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 This paper takes a parallel processing approach to the implementation of rule-based
 systems using a graph-reduction architecture ,  and investigates the consequences of
 this architecture in relation to the validation and verification of knowledge-based
 systems .  The paper improves on the traditional sequential approaches to the
 development of knowledge-based systems and the limited validation and verification
 techniques that are applicable .  This is contrasted with a graph reduction implemen-
 tation of knowledge-based systems development based on an ALICE-like machine .
 The advantages of this style of programming in relation to systems development and
 program correctness are discussed .  The paper shows that significant benefits could
 potentially be achieved through the use of graph-reduction techniques in the
 development of these systems .  ÷   1996 Academic Press Limited

 1 .  Introduction
 This paper presents a parallel graph-reduction approach to the implementation of
 knowledge-based systems .  This approach relies upon a specification of the system in
 terms of decision tables ,  and enables the automatic generation of programs that
 implement the knowledge encoded in those tables .  These automatically generated
 programs are written in Malice (Murrell ,  1989) ,  a generic graph reduction program-
 ming language .  Automatic generation of programs from decision tables eliminates
 the possibility of programming errors being included ,  and thus reduces the
 validation ,  verification ,  and testing overhead .

 The system takes decision tables as specifications of correct behavior ,  and
 therefore relies upon a correct formulation of those tables .  However ,  it is inevitable
 that in real-world applications ,  human errors will occur ,  and result in inconsistent ,
 incomplete ,  or incorrect decision tables .  It is accepted that the decision table could
 be incorrect ;  the paper addresses the impact of decision table errors on the system as
 a whole .  This system has a degree of robustness uncommon in conventional
 implementations ,  and will continue to function even with a conflicting data set .

 Traditionally  y  alidation  has been defined as determining whether an appropriate
 product is being created ;   y  erification  is the process of checking that product has been
 created correctly (Boehm ,  1981) .  The technique we use is primarily one of
 verification ,  together with in-system run-time consistency checks .  Due to the
 concurrent nature of the parallel implementation ,  there is generally no run-time
 overhead caused by the consistency checks .
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 After a review of existing works on validation and verification ,  and parallel
 implementations ,  for rule-based systems ,  we briefly introduce (in Section 3) the
 ideas of graph reduction implementations of decision tables ,  then ,  in Section 4 ,
 examine the consequences of decision table errors ,  and show how their impact can
 be minimized .

 2 .  Background to validation and verification for parallel knowledge
 based systems .

 Research into validation and verification of knowledge-based systems has been
 progressing since the mid 1980s ,  when the need for techniques that considered the
 completeness and correctness of rule-based systems became a concern to commer-
 cial developers .

 The foundations of the research into validation ,  verification and testing can be
 traced back to work on testing in relation to conventional systems and its
 extrapolation to the testing of early rule-based systems such as MYCIN (Suwa ,  Scott
 & Shortlif fe 1982) .  The creation of tools to assist in the process was soon to follow ,
 one of the first being applied to the R1 / XCON System (Soloway ,  Bachant & Jensen
 1987) .  From these beginnings we can break the research into five broad areas ,  each
 of which has its own extensive literature ,  examples of which are cited below .

 $  Expert System Validation (Green & Keyes ,  1987 ;  Naser ,  1988 ;  O’Leary ,  1988 ;
 Rushby ,  1988 ;  Geissman & Schultz ,  1988 ;  Rushby & Whitehurst ,  1989 ;  O’Keefe
 & O’Leary ,  1992 ;  Coenen & Bench-Capon ,  1993) .

 $  Knowledge-base Verification (Suwa  et al . ,  1982 ;  Nguyen ,  Perkins & Laf fery ,
 1985 ;  Ginsberg ,  1987 ;  Marcot ,  1987 ;  Cragun & Steudel ,  1987 ;  Stachowitz ,
 Chang ,  Stock & Coombs ,  1987 ;  Morell ,  1988 ;  Schultz & Geissman ,  1988 ;
 Botten ,  Kusiak & Raz ,  1989 ;  Radwan ,  Goul ,  O’Leary & Mof fitt ,  1989 ;  Lehner ,
 1989 ;  Miller ,  1990 ;  Ayel & Laurant ,  1991 b ,c ;  Preece ,  Shinghai & Bataekh ,  1992 ;
 Antoniu ,  1993 ;  Preece ,  1993 ;  Valiente ,  1993 ;  Bench-Capon ,  Coenen ,  Nwana ,
 Paton & Shave ,  1993) .

 $  Tools (Freeman ,  1985 ;  Ginsberg & Rose ,  1987 ;  Cragun & Studel ,  1987 ;
 Krishnamurthy ,  Padalkar ,  Sztipanovits & Purvis ,  1987 ;  Loiseau ,  1989 ;  Kang &
 Bahill ,  1990 ;  Vanthienen ,  1991 ;  Zlatarova ,  1991 ;  Ayel & Laurant ,  1991 a ;
 Charles & Dubois ,  1991 ;  Cuda & Dolan ,  1991 ;  Preece & Shinghal ,  1991 ;
 Becker ,  Green & Bhutinager ,  1991 ;  Steib ,  Small ,  Castells & Schofield ,  1991 ;
 EPRI ,  1993 ;  SENTAR ,  1995) .

