AND VALIDATION 131

 F IGURE 2 . The graph created from Figure 1 .

 packets dependent upon these results thus become executable , until eventually the
 ‘‘conclude’’ packets are able to provide their answers . An example of a large scale
 application in the domain of psychiatry is described by Plant et al . (1994) and a
 detailed case study in graph-reduction development is provided by Murrell & Plant
 (1955 b) .

 4 . Verification and graph-reduction

 In this section we consider the aspects of verification that are of key concern to the
 area of rule-based systems . We take the union of the areas identified by Culbert
 (1990) , Preece (1993) and O’Leary (1994) which enumerate types of possible defects
 in the correctness of rule bases : redundancy , conflict , circularity , and errors
 introduced by incorrect knowledge acquisition . These aspects of the validation of
 rule-based systems have been considered by other researchers in relation to
 conventional implementations (Nguyen et al . , 1985 ; Rushby , 1988 ; O’Leary , 1994) ,
 and are given a full treatment (with respect to the validation and verification of
 decision tables) in Murrell & Plant (1995 c) .

 In the following sections we follow the organization of Murrell & Plant (1995 c)
 showing how the four major decision table error types : Redundant rules (including :
 identity , subsumption , indirect , unfireable , reducible) , Conflicting rules , Circular
 rules , and Errors of omission (unused inputs , missing rules , impossible combinations ,
 dead end rules) af fect and are af fected by a graph reduction implementation .
 Accepting the assumption that decision tables used as specifications for graph-
 reduction implementations may not be totally correct , it is necessary to be aware of
 both the semantic and syntactic errors that can occur , and work towards methods for
 their detection and solution . In general , semanic errors can not be detected and we

 S . MURRELL AND R . PLANT 132

 show what ef fects their presence can have on the behavior of the system . Syntactic
 errors are easier to detect , and for these we also discuss the appropriate detection
 methods .

 4 . 1 . REDUNDANT RULES

 A redundant rule is simply one which makes no contribution to the system .
 Redundancy may be decomposed into five sub-categories : identity , subsumption ,
 indirect redundancy , unfireability , and reducibility . None of these cause any practical
 problems for the graph-reduction implementation .

 4 . 1 . 1 . Identity
 The first type of redundancy to be considered is that of identical rules , which can be
 broken down into two sub-categories : syntactic and semantic redundancy .

 The case of syntactic redundancy is illustrated thus :

 RULE 26 : IF X AND Y THEN Z
 RULE 93 : IF Y AND X THEN Z

 where both rules will be applicable if X and Y have been substantiated . This can
 cause several problems in traditional implementations in that the rule may be fired
 twice , as the conflict resolution strategy is often inef fective in removing or coping
 with redundancy . However , in the graph reduction implementation these problems
 can not arise , as once a rule fires it ceases to be computable and therefore can never
 be fired again . In many cases second and subsequent rules leading to the same
 conclusion would never even be tested once the conclusion has fired . This also
 illustrates the automatic conflict resolution strategy of this implementation .

 The implementation of redundant rules , therefore , is not problematic for a
 graph-reduction implementation . However , the developer may wish to detect these
 redundancies prior to implementation . This can be done when the decision tables
 are constructed . Syntactically redundant rules can be identified as identical columns
 in a decision table . For example , the rules given above would appear in the form of
 Figure 3 . This would produce the graph shown in Figure 4 .

 Syntactic redundancy presents no practical dif ficulties , it may be taken as a sign of
 an error in the rule-base and is ef ficiently detectable as shown in Murrell & Plant
 (1995 c) .

c1:
c2:

X
Y

. . .

. . .

. . .

26
 Y
 Y

. . .

. . .

. . .

93
 Y
 Y

. . .

. . .

. . .

. . . X . . . X . . .a1: Z

 F IGURE 3 . Redundant rules .

 GRAPH REDUCTION AND VALIDATION 133

 F IGURE 4 . Graph reduction of syntactically redundant .

 A less tractable , but strongly related problem is semantic redundancy . This covers
 cases when two (or more) rules have the same meaning , but are formulated in
 dif ferent ways .

 RULE 45 : IF X AND Y THEN ‘‘weight . 2240lbs’’
 RULE 83 : IF Y AND X THEN ‘‘weight . 1 ton’’

 (i . e . the conclusions are semantically equivalent) .

c1:
c2:

X
Y

a1: Z1

45
 Y
 Y

X
X

83
 Y
 Y

a1: Z2

 F IGURE 5 . Semantic equivalence .