 $  Development (Chen ,  1976 ;  Guttag & Horning ,  1978 ;  Davis & Lenat ,  1982 ;
 Grover ,  1983 ;  Buchanan  et al . ,  1983 ;  Carpenter & Murine ,  1984 ;  Wielinga &
 Breuker ,  1984 ;  Alexander ,  Freiling ,  Shulman ,  Staley ,  Rehfuss & Messick ,  1986 ;
 Ince & Hekmatpour ,  1987 ;  Breauker  et al . ,  1987 ;  Boehm ,  1988 ;  Humphrey ,
 1989 ;  Weitzel & Kershberg ,  1989 ;  Plant ,  1991 ;  ANSI ,  1992 ;  TRILLIUM ,  1992 ;
 Breuker & Van de Velde ,  1994 ;  Gold & Plant ,  1994 ;  Plant & Tsoumpas ,  1994 ;
 Akkermans ,  Schreiber & Weilinga ,  1994 ;  de Hoog ,  Martil ,  Weilinga ,  Taylor ,
 Bright & Van de Velde ,  1994) .

 $  Formal Methods (Bezem ,  1987 ;  Dahl ,  1990 ;  Bolonga ,  Ness & Siverstsen ,  1990 ;
 Breu ,  1991 ;  Fox ,  1993 ;  Herre ,  1993 ;  Meseguer ,  1993 ;  Hors & Rousset ,  1993 ;
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 Rousset ,  1993 ;  Roman ,  Gamble & Ball ,  1993 ;  Krause ,  Fox ,  O’Neill &
 Glowinski ,  1993 ;  Rousset ,  1994 ;  Gold & Plant ,  1994 ;  Ourston & Mooney ,  1994 ;
 Vermasan & Wergeland ,  1994 a ,b ;  Bouali ,  Loiseau & Rousset ,  1994 ;  Krause ,
 Byers & Hajnal ,  1994 ;  Murrell & Plant ,  1995 a ) .

 The application of Parallel Processing to Artificial Intelligence has been primarily in
 the areas of vision processing ,  image analysis and robotic systems ,  areas with high
 computational demands .  The utilization of parallelism in the development of
 knowledge-based systems has as a general rule been limited to prototype systems in
 the areas of medical diagnosis (Plant ,  Murrell & Moreno ,  1994 ;  Murrell & Plant ,
 1995 b ;   Todd ,  Stamper & Macpherson ,  1995) .  The extension of parallel processing
 into the area of knowledge-based systems development with a focus on the
 validation and verification issues currently has only a small literature (Murrell &
 Plant ,  1995 b ) .

 The authors of this paper wish to extend the research into the application of
 parallel processing for knowledge-based systems as it is our belief that there is a
 fundamental problem with validating rule-based systems that have been imple-
 mented in traditional programming styles such as LISP ,  CLIPS or OPS5 .  It is our
 premise that these environments inhibit testing due to the complexity of the
 implementations’ syntactic structures ,  and that the validation of the system should
 be performed automatically where possible ,  and at run-time by the system ,  thus ,
 relieving the programmer of this overhead .  Further ,  the system should be specifi-
 able .  In order to achieve these two goals the authors advocate the specification of
 the systems’ rules in a simple decision table form that can be automatically
 translated into an ALICE †  graph-reduction-machine program that is executable in a
 multi-processing environment .

 3 .  Parallel processing and graph reduction

 With the movement of rule-based systems from the research laboratory into an
 industrial setting there has been a significant increase in the size of the rule-bases
 and a demand for faster processing .  Any increase in processing speed has to be
 derived in one of two ways :  either by adapting the representation [e . g .  ordering the
 rules through techniques such as clustering (Mehotra ,  1993)] ,  or by new implemen-
 tation platforms ,  such as parallel processing .  There are many approaches to parallel
 processing that could be taken [e . g .  the Hypercube architecture (Seitz ,  1985) ,  Parlog
 (Clocksin & Mellish ,  1984 ;  Clark & Gregory ,  1986) ,  the Connection Machine (Hillis ,
 1985) ,  Occam and the Transputer (Hoare ,  1985 ;  Jones ,  1986) ,  Neural Nets (Minsky
 & Papert ,  1969 ;  McLelland & Rumelhart ,  1986)) however few have been applied
 (Plant  et al . ,  1994 ;  Todd  et al . ,  1995) to the implementation of knowledge-based
 systems .  In this work ,  we combine both directions ,  making a parallel implementation
 based on an improved representation .  The graph reduction architecture is based
 upon the representation of programs and data in an ef ficiently interconnected form ,
 which allows the elimination of any searching ,  and gives a very natural representa-
 tion of the decision structure .

 †  We do not use ALICE itself ,  but a local implementation (MALICE) which follows the original very
 closely .
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 3 . 1 .  GRAPH REDUCTION

 Graph Reduction systems (Darlington & Reeve ,  1981 ;  Townsend ,  1987 ;  Reeve &
 Zenith ,  1989) provide a form of automatic concurrency in the execution of
 programs .  Programs and data are encoded as graphs in which the nodes represent
 items of data and computational operations ,  and the arcs represent the structural
 relationships between items of data ,  the interdependencies of computational
 operations ,  and the application of operations to data .  Eligible computational nodes
 are selected ,  by nondeterministic means ,  for execution ;  if multiple processors are
 available ,  multiple nodes will be executed concurrently .  Any algorithm translated
 into a graph reduction implementation can be expected to run with a degree of
 concurrency ,  but for optimal concurrency ,  some deliberate design ef fort is ,  of
 course ,  required .  Graph reduction provides a high level conceptual base for program
 design ;  the low level concerns of more conventional parallel platforms (such as the
 interprocess communications overhead ,  and protection of shared data) are abstr-
 acted away .  As the concurrency is virtually automatic and transparent ,  it has no
 impact of its own on the validation and verification process .

 The general principle upon which this technique is built ,  is that a rule-based
 system ,  originally provided in the form of a decision table ,  may be directly and
 automatically translated into a graph .  The graph itself may be understood as a
 program to be executed by a graph-reduction computer .  A very simple example is
 shown below in Figures 1 and 2 ,  which are from Plant  et al .  (1994) where a detailed
 explanation may be found ;  the technique is covered fully in Murrell (1989) and
 Murrell & Plant (1995 b ) .