 These would be represented by the decision table shown in Figure 5 and the graph
 reduction implementation is shown in Figure 6 . The problem becomes more acute
 when the conditions are semantically but not syntactically equivalent . For example :

 RULE 63 : IF hot AND humid THEN thunderstorms
 RULE 99 : IF sultry THEN electricalstorms .

 F IGURE 6 . Graph reduction of semantic redundant rules .

 S . MURRELL AND R . PLANT 134

c1:
c2:
c3:

W
X
Y

a1: Z

7
Y
Y
Y

8
Y
Y
-

X X

 F IGURE 7 . Subsumption .

 There is no possibility for a solution to this problem being brought about by graph
 reduction or any other implementation method ; the problem can not be identified
 without some knowledge that is outside the system . (i . e . hot and humid means
 sultry) . Problems of this type (occasionally referred to as deep inconsistencies) are in
 general not open to solution without the application of intelligence , and arise in
 many dif ferent forms .

 4 . 1 . 2 . Subsumed rules
 One rule is said to be subsumed by another , when it specifies that the same (or
 fewer) actions are to be applied under the same (or stricter) conditions . Subsump-
 tion is a generalization of the problem of identity , and has both syntactic and
 semantic variants , of which only the former is practically detectable . As an example ,
 in the following , rule 7 is subsumed by rule 8 .

 RULE 7 : IF W AND X AND Y THEN Z
 RULE 8 : IF W AND X THEN Z ,

 which may be represented as a decision table , such as Figure 7 . These would then
 produce the graph shown in Figure 8 .

 Subsumed rules do not create any significant problem for the graph-reduction
 approach to the implementation of production systems because once a conclusion
 has been fired it ceases to be computable and therefore can not be fired again (as in

 F IGURE 8 . Graph reduction of subsumed rules .

 GRAPH REDUCTION AND VALIDATION 135

 the case of syntactic redundancy) . The only slight problem is that the number of
 packets created may be increased unnecessarily .

 4 . 1 . 3 . Indirect redundancy
 Indirect redundancy of the form :

 RULE 11 : IF p THEN q
 RULE 22 : IF q THEN r
 RULE 33 : IF p THEN r

 can only be reliably detected by a brute force search over all possible sets of inputs .
 Clearly such a search which would require exponential time is not a practical
 proposition for any real system (although some systems do attempt this) . Indirect
 redundancy is again a generalization of Identity , and also has an intractable semantic
 variant .

 In our graph reduction approach the search would not be necessary as the
 reduction process would fire based upon the quickest reduction . Thus , a significant
 advantage is achieved through this approach for the usual reason that conclusions
 can not be fired twice .

 4 . 1 . 4 . Unfireable rules
 A rule may be unfireable for one of three reasons :

 $ its condition is a logical impossibility (e . g . rule 23 below) ,
 $ its condition is logically possible but no combination of other rules firing can

 satisfy it (e . g . rule 97 below , under the assumption that both m and n can be true ,
 but not at the same time) ,

 $ the condition is semantically impossible (e . g . rule 16 below) .

 RULE 23 : IF p AND NOT p THEN r
 RULE 97 : IF m AND n THEN x
 RULE 16 : IF vital AND unimportant THEN action

 The first form cannot occur in standard forms of decision table , and is therefore not
 a problem . The second form can be detected in the decision table after a search over
 all possible input values . The third form , as with all semantic errors , can not be
 detected by practical means .

 The presence of an unfireable rule may simply result from incomplete knowledge
 on the part of the original human expert , and is not per se wrong ; nor does it cause
 any run-time problems . Future additions to the knowledge base may reverse the
 situation and render the rule fireable .

 4 . 1 . 5 . Reducible rules
 When two rules have conditions that are identical but for one variable , and that one
 variable appears in a positive form in one rule , and negated in the other , and the
 actions associated with the two rules are identical , then those two rules may be
 reduced to one , by simply ignoring the dif ferentiating variable . For example :

 RULE 9 : IF X AND Y AND Z THEN A
 RULE 12 : IF X AND NOT Y AND Z THEN A

 S . MURRELL AND R . PLANT 136

c1:
c2:
c3:

W
Y
Z

a1: A

9
Y
Y
Y

12
Y
N
Y

X X

 F IGURE 9 . Rule reduction .

 may be reduced to :

 RULE 912 : IF X AND Z THEN A

 The unreduced form appears in a decision table as shown in Figure 9 . This would be
 transformed into a graph with the form shown in Figure 10 which executes correctly .
 Reducible rules may be detected and reduced after a search of the decision table ,
 but do not need to be removed . The only potential disadvantages to leaving them
 unreduced are that more packets are created than are strictly necessary , and some
 irrelevant questions may be asked of the user . The correct operation of the system is
 not compromised .

 4 . 2 . CONFLICTING RULES

 Rules are in conflict when one allows a particular conclusion to be deduced , another
 allows the inverse of that conclusion to be deduced , and both are able to fire . For
 example :

 RULE 1 : IF P THEN Q
 RULE 42 : IF P THEN NOT Q

 or

 RULE 3 : IF very – cold THEN nice – day
 RULE 40 : IF frigid THEN NOT nice – day

 F IGURE 10 . Graph reduction of unnecessary rules .

 GRAPH REDUCTION AND VALIDATION 137

 F IGURE 11 . Run-time conflict detection .

 Syntactic conflict may be detected by a search of the decision table ; semantic
 conflict is not practically detectable . In any case of conflict , when the conclusions are
 syntactic inverses (as in the last example above) , the graph-reduction implementa-
 tion will always accept whichever conclusion is deduced first and not change if a
 conflict arises later (once a conclusion has fired , it can not fire again , so can not
 change its logical state) , so a user may never become aware of the error . If there is a
 risk of such conflicts , it is possible to add run-time consistency checking in the form
 of an extra packet that monitors the results of conditions that could lead to conflicts ,
 ensuring that improper combinations never occur .

 RULE 17 : IF X THEN A
 RULE 18 : IF W AND Z THEN NOT A
 RULE 19 : IF Y AND W THEN A

 This would produce the graph of Figure 11 (conclusions have been omitted for
 clarity) .

 The ‘‘conflict’’ packet , combining the trees for [X OR (Y AND W)] and [W AND
 Z] is activated only if both reduce to true or both reduce to false , and produces an
 error warning .

 This solution may easily be generalized to cover systems which have sets of
 complementary solutions such as negative / zero / positive (i . e . sets of conditions
 which are mutually exclusive) , by extending the actions of the ‘‘conflict’’ packet to
 signal an error if more than one of its argument packets reduces to true , see Figure
 12 .

 4 . 3 . CIRCULAR RULES

 Circularity is present when there is a sequence of rules , each of which ‘‘calls’’ the
 next , and the last of which ‘‘calls’’ the first . This would appear in one of two forms
 shown in Figures 13 and 14 :

 In many existent systems , either of these would be likely to cause an infinite loop .
 In a graph reduction implementation , this can not happen . With the first representa-
 tion this is due to the independent nature of packets (Figure 15) . With the second
 representation , a circular structure would be created (Figure 16) . Once either of X

 S . MURRELL AND R . PLANT 138

 F IGURE 12 . Conflicting rules flags .

c1:
c2:

W
Z

9 10

Y
Y

a1:
a2:

Z
X

X
X

 F IGURE 13 . Circular Table 1 .

X
Z

Y CY
CY Y

9 10

 F IGURE 14 . Circular Table 2 .

 F IGURE 15 . Circularity in the rules .

 GRAPH REDUCTION AND VALIDATION 139

 F IGURE 16 . Circular rules .

 or Z become true the other will also become true , but because packets may only be
 reduced once no infinite loop occurs . It should be noted that while circularity is
 often an undesired condition in a rule set , it does not necessarily signify an error .

 5 . Comments and conclusions

 In this paper we have presented an alternative implementation of rule-based
 systems , in an ALICE-like graph-reduction architecture . The graph-reduction style
 of implementation when applied to a simple decision table specification of the
 knowledge base has shown several advantages over the traditional styles of
 implementation . The first benefit of this implementation style originates in the
 automatic generation of ALICE programs from the decision table by a transforma-
 tion program . This relieves the programmer of the code generation overhead ,
 placing the development emphasis upon the specification of the knowledge . Further
 to this , the decision tables can easily be subjected to several validation tests to
 identify errors or highlight possible conflicts (Murrell & Plant , 1995 c) .

 Thus , there are two paths to reliability : if the decision tables are accepted as an
 unarguable specification or reality , and the transformation into a graph reduction
 program is error free , the resultant implementation of a rule-based system is
 guaranteed correct . Alternatively , if the decision tables may be imperfect , those
 errors that can be detected , will be detected during the transformation process , and
 those that can not be detected are usually the result of incomplete knowledge on the
 part of the expert , and could not be avoided by any means .