 Each node in the graph represents an executable ‘‘packet’’ .  A graph-reduction
 machine in the style of ALICE (Darlington & Reeve ,  1981) performs its computa-
 tion by repeatedly selecting at random such a packet ,  and replacing it be an
 equivalent (possibly empty) sub-graph of packets according to a set of programmed
 rules .

 Initially ,  only the ‘‘program’’ packet is eligible for selection ;  as it is dependent
 upon two ‘‘conclude’’ packets ,  those two will become eligible .  Eligibility of packets
 for selection is propagated through out the graph ,  according to the programmed
 rules ,  until some non-dependent packets become selectable .

 When non-dependent packets (e . g .  ‘‘condition’’ packets) are executed they are
 replaced ,  according to the programmed rules ,  by what may be considered results ;

q1:
q2:
q3:

Y
N
Y

Y
Y
 -

N
N
N

X X
X X

c1:
c2:

1 2 3

 F IGURE  1 .  A trivial decision table .



 GRAPH REDUCTION AND VALIDATION  131

 F IGURE  2 .  The graph created from Figure 1 .

 packets dependent upon these results thus become executable ,  until eventually the
 ‘‘conclude’’ packets are able to provide their answers .  An example of a large scale
 application in the domain of psychiatry is described by Plant  et al .  (1994) and a
 detailed case study in graph-reduction development is provided by Murrell & Plant
 (1955 b ) .

 4 .  Verification and graph-reduction

 In this section we consider the aspects of verification that are of key concern to the
 area of rule-based systems .  We take the union of the areas identified by Culbert
 (1990) ,  Preece (1993) and O’Leary (1994) which enumerate types of possible defects
 in the correctness of rule bases :  redundancy ,  conflict ,  circularity ,  and errors
 introduced by incorrect knowledge acquisition .  These aspects of the validation of
 rule-based systems have been considered by other researchers in relation to
 conventional implementations (Nguyen  et al . ,  1985 ;  Rushby ,  1988 ;  O’Leary ,  1994) ,
 and are given a full treatment (with respect to the validation and verification of
 decision tables) in Murrell & Plant (1995 c ) .

 In the following sections we follow the organization of Murrell & Plant (1995 c )
 showing how the four major decision table error types :   Redundant rules  (including :
 identity , subsumption , indirect , unfireable , reducible ) , Conflicting rules , Circular
 rules ,  and  Errors of omission  ( unused inputs , missing rules , impossible combinations ,
 dead end rules ) af fect and are af fected by a graph reduction implementation .
 Accepting the assumption that decision tables used as specifications for graph-
 reduction implementations may not be totally correct ,  it is necessary to be aware of
 both the semantic and syntactic errors that can occur ,  and work towards methods for
 their detection and solution .  In general ,  semanic errors can not be detected and we
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 show what ef fects their presence can have on the behavior of the system .  Syntactic
 errors are easier to detect ,  and for these we also discuss the appropriate detection
 methods .

 4 . 1 .  REDUNDANT RULES

 A redundant rule is simply one which makes no contribution to the system .
 Redundancy may be decomposed into five sub-categories :   identity , subsumption ,
 indirect redundancy , unfireability ,  and  reducibility .  None of these cause any practical
 problems for the graph-reduction implementation .

 4 . 1 . 1 .  Identity
 The first type of redundancy to be considered is that of identical rules ,  which can be
 broken down into two sub-categories :   syntactic  and  semantic  redundancy .

 The case of syntactic redundancy is illustrated thus :

 RULE 26 :  IF X AND Y THEN Z
 RULE 93 :  IF Y AND X THEN Z

 where both rules will be applicable if X and Y have been substantiated .  This can
 cause several problems in traditional implementations in that the rule may be fired
 twice ,  as the conflict resolution strategy is often inef fective in removing or coping
 with redundancy .  However ,  in the graph reduction implementation these problems
 can not arise ,  as once a rule fires it ceases to be computable and therefore can never
 be fired again .  In many cases second and subsequent rules leading to the same
 conclusion would never even be tested once the conclusion has fired .  This also
 illustrates the automatic conflict resolution strategy of this implementation .

 The implementation of redundant rules ,  therefore ,  is not problematic for a
 graph-reduction implementation .  However ,  the developer may wish to detect these
 redundancies prior to implementation .  This can be done when the decision tables
 are constructed .  Syntactically redundant rules can be identified as identical columns
 in a decision table .  For example ,  the rules given above would appear in the form of
 Figure 3 .  This would produce the graph shown in Figure 4 .

 Syntactic redundancy presents no practical dif ficulties ,  it may be taken as a sign of
 an error in the rule-base and is ef ficiently detectable as shown in Murrell & Plant
 (1995 c ) .

c1:
c2:

X
Y

. . .

. . .

. . .

26
 Y
 Y

. . .

. . .

. . .

93
 Y
 Y

. . .

. . .

. . .

. . . X . . . X . . .a1: Z

 F IGURE  3 .  Redundant rules .
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 F IGURE  4 .  Graph reduction of syntactically redundant .

 A less tractable ,  but strongly related problem is  semantic redundancy .  This covers
 cases when two (or more) rules have the same meaning ,  but are formulated in
 dif ferent ways .

 RULE  45 :  IF  X  AND  Y  THEN  ‘‘weight  .  2240lbs’’
 RULE  83 :  IF  Y  AND  X  THEN  ‘‘weight  .  1  ton’’

 (i . e .  the  conclusions  are  semantically  equivalent) .

c1:
c2:

X
Y

a1: Z1

45
  Y
  Y

X
X

83
  Y
  Y

a1: Z2

 F IGURE  5 .  Semantic equivalence .

 These would be represented by the decision table shown in Figure 5 and the graph
 reduction implementation is shown in Figure 6 .  The problem becomes more acute
 when the conditions are semantically but not syntactically equivalent .  For example :

 RULE  63 :  IF  hot  AND  humid  THEN  thunderstorms
 RULE  99 :  IF  sultry  THEN  electricalstorms .

 F IGURE  6 .  Graph reduction of semantic redundant rules .



 S .  MURRELL AND R .  PLANT 134

c1:
c2:
c3:

W
X
Y

a1: Z

7
Y
Y
Y

8
Y
Y
-

X X

 F IGURE  7 .  Subsumption .

 There is no possibility for a solution to this problem being brought about by graph
 reduction or any other implementation method ;  the problem can not be identified
 without some knowledge that is outside the system .  (i . e .  hot and humid means
 sultry) .  Problems of this type (occasionally referred to as  deep inconsistencies ) are in
 general not open to solution without the application of intelligence ,  and arise in
 many dif ferent forms .

 4 . 1 . 2 .  Subsumed rules
 One rule is said to be subsumed by another ,  when it specifies that the same (or
 fewer) actions are to be applied under the same (or stricter) conditions .  Subsump-
 tion is a generalization of the problem of identity ,  and has both syntactic and
 semantic variants ,  of which only the former is practically detectable .  As an example ,
 in the following ,  rule 7 is subsumed by rule 8 .

 RULE  7 :  IF  W  AND  X  AND  Y  THEN  Z
 RULE  8 :  IF  W  AND  X  THEN  Z ,

 which may be represented as a decision table ,  such as Figure 7 .  These would then
 produce the graph shown in Figure 8 .

 Subsumed rules do not create any significant problem for the graph-reduction
 approach to the implementation of production systems because once a conclusion
 has been fired it ceases to be computable and therefore can not be fired again (as in

 F IGURE  8 .  Graph reduction of subsumed rules .
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 the case of syntactic redundancy) .  The only slight problem is that the number of
 packets created may be increased unnecessarily .

 4 . 1 . 3 .  Indirect redundancy
 Indirect redundancy of the form :

 RULE  11 :  IF  p  THEN  q
 RULE  22 :  IF  q  THEN  r
 RULE  33 :  IF  p  THEN  r

 can only be reliably detected by a brute force search over all possible sets of inputs .
 Clearly such a search which would require exponential time is not a  practical
 proposition for any real system (although some systems do attempt this) .  Indirect
 redundancy is again a generalization of Identity ,  and also has an intractable semantic
 variant .

 In our graph reduction approach the search would not be necessary as the
 reduction process would fire based upon the quickest reduction .  Thus ,  a significant
 advantage is achieved through this approach for the usual reason that conclusions
 can not be fired twice .

 4 . 1 . 4 .  Unfireable rules
 A rule may be unfireable for one of three reasons :

 $  its condition is a logical impossibility (e . g .  rule 23 below) ,
 $  its condition is logically possible but no combination of other rules firing can

 satisfy it (e . g .  rule 97 below ,  under the assumption that both m and n can be true ,
 but not at the same time) ,

 $  the condition is semantically impossible (e . g .  rule 16 below) .

 RULE  23 :  IF  p  AND  NOT  p  THEN  r
 RULE  97 :  IF  m  AND  n  THEN  x
 RULE  16 :  IF  vital  AND  unimportant  THEN  action

 The first form cannot occur in standard forms of decision table ,  and is therefore not
 a problem .  The second form can be detected in the decision table after a search over
 all possible input values .  The third form ,  as with all semantic errors ,  can not be
 detected by practical means .

 The presence of an unfireable rule may simply result from incomplete knowledge
 on the part of the original human expert ,  and is not  per se  wrong ;  nor does it cause
 any run-time problems .  Future additions to the knowledge base may reverse the
 situation and render the rule fireable .

 4 . 1 . 5 .  Reducible rules
 When two rules have conditions that are identical but for one variable ,  and that one
 variable appears in a positive form in one rule ,  and negated in the other ,  and the
 actions associated with the two rules are identical ,  then those two rules may be
 reduced to one ,  by simply ignoring the dif ferentiating variable .  For example :

 RULE  9 :  IF  X  AND  Y  AND  Z  THEN  A
 RULE  12 :  IF  X  AND  NOT  Y  AND  Z  THEN  A
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c1:
c2:
c3:

W
Y
Z

a1: A

9
Y
Y
Y

12
Y
N
Y

X X

 F IGURE  9 .  Rule reduction .

 may be reduced to :

 RULE 912 :  IF X AND Z THEN A

 The unreduced form appears in a decision table as shown in Figure 9 .  This would be
 transformed into a graph with the form shown in Figure 10 which executes correctly .
 Reducible rules may be detected and reduced after a search of the decision table ,
 but do not need to be removed .  The only potential disadvantages to leaving them
 unreduced are that more packets are created than are strictly necessary ,  and some
 irrelevant questions may be asked of the user .  The correct operation of the system is
 not compromised .

 4 . 2 .  CONFLICTING RULES

 Rules are in conflict when one allows a particular conclusion to be deduced ,  another
 allows the inverse of that conclusion to be deduced ,  and both are able to fire .  For
 example :

 RULE  1 :  IF  P  THEN  Q
 RULE  42 :  IF  P  THEN  NOT  Q

 or

 RULE  3 :  IF  very – cold  THEN  nice – day
 RULE  40 :  IF  frigid  THEN  NOT  nice – day

 F IGURE  10 .  Graph reduction of unnecessary rules .
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 F IGURE  11 .  Run-time conflict detection .