 The paper followed the research of earlier workers (Nguyen et al . , 1985 ; Rushby ,
 1988 ; Murrell , 1989 ; Culbert , 1990 ; Preece , 1993 ; O’Leary , 1994 ; Plant et al . , 1994 ;
 Murrell & Plant , 1995 b ,c) in categorizing the kinds of error that may occur ;
 redundancy , conflict , circularity , and acquisition defects , and examined the conse-
 quences of each of these validation error types in relation to the graph-reduction
 implementation . This examination revealed that graph reduction is of course subject
 to the same validation problems as other techniques in terms of semantic errors , but
 was able to of fer several advantages over traditional implementations for other error
 types . In terms of syntactic identity , subsumption , direct redundancy , conflicting
 rules , and circularity , it was shown that the problems associated with traditional
 implementations , such as multiple firings of the same rule or infinite loops , would
 not occur in a graph-reduction implementation due in part to the system’s inability

 S . MURRELL AND R . PLANT 140

 to reduce packets which compute a rule more than once . Other categories of error
 such as syntactic redundancy with either identical conditions or identical conclu-
 sions , unused inputs or outputs , and missing rules were shown to be capable of
 identification within the transformation process from the decision tables .

 Thus , we have shown a new approach to the construction of knowledge-based
 systems that has moved the onus of validation and verification away from testing to
 the specification stage , whilst accommodating a parallel processing capability in a
 graph reduction form that automatically raises the validity of the rule base
 processing through the packet-based nature of the computations , and produces a
 significant speed-up in processing .

 References
 A KKERMANS , J . M ., S CHREIBER , A . T . & W IELINGA , B . J . (1994) . Steps in constructing

 problem solving methods . Shareable and Reusable Problem Sol y ing Methods . Proceedings
 of the 8 th Banf f Knowledge Acquisition for KBS Workshop , pp . 29-1 – 29-21 . Alberta ,
 Canada .

 A LEXANDER , J . H ., F REILING , M . J ., S HULMAN , S . J ., S TALEY , J . L ., R EHFUSS , S . & M ESSICK ,
 S . L . (1986) . Knowledge level engineering : ontological analysis . AAAI 5 , pp . 963 – 968 .
 Philadelphia , PN .

 ANSI (1992) . Life Cycle Development of Knowledge Based Systems Using DoD-Std 2167A .
 ANSI / AIAA G-031-1992 .

 A NTONIU , G . (1993) . Modular design & verification of logical knowledge-bases . AAAI
 Workshop on Validation & Verification of Knowledge - based Systems . Washington , DC .

 A YEL , M . & L AURANT , J . P . (1991 a) . SACCO-SYCOJET : two dif ferent ways of verifying
 KBS . In M . A YEL & J . P . L AURANT , Eds . Validation , Verification and Test of
 Knowledge - Based Systems , pp . 63 – 76 . Chichester : Wiley & Sons .

 A YEL , M ., L AURRENT , J . P . (1991 b) . Two dif ferent ways of verifying knowledge-based
 systems . In M . A YEL , J . P . L AURRENT , Eds . Validation & Verification of Knowledge -
 based Systems . Chichester : Wiley & Sons .

 A YEL , M . & L AURRENT , J . P . (1991 c) . Validation & Verification of Knowledge - based Systems .
 Chichester : Wiley & Sons .

 B ECKER , L . A . G REEN , P . G . & B HUTINAGER , J . (1989) . Evidence flow graphs for V&V of
 expert systems . NASA Contractor Report 1 8 1 8 1 0 , Langley Research Center , Hampton ,
 VA , USA .

 B ENCH -C APON , T ., C OENEN , F ., N WANA , H ., P ATON , R . & S HAVE , M . (1993) . Two aspects of
 the validation and verification of knowledge based systems . IEEE Expert , 8 , 76 – 81 .

 B EZEM , M . (1987) . Consistency of rule-based expert systems . Lecture Notes in Computer
 Science , 3 1 0 . Berlin : Springer-Verlag .

 B OEHM , B . W . (1981) . Software Engineering Economics . Englewood Clif fs , NJ : Prentice Hall .
 B OEHM , B . W . (1988) . A spiral model of software development and enhancement . IEEE

 Computer , 21 , 61 – 72 .
 B OTTEN , N ., K USIAK , A . & R AZ , T . (1989) . Knowledge-bases : integration , verification and

 partitioning . European Journal of Operational Research , 42 , 658 – 662 .
 B OUALI , F ., L OISEAU , S . & R OUSSET , M . C . (1994) . KBS correction : a proposal based on

 diagnostic theory . Proceedings of ECAI - 9 4 Workshop on Validation & Verification of
 Knowledge - based Systems . Amsterdam , The Netherlands .

 B REU , R . (1991) . Algebraic Specification Techniques in Object Orientated Programming
 En y ironments Berlin : Springer-Verlag .

 B REUKER , J . & V AN DE V ELDE , W . (1994) (Eds) . Expertise model document part II : the
 commonKADS library . ESPRIT Project P5248 KADS-II / I / VUB / TR / 054 / 3 . 0 / June .

 B REAUKER , J . A ., W IELINGA , B . J ., V AN S OMEREN , M ., DE H OOG , R ., S CHREIBER . A . T ., DE

 G REEF , P ., B REDWEG ., B ., W IELMAKER , J ., B ILLAULT , J . P ., D AVOODO , M . &
 H AYWARD , S . A . (1987) . Model dri y en knowledge acquisition : interpretation models .

 GRAPH REDUCTION AND VALIDATION 141

 ESPRIT Project P1098 Deliverable D1 (task A1) , University of Amsterdam and STL
 Ltd , Amsterdam , The Netherlands .

 B UCHANAN , B . G ., B ARSTOW , D ., B ECHTAL , R ., B ENNETT . J ., C LANCY , C ., K ULIKOWSKI . C .,
 M ITCHELL , T . & W ATERMAN . (1983) . Constructing an Expert System . In F . H AYES -
 R OTH , D . A . W ATERMAN , & D . G . L ENART , Eds . Building Expert Systems . Reading ,
 MA : Addison-Wesley .

 C ARPENTER , C . L . & M URINE , G . E . (1983) . Measuring software product quality . Applying
 software quality metrics . ASQC Quality Congress Transactions , pp . 373 – 377 .

 C HANG , C . L ., C OOMBS , J . B . & S TACHOWITZ , R . A . (1990) . A report on the expert systems
 validation associate (EVA) . Expert Systems with Applications , 1 , 217 – 231 .

 C HARLES , E . & D UBOIS , O . (1991) . MELODIA : logical methods for checking K-bases . In N .
 A YEL & J . P . L AURANT , Eds . Validation , Verification and Test of Knowledge - Based
 Systems , pp . 95 – 105 . Chichester : Wiley & Sons .

 C HEN , P . (1976) . The entity relationship model—towards a unified view of data . ACM
 Transactions of Database Systems , 1 , 9 – 36 .

 C LARK , K . L . & G REGORY , S . (1986) . PARLOG : parallel programming in logic . ACM
 TOPLAS , 8 , 1 – 49 .

 C LOCKSIN , W . F . & M ELLISH , C . S . (1984) . Programming in Prolog . Berlin : Springer Verlag .
 C OENEN , F . & B ENCH -C APON , T . (1993) . Maintenance of Knowledge - Based Systems London :

 Academic Press .
 C RAGUN , B . J . & S TEUDEL , H . J . (1987) . A decision-table processor for checking

 completeness and consistency in rule-based expert systems . International Journal of
 Man – Machine Studies , 26 , 633 – 648 .

 C UDA , T . & D OLAN , C . P . (1991) . Tool aided non formal knowledge verification . AAAI
 Workshop on V&V , Anaheim .

 C ULBERT , C . (1990) (Ed) . Verification and validation of knowledge-based systems . Expert
 Systems with Applications , 1 , 197 – 328 .

 D AHL , O . J . (1990) Object - orientation and formal techniques . Department of Informatics ,
 Research Report No . 138 . University of Oslo , Norway .

 D ARLINGTON , J . & R EEVE , M . (1981) . ALICE , a multiprocessor reduction machine .
 ACM / MIT Conference on Functional Programming Languages and Computer
 Architecture , New Hampshire .

 D AVIS , R . & L ENAT , D , (1982) . Knowledge - based Systems in AI . New York , NY :
 McGraw-Hill .

 DE H OOG , R ., M ARTIL , R ., W IELINGA , T AYLOR , R ., B RIGHT , C . & V AN DE V ELDE , W .
 (1994) . The common KADS model set . ESPRIT Project P5248 KADS-
 II / DM1 . 1b / UvA / 018 / 6 . 0 / FINAL .

 ESPRI ‘93 (1993) . Sur y ey and assessment of con y entional software y erification & y alidation
 techniques . SPRI TR-102106 , Project 3093-01 , Final Report , February .