 Syntactic conflict may be detected by a search of the decision table ;  semantic
 conflict is not practically detectable .  In any case of conflict ,  when the conclusions are
 syntactic inverses (as in the last example above) ,  the graph-reduction implementa-
 tion will always accept whichever conclusion is deduced first and not change if a
 conflict arises later (once a conclusion has fired ,  it can not fire again ,  so can not
 change its logical state) ,  so a user may never become aware of the error .  If there is a
 risk of such conflicts ,  it is possible to add run-time consistency checking in the form
 of an extra packet that monitors the results of conditions that could lead to conflicts ,
 ensuring that improper combinations never occur .

 RULE  17 :  IF  X  THEN  A
 RULE  18 :  IF  W  AND  Z  THEN  NOT  A
 RULE  19 :  IF  Y  AND  W  THEN  A

 This would produce the graph of Figure 11 (conclusions have been omitted for
 clarity) .

 The ‘‘conflict’’ packet ,  combining the trees for [X OR (Y AND W)] and [W AND
 Z] is activated only if both reduce to true or both reduce to false ,  and produces an
 error warning .

 This solution may easily be generalized to cover systems which have sets of
 complementary solutions such as negative / zero / positive (i . e .  sets of conditions
 which are mutually exclusive) ,  by extending the actions of the ‘‘conflict’’ packet to
 signal an error if more than one of its argument packets reduces to true ,  see Figure
 12 .

 4 . 3 .  CIRCULAR RULES

 Circularity is present when there is a sequence of rules ,  each of which ‘‘calls’’ the
 next ,  and the last of which ‘‘calls’’ the first .  This would appear in one of two forms
 shown in Figures 13 and 14 :

 In many existent systems ,  either of these would be likely to cause an infinite loop .
 In a graph reduction implementation ,  this can not happen .  With the first representa-
 tion this is due to the independent nature of packets (Figure 15) .  With the second
 representation ,  a circular structure would be created (Figure 16) .  Once either of X
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 F IGURE  12 .  Conflicting rules flags .

c1:
c2:

W
Z

9 10

Y
Y

a1:
a2:

Z
X

X
X

 F IGURE  13 .  Circular Table 1 .

X
Z

Y               CY
CY               Y

9 10

 F IGURE  14 .  Circular Table 2 .

 F IGURE  15 .  Circularity in the rules .



 GRAPH REDUCTION AND VALIDATION  139

 F IGURE  16 .  Circular rules .

 or Z become true the other will also become true ,  but because packets may only be
 reduced once no infinite loop occurs .  It should be noted that while circularity is
 often an undesired condition in a rule set ,  it does not  necessarily  signify an error .

 5 .  Comments and conclusions

 In this paper we have presented an alternative implementation of rule-based
 systems ,  in an ALICE-like graph-reduction architecture .  The graph-reduction style
 of implementation when applied to a simple decision table specification of the
 knowledge base has shown several advantages over the traditional styles of
 implementation .  The first benefit of this implementation style originates in the
 automatic generation of ALICE programs from the decision table by a transforma-
 tion program .  This relieves the programmer of the code generation overhead ,
 placing the development emphasis upon the specification of the knowledge .  Further
 to this ,  the decision tables can easily be subjected to several validation tests to
 identify errors or highlight possible conflicts (Murrell & Plant ,  1995 c ) .

 Thus ,  there are two paths to reliability :  if the decision tables are accepted as an
 unarguable specification or reality ,  and the transformation into a graph reduction
 program is error free ,  the resultant implementation of a rule-based system is
 guaranteed correct .  Alternatively ,  if the decision tables may be imperfect ,  those
 errors that can be detected ,  will be detected during the transformation process ,  and
 those that can not be detected are usually the result of incomplete knowledge on the
 part of the expert ,  and could not be avoided by any means .

 The paper followed the research of earlier workers (Nguyen  et al . ,  1985 ;  Rushby ,
 1988 ;  Murrell ,  1989 ;  Culbert ,  1990 ;  Preece ,  1993 ;  O’Leary ,  1994 ;  Plant  et al . ,  1994 ;
 Murrell & Plant ,  1995 b ,c ) in categorizing the kinds of error that may occur ;
 redundancy ,  conflict ,  circularity ,  and acquisition defects ,  and examined the conse-
 quences of each of these validation error types in relation to the graph-reduction
 implementation .  This examination revealed that graph reduction is of course subject
 to the same validation problems as other techniques in terms of semantic errors ,  but
 was able to of fer several advantages over traditional implementations for other error
 types .  In terms of syntactic identity ,  subsumption ,  direct redundancy ,  conflicting
 rules ,  and circularity ,  it was shown that the problems associated with traditional
 implementations ,  such as multiple firings of the same rule or infinite loops ,  would
 not occur in a graph-reduction implementation due in part to the system’s inability
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 to reduce packets which compute a rule more than once .  Other categories of error
 such as syntactic redundancy with either identical conditions or identical conclu-
 sions ,  unused inputs or outputs ,  and missing rules were shown to be capable of
 identification within the transformation process from the decision tables .

 Thus ,  we have shown a new approach to the construction of knowledge-based
 systems that has moved the onus of validation and verification away from testing to
 the specification stage ,  whilst accommodating a parallel processing capability in a
 graph reduction form that automatically raises the validity of the rule base
 processing through the packet-based nature of the computations ,  and produces a
 significant speed-up in processing .

 References
 A KKERMANS ,  J .  M .,  S CHREIBER ,  A .  T .  & W IELINGA ,  B .  J .  (1994) .  Steps in constructing

 problem solving methods .   Shareable and Reusable Problem Sol y  ing Methods . Proceedings
 of the  8 th Banf f Knowledge Acquisition for KBS Workshop ,  pp .  29-1 – 29-21 .  Alberta ,
 Canada .

 A LEXANDER ,  J .  H .,  F REILING ,  M .  J .,  S HULMAN ,  S .  J .,  S TALEY ,  J .  L .,  R EHFUSS ,  S .  & M ESSICK ,
 S .  L .  (1986) .  Knowledge level engineering :  ontological analysis .   AAAI 5 ,  pp .  963 – 968 .
 Philadelphia ,  PN .

 ANSI (1992) .  Life Cycle Development of Knowledge Based Systems Using DoD-Std 2167A .
 ANSI / AIAA G-031-1992 .

 A NTONIU ,  G .  (1993) .  Modular design & verification of logical knowledge-bases .   AAAI
 Workshop on Validation & Verification of Knowledge - based Systems .  Washington ,  DC .

 A YEL ,  M .  & L AURANT ,  J .  P .  (1991 a ) .  SACCO-SYCOJET :  two dif ferent ways of verifying
 KBS .  In M .  A YEL  & J .  P .  L AURANT ,  Eds .   Validation , Verification and Test of
 Knowledge - Based Systems ,  pp .  63 – 76 .  Chichester :  Wiley & Sons .

 A YEL ,  M .,  L AURRENT ,  J .  P .  (1991 b ) .  Two dif ferent ways of verifying knowledge-based
 systems .  In M .  A YEL ,  J .  P .  L AURRENT ,  Eds .   Validation & Verification of Knowledge -
 based Systems .  Chichester :  Wiley & Sons .

 A YEL ,  M .  & L AURRENT ,  J .  P .  (1991 c ) . Validation & Verification of Knowledge - based Systems .
 Chichester :  Wiley & Sons .

 B ECKER ,  L .  A .  G REEN ,  P .  G .  & B HUTINAGER ,  J .  (1989) .  Evidence flow graphs for V&V of
 expert systems .   NASA Contractor Report  1 8 1 8 1 0 ,  Langley Research Center ,  Hampton ,
 VA ,  USA .

 B ENCH -C APON ,  T .,  C OENEN ,  F .,  N WANA ,  H .,  P ATON ,  R .  & S HAVE ,  M .  (1993) .  Two aspects of
 the validation and verification of knowledge based systems .   IEEE Expert ,  8 ,  76 – 81 .

 B EZEM ,  M .  (1987) .  Consistency of rule-based expert systems .   Lecture Notes in Computer
 Science ,  3 1 0  .  Berlin :  Springer-Verlag .

 B OEHM ,  B .  W .  (1981) .   Software Engineering Economics .  Englewood Clif fs ,  NJ :  Prentice Hall .
 B OEHM ,  B .  W .  (1988) .  A spiral model of software development and enhancement .   IEEE

 Computer ,  21 ,  61 – 72 .
 B OTTEN ,  N .,  K USIAK ,  A .  & R AZ ,  T .  (1989) .  Knowledge-bases :  integration ,  verification and

 partitioning .   European Journal of Operational Research ,  42 ,  658 – 662 .
 B OUALI ,  F .,  L OISEAU ,  S .  & R OUSSET ,  M .  C .  (1994) .  KBS correction :  a proposal based on

 diagnostic theory .   Proceedings of ECAI - 9 4   Workshop on Validation & Verification of
 Knowledge - based Systems .  Amsterdam ,  The Netherlands .

 B REU ,  R .  (1991) .   Algebraic Specification Techniques in Object Orientated Programming
 En y  ironments  Berlin :  Springer-Verlag .

 B REUKER ,  J .  & V AN DE  V ELDE ,  W .  (1994) (Eds) .   Expertise model document part II :   the
 commonKADS library .  ESPRIT Project P5248 KADS-II / I / VUB / TR / 054 / 3 . 0 / June .

 B REAUKER ,  J .  A .,  W IELINGA ,  B .  J .,  V AN  S OMEREN ,  M .,   DE  H OOG ,  R .,  S CHREIBER .  A .  T .,   DE

 G REEF ,  P .,  B REDWEG .,  B .,  W IELMAKER ,  J .,  B ILLAULT ,  J .  P .,  D AVOODO ,  M .  &
 H AYWARD ,  S .  A .  (1987) .   Model dri y  en knowledge acquisition :   interpretation models .



 GRAPH REDUCTION AND VALIDATION  141

 ESPRIT Project P1098 Deliverable D1 (task A1) ,  University of Amsterdam and STL
 Ltd ,  Amsterdam ,  The Netherlands .

 B UCHANAN ,  B .  G .,  B ARSTOW ,  D .,  B ECHTAL ,  R .,  B ENNETT .  J .,  C LANCY ,  C .,  K ULIKOWSKI .  C .,
 M ITCHELL ,  T .  & W ATERMAN .  (1983) .  Constructing an Expert System .  In F .  H AYES -
 R OTH ,  D .  A .  W ATERMAN ,  & D .  G .  L ENART ,  Eds .   Building Expert Systems .  Reading ,
 MA :  Addison-Wesley .

 C ARPENTER ,  C .  L .  & M URINE ,  G .  E .  (1983) .  Measuring software product quality .  Applying
 software quality metrics .   ASQC Quality Congress Transactions ,  pp .  373 – 377 .

 C HANG ,  C .  L .,  C OOMBS ,  J .  B .  & S TACHOWITZ ,  R .  A .  (1990) .  A report on the expert systems
 validation associate (EVA) .   Expert Systems with Applications ,  1 ,  217 – 231 .

 C HARLES ,  E .  & D UBOIS ,  O .  (1991) .  MELODIA :  logical methods for checking K-bases .  In N .
 A YEL  & J .  P .  L AURANT ,  Eds .   Validation , Verification and Test of Knowledge - Based
 Systems ,  pp .  95 – 105 .  Chichester :  Wiley & Sons .