 F OX , J . (1993) . On the soundness and safety of expert systems . AI in Medicine , 5 , 159 – 179 .
 G EISSMAN , J . R . & S CHULTZ , R . D . (1988) . Verification and validation of expert systems . AI

 Expert , February , 26 – 33 .
 G INSBERG , A . (1987) . A new approach to checking knowledge bases for inconsistency and

 redundancy . 3 rd Annual Conference on Expert Systems in Go y ernment , pp . 102 – 111 .
 Washington , DC , USA .

 G INSBERG , A . & R OSE , L . (1987) . KB - reducer : a system that checks for inconsistency and
 redundancy in knowledge - bases . Technical Report , AT&T Laboratories , Holmdel , NJ ,
 USA .

 G OLD , D . I . & P LANT , R . T . (1994) . Towards the formal specification of an expert system .
 International Journal of Intelligent Systems , 9 , 739 – 768 .

 G REEN , C . J . R . & K EYES , M . M . (1987) . Verification and validation of expert systems .
 Western conference on expert systems . In U . G U P T A , Ed . Validating and Verifying
 Knowledge - Based Systems , pp . 20 – 29 . Los Alamitos , CA : IEEE Press .

 G ROVER , M . D . (1983) . A pragmatic knowledge acquisition methodology . Proceedings of the
 International Joint Conference on Artificial Intelligence , 8 , pp . 436 – 438 . Washington , DC ,
 USA .

 S . MURRELL AND R . PLANT 142

 G UTTAG , J . V . & H ORNING , J . J . (1978) . The algebraic specification of data types . Acta
 Informatica , 10 , 27 – 52 .

 H ERRE , H . (1993) . Semantical completeness of model based diagnosis . Proceedings of
 EUROVAV ’ 9 3 . Palma de Mallorca , Spain .

 H ILLIS , W . D . (1985) . The Connection Machine . Cambridge , MA : MIT Press .
 H OARE , C . A . R . (1985) . Communicating Sequential Processes . Englewood Clif fs , NJ : Prentice

 Hall .
 H OLLNAGEL , E . (1989) . The Reliability of Expert Systems . Hemel Hempstead : Ellis Horwood .
 H ORS , P . & R OUSSET , M . C . (1993) . Consistency of structured knowledge : a formal

 framework based on description logics . Proceedings EUROVAV ’ 9 3 , Palma de Mallorca ,
 Spain .

 H UMPHREY , W . (1989) . Managing the Software Process . Reading MA : Addison-Wesley .
 I NCE , D . C . & H EKMATPOUR , S . (1987) . Software prototyping—progress and prospects .

 Information and Software Technology , 29 , 8 – 14 .
 J ONES , G . (1986) . Programming in Occam . Englewood Clif fs , NJ : Prentice Hall .
 K ANG , Y . & B AHILL , T . (1990) . A tool for detecting expert system errors . AI Expert ,

 February 42 – 51 .
 K RAUSE , P ., F OX , J ., O’N EIL , M . & G LOWINSKI , A . (1993) . Can we formally specify a medical

 decision support system? IEEE Expert , 8 , 56 – 62 .
 K RAUSE , P ., B YERS , P . & H AJNAL , S . (1994) . Formal specification and decision support .

 Decision Support Systems , 12 , 189 .
 K RISHNAMURTHY , C . P ADALKAR , S . S ZTIPANOVITS , T . & P URVIS , B . R . (1987) . Methodology

 for testing and validating knowledge bases . Proceedings of the 3 rd Conference on AI For
 Space Applications , NASA JSC , Houston , TX , USA .

 L EHNER , P . E . (1989) . Towards an empirical approach to evaluating the knowledge-base of an
 expert system . IEEE Transactions on Systems , Man and Cybernetics , 19 , 658 – 662 .

 L OISEAU , S . (1989) . La description et la detection des incoherences dans les bases de regles .
 Proceedings of the International Conference on Expert Systems and their Applications ,
 Avignon , France .

 L OISEAU , S . & R OUSSET , M . C . (1993) . Formal verification of knowledge bases focused on
 consistency : two experiments based on ATMS techniques . International Journal of Expert
 Systems : Research & Applications , 6 , 273 – 280 .

 M ARCOT , B . (1987) . Testing your knowledge-base . AI Expert , 2 , 42 – 47 .
 McL ELLAND , J . L . & R UMELHART , D . E . (1986) . Parallel Distributed Processing . New York ,

 NY : MIT Press .
 M EHOTRA , M . (1993) . Multi-viewpoint clustering analysis . Workshop Notes , AAAI Workshop

 on Validation & Verification . Washington , DC .
 M ESEGUER , P . (1993) . Expert system verification through knowledge base refinement .