 C HEN ,  P .  (1976) .  The entity relationship model—towards a unified view of data .   ACM
 Transactions of Database Systems ,  1 ,  9 – 36 .

 C LARK ,  K .  L .  & G REGORY ,  S .  (1986) .  PARLOG :  parallel programming in logic .   ACM
 TOPLAS ,  8 ,  1 – 49 .

 C LOCKSIN ,  W .  F .  & M ELLISH ,  C .  S .  (1984) .   Programming in Prolog .  Berlin :  Springer Verlag .
 C OENEN ,  F .  & B ENCH -C APON ,  T .  (1993) .   Maintenance of Knowledge - Based Systems  London :

 Academic Press .
 C RAGUN ,  B .  J .  & S TEUDEL ,  H .  J .  (1987) .  A decision-table processor for checking

 completeness and consistency in rule-based expert systems .   International Journal of
 Man  – Machine Studies ,  26 ,  633 – 648 .

 C UDA ,  T .  & D OLAN ,  C .  P .  (1991) .  Tool aided non formal knowledge verification .   AAAI
 Workshop on V&V ,  Anaheim .

 C ULBERT ,  C .  (1990) (Ed) .  Verification and validation of knowledge-based systems .   Expert
 Systems with Applications ,  1 ,  197 – 328 .

 D AHL ,  O .  J .  (1990)  Object - orientation and formal techniques .  Department of Informatics ,
 Research Report No .  138 .  University of Oslo ,  Norway .

 D ARLINGTON ,  J .  & R EEVE ,  M .  (1981) .  ALICE ,  a multiprocessor reduction machine .
 ACM  / MIT Conference on Functional Programming Languages and Computer
 Architecture ,  New Hampshire .

 D AVIS ,  R .  & L ENAT ,  D ,  (1982) .   Knowledge - based Systems in AI .  New York ,  NY :
 McGraw-Hill .

 DE  H OOG ,  R .,  M ARTIL ,  R .,  W IELINGA ,  T AYLOR ,  R .,  B RIGHT ,  C .  & V AN DE  V ELDE ,  W .
 (1994) .  The common KADS model set .  ESPRIT Project P5248 KADS-
 II / DM1 . 1b / UvA / 018 / 6 . 0 / FINAL .

 ESPRI ‘93 (1993) .   Sur y  ey and assessment of con y  entional software  y  erification &  y  alidation
 techniques .  SPRI TR-102106 ,  Project 3093-01 ,  Final Report ,  February .

 F OX ,  J .  (1993) .  On the soundness and safety of expert systems .   AI in Medicine ,  5 ,  159 – 179 .
 G EISSMAN ,  J .  R .  & S CHULTZ ,  R .  D .  (1988) .  Verification and validation of expert systems .   AI

 Expert ,  February ,  26 – 33 .
 G INSBERG ,  A .  (1987) .  A new approach to checking knowledge bases for inconsistency and

 redundancy .   3 rd Annual Conference on Expert Systems in Go y  ernment ,  pp .  102 – 111 .
 Washington ,  DC ,  USA .

 G INSBERG ,  A .  & R OSE ,  L .  (1987) .   KB - reducer :   a system that checks for inconsistency and
 redundancy in knowledge - bases .  Technical Report ,  AT&T Laboratories ,  Holmdel ,  NJ ,
 USA .

 G OLD ,  D .  I .  & P LANT ,  R .  T .  (1994) .  Towards the formal specification of an expert system .
 International Journal of Intelligent Systems ,  9 ,  739 – 768 .

 G REEN ,  C .  J .  R .  & K EYES ,  M .  M .  (1987) .  Verification and validation of expert systems .
 Western conference on expert systems .  In U .  G U P T A ,  Ed .   Validating and Verifying
 Knowledge - Based Systems ,  pp .  20 – 29 .  Los Alamitos ,  CA :  IEEE Press .

 G ROVER ,  M .  D .  (1983) .  A pragmatic knowledge acquisition methodology .   Proceedings of the
 International Joint Conference on Artificial Intelligence ,  8 ,  pp .  436 – 438 .  Washington ,  DC ,
 USA .



 S .  MURRELL AND R .  PLANT 142

 G UTTAG ,  J .  V .  & H ORNING ,  J .  J .  (1978) .  The algebraic specification of data types .   Acta
 Informatica ,  10 ,  27 – 52 .

 H ERRE ,  H .  (1993) .  Semantical completeness of model based diagnosis .   Proceedings of
 EUROVAV  ’ 9 3 .  Palma de Mallorca ,  Spain .

 H ILLIS ,  W .  D .  (1985) .   The Connection Machine .  Cambridge ,  MA :  MIT Press .
 H OARE ,  C .  A .  R .  (1985) .   Communicating Sequential Processes .  Englewood Clif fs ,  NJ :  Prentice

 Hall .
 H OLLNAGEL ,  E .  (1989) .   The Reliability of Expert Systems .  Hemel Hempstead :  Ellis Horwood .
 H ORS ,  P .  & R OUSSET ,  M .  C .  (1993) .  Consistency of structured knowledge :  a formal

 framework based on description logics .   Proceedings EUROVAV  ’ 9 3 ,  Palma de Mallorca ,
 Spain .

 H UMPHREY ,  W .  (1989) .   Managing the Software Process .  Reading MA :  Addison-Wesley .
 I NCE ,  D .  C .  & H EKMATPOUR ,  S .  (1987) .  Software prototyping—progress and prospects .