 Proceedings of the IJCAI - 9 3 , Chamberly , France .
 M ILLER , L . A . (1990) . Dynamic testing of knowledge bases using the heuristic testing

 approach . Expert Systems with Applications , 1 , 271 – 281 .
 M INSKY , M . L . & P APERT , S . A . (1969) . Perceptrons . New York , NY : MIT Press .
 M ORELL , L . J . (1988) . Use of metaknowledge in the verification of knowledge-based systems .

 Proceedings of the IEA - AIE , June , pp . 847 – 857 .
 M URRELL , S . (1989) . Guide to malice . University of Miami , Computer Science Technical

 Report No 1 . Department of Math & Computer Science , University of Miami , FL .
 M URRELL , S . & P LANT , R . T . (1995 a) . Formal semantics for rule-based systems . Journal of

 Systems & Software (in press) .
 M URRELL , S . & P LANT , R . T . (1995 b) . A graph reduction implementation of a production

 system . Knowledge - Based Systems , 8 , 155 – 160 .
 M URRELL , S . & P LANT , R . T ., (1995 c) . Decision tables : formalization , validation and

 verification . Journal of Software Testing , Reliability and Validation , 5 , (9) .
 NASA C ONFERENCE P UBLICATION 2491 (1987) . First Annual Workshop on Space Operations

 Automation and Robotics (SOAR ’ 8 7) . Johnson Space Centre , Houston TX , August 5 – 7 .
 N ASER , J . (1988) . Nuclear power plant expert system verification & validation . AAAI

 Workshop Notes on Verification & Validation of Knowledge - based Systems , pp . 1 – 18 , St .
 Paul , MN : AAAI Press .

 GRAPH REDUCTION AND VALIDATION 143

 N GUYEN , T . A ., P ERKINS , W . A . & L AFFERY , T . J . (1985) . Checking an expert systems
 knowledge base for consistency and completeness . Proceedings of the Ninth International
 Joint Conference on AI , 18 – 23 , Los Angeles , CA . pp . 375 – 378 . August .

 O’K EEFE , R . M . & O’L EARY , D . E . (1992) . Expert system verification and validation : a
 survey and tutorial . Artificial Intglligence Re y iew , 16 , 25 – 60 .

 O’L EARY , D . E ., (1988) . Methods of validating expert systems . Interfaces , 18 , 72 – 79 .
 O’L EARY , D . E ., Ed . (1994) . Collected Papers of AAAI Workshops on Validation and

 Verification 1 9 8 8 – 9 2 . Reading , MA : Wiley & Sons .
 O URSTON , D . & M OONEY , R . J . (1994) . Theory refinement combining analytical and

 empirical methods . Artificial Intelligence , 66 , 273 – 309 .
 P LANT , R . T . (1990) . Validation and verification and testing of knowledge-based systems .

 Heuristics : The Journal of Knowledge - based Systems , 3 , 59 – 67 .
 P LANT , R . T . (1991) . Utilising formal specifications in the development of knowledge-based

 systems . In D . P ARTRIDGE , Ed . Artificial Intelligence & Software Engineering . Norwood ,
 NJ : Ablex Press .

 P LANT , R . T . & T SOUMPAS , P . (1994) . An integrated methodology for knowledge-based
 system development . Expert Systems with Applications , 7 , 259 – 271 .

 P LANT , R . T ., M URRELL , S . & M ORENO , H . R . (1994) . Prototype decision support system for
 a dif ferential diagnosis of psychotic , mood , and organic mental disorders : Part II . Medical
 Decision Making , 14 , 273 – 289 .

 P REECE , A . (1993) . A new approach to detecting missing knowledge in expert system rule
 bases . International Journal of Man – Machine Studies , 38 , 661 – 688 .

 P REECE , A . D ., & S HINGHAL , R . (1991) . COVER : a practical tool for verifying rule-based
 systems . AAAI Workshop on Validation & Verification Notes . Anaheim , CA .

 P REECE , A . D ., S HINGHAL , R ., & B ATAREKH , A . (1992) . Verifying expert systems : a logical
 framework and a practical tool . Expert Systems with Applications , 5 , 421 – 436 .

 R ADWAN , A . E ., G OUL , M ., O’L EARY , T . J . & M OFFITT , K . E ., (1989) . A verification
 approach for knowledge-based systems . Transportation Research - A , 23A , 287 – 300 .

 R EEVE , M . & Z ENITH , S . E ., Eds (1989) . Parallel Processing and Artificial Intelligence .
 Chichester : Wiley .

 R OMAN , G ., G AMBLE , R . F . & B ALL . W . E . (1993) . Formal deri y ation of rule - based
 programs . IEEE Transactions on Software Engineering , 19 , 277 – 296 .

 R OUSSET , M . C . (1994) . Knowledge formal specifications for formal verification : a proposal
 based on the integration of dif ferent logical formalisms . Proceedings of the ECAI 9 4 ,
 Amsterdam , The Netherlands .

 R USHBY , J . (1988) . Quality measures and assurance for AI software . NASA Contact Report
 NASI-17067 , Langley Research Centre , Hampton , VA , USA .

 R USHBY , J & W HITEHURST , R . A . (1989) . Formal y erification of AI software . NASA Contract
 Report 18226 (Task 5) , February , Langley Research Centre , Hampton , VA , USA .

 S CHULTZ , R . & G EISSMAN , J . R . (1988) . Bridging the gap between static & dynamic
 verification . In U . G UPTA , Ed . Validating & Verifying Knowledge - Based Systems ,
 pp . 86 – 92 . Los Alamitos , CA : IEEE Computer Society Press .

 S EITZ , C . L . (1985) . The cosmic cube . Communications of ACM , 28 , 22 – 33 .
 SENTAR ‘95 (1995) . Distributed hybrid systems V&V database annex C . Technical Report ,

 Sentar , Inc ., Huntsville , AL .
 S OLOWAY , E ., B ACHANT , J . & J ENSEN , K . (1987) . Assessing the maintainability of

 XCON-in-RIME : coping with the problem of a very large rule-base . Proceedings of the
 6 th IJCAI , pp . 824 – 829 , Seattle , WA , USA .

 S TACHOWITZ , R . A ., C HANG , C . L ., S TOCK . T . S . & C OOMBS , J . B . (1987) . Building
 Validation Tools for Knowledge-Based Systems . In NASA Conference Publication 2 4 9 1 ,
 First Annual Workshop on Space Operations Automation and Robotics (SOAR ’ 8 7) ,
 pp . 209 – 216 . Johnson Space Centre , Houston , TX . August 5 – 7 .

 S TEIB , M ., S MALL , R ., C ASTELLS , C ., & S CHOFIELD , J . (1991) . Tailoring VASTT for expert
 system verification , validation and testing . Workshop Notes : AAAI Workshop on V&V .
 Anaheim , AL .

 S UWA , M ., S COTT , A . C ., & S HORTLIFFE , E . H . (1982) . An approach to verifying
 completeness & consistency in a rule-based system . AI Magazine , 3 , 16 – 21 .

 S . MURRELL AND R . PLANT 144

 T ODD , B . S ., S TAMPER , R . & M ACPHERSON , P . (1995) . A probabilistic rule-based expert
 system . International Journal of Bio - Medical Computing (in press) .

 T OWNSEND , P . (1987) . Flagship hardware and implementation . ICL Technical Journal , 5 ,
 575 – 594 .

 TRILLIUM (1992) . TRILLIUM : telecom software product development capability assess-
 ment model . Bell Canada Quality . Technical Report Draft 2 . 2 ., Bell Canada , July .

 V ALIENTE , G . (1993) . Verification of knowledge-based redundancy and subsumption using
 graph transformations . International Journal of Expert Systems : Research and
 Applications , 6 , 341 – 355 .

 V ANTHIENEN , J . (1991) . Knowledge acquisition and validation using a decision table
 engineering workbench . World Congress of Expert Systems , pp . 1861 – 1868 , Orlando , FL ,
 USA .

 V ERMASAN , A . I . & W ERGELAND , T . H . (1994 a) . A formally based methodology for deriving
 verifiable expert systems from specifications . Workshop Notes , AAAI Workshop on
 Validation & Verification . Seattle , WA .

 V ERMESAN , A . I . & W ERGELAND , T . (1994 b) . Expert system y erification and y alidation : issues
 and approaches . Working Paper : 82 / 1994 , Centre for Research in Economics and
 Business Administration , University of Oslo . Norway .

 W EITZEL , J . R . & K ERSHBERG , L . (1989) . Developing knowledge-based systems : reorganising
 the system development life cycle . Communications of the ACM , 32 , 482 – 490 .

 W IELINGA , J . B . & B REUKER , J . A . (1984) . Analysis techniques for knowledge-based systems :
 part 1 . Report 1 . 1 Esprit Project 12 .

 Z LATAROVA , N . (1991) . VVR : a uniform framework for expert system knowledge bases
 verification , validation and refinement . Workshop Notes : AAAI Workshop on V&V ,
 Anaheim , AL .