 Information and Software Technology ,  29 ,  8 – 14 .
 J ONES ,  G .  (1986) .   Programming in Occam .  Englewood Clif fs ,  NJ :  Prentice Hall .
 K ANG ,  Y .  & B AHILL ,  T .  (1990) .  A tool for detecting expert system errors .   AI Expert ,

 February  42 – 51 .
 K RAUSE ,  P .,  F OX ,  J .,  O’N EIL ,  M .  & G LOWINSKI ,  A .  (1993) .  Can we formally specify a medical

 decision support system?  IEEE Expert ,  8 ,  56 – 62 .
 K RAUSE ,  P .,  B YERS ,  P .  & H AJNAL ,  S .  (1994) .  Formal specification and decision support .

 Decision Support Systems ,  12 ,  189 .
 K RISHNAMURTHY ,  C .  P ADALKAR ,  S .  S ZTIPANOVITS ,  T .  & P URVIS ,  B .  R .  (1987) .  Methodology

 for testing and validating knowledge bases .   Proceedings of the  3 rd Conference on AI For
 Space Applications ,  NASA JSC ,  Houston ,  TX ,  USA .

 L EHNER ,  P .  E .  (1989) .  Towards an empirical approach to evaluating the knowledge-base of an
 expert system .   IEEE Transactions on Systems , Man and Cybernetics ,  19 ,  658 – 662 .

 L OISEAU ,  S .  (1989) .  La description et la detection des incoherences dans les bases de regles .
 Proceedings of the International Conference on Expert Systems and their Applications ,
 Avignon ,  France .

 L OISEAU ,  S .  & R OUSSET ,  M .  C .  (1993) .  Formal verification of knowledge bases focused on
 consistency :  two experiments based on ATMS techniques .   International Journal of Expert
 Systems :   Research & Applications ,  6 ,  273 – 280 .

 M ARCOT ,  B .  (1987) .  Testing your knowledge-base .   AI Expert ,  2 ,  42 – 47 .
 McL ELLAND ,  J .  L .  & R UMELHART ,  D .  E .  (1986) .   Parallel Distributed Processing .  New York ,

 NY :  MIT Press .
 M EHOTRA ,  M .  (1993) .  Multi-viewpoint clustering analysis .   Workshop Notes , AAAI Workshop

 on Validation & Verification .  Washington ,  DC .
 M ESEGUER ,  P .  (1993) .  Expert system verification through knowledge base refinement .

 Proceedings of the IJCAI - 9 3 ,  Chamberly ,  France .
 M ILLER ,  L .  A .  (1990) .  Dynamic testing of knowledge bases using the heuristic testing

 approach .   Expert Systems with Applications ,  1 ,  271 – 281 .
 M INSKY ,  M .  L .  & P APERT ,  S .  A .  (1969) .   Perceptrons .  New York ,  NY :  MIT Press .
 M ORELL ,  L .  J .  (1988) .  Use of metaknowledge in the verification of knowledge-based systems .

 Proceedings of the IEA - AIE ,  June ,  pp .  847 – 857 .
 M URRELL ,  S .  (1989) .   Guide to malice .  University of Miami ,  Computer Science Technical

 Report No 1 .  Department of Math & Computer Science ,  University of Miami ,  FL .
 M URRELL ,  S .  & P LANT ,  R .  T .  (1995 a ) .  Formal semantics for rule-based systems .   Journal of

 Systems & Software  (in press) .
 M URRELL ,  S .  & P LANT ,  R .  T .  (1995 b ) .  A graph reduction implementation of a production

 system .   Knowledge - Based Systems ,  8 ,  155 – 160 .
 M URRELL ,  S .  & P LANT ,  R .  T .,  (1995 c ) .  Decision tables :  formalization ,  validation and

 verification .   Journal of Software Testing , Reliability and Validation ,  5 ,  (9) .
 NASA C ONFERENCE  P UBLICATION  2491 (1987) .   First Annual Workshop on Space Operations

 Automation and Robotics  ( SOAR ’ 8 7  ) .  Johnson Space Centre ,  Houston TX ,  August 5 – 7 .
 N ASER ,  J .  (1988) .  Nuclear power plant expert system verification & validation .   AAAI

 Workshop Notes on Verification & Validation of Knowledge - based Systems ,  pp .  1 – 18 ,  St .
 Paul ,  MN :  AAAI Press .



 GRAPH REDUCTION AND VALIDATION  143

 N GUYEN ,  T .  A .,  P ERKINS ,  W .  A .  & L AFFERY ,  T .  J .  (1985) .  Checking an expert systems
 knowledge base for consistency and completeness .   Proceedings of the Ninth International
 Joint Conference on AI ,  18 – 23 ,  Los Angeles ,  CA .  pp .  375 – 378 .  August .

 O’K EEFE ,  R .  M .  & O’L EARY ,  D .  E .  (1992) .  Expert system verification and validation :  a
 survey and tutorial .   Artificial Intglligence Re y  iew ,  16 ,  25 – 60 .

 O’L EARY ,  D .  E .,  (1988) .  Methods of validating expert systems .   Interfaces ,  18 ,  72 – 79 .
 O’L EARY ,  D .  E .,  Ed .  (1994) .   Collected Papers of AAAI Workshops on Validation and

 Verification  1 9 8 8 – 9 2 .  Reading ,  MA :  Wiley & Sons .
 O URSTON ,  D .  & M OONEY ,  R .  J .  (1994) .  Theory refinement combining analytical and

 empirical methods .   Artificial Intelligence ,  66 ,  273 – 309 .
 P LANT ,  R .  T .  (1990) .  Validation and verification and testing of knowledge-based systems .

 Heuristics :  The Journal of Knowledge - based Systems ,  3 ,  59 – 67 .
 P LANT ,  R .  T .  (1991) .  Utilising formal specifications in the development of knowledge-based

 systems .  In D .  P ARTRIDGE ,  Ed .   Artificial Intelligence & Software Engineering .  Norwood ,
 NJ :  Ablex Press .

 P LANT ,  R .  T .  & T SOUMPAS ,  P .  (1994) .  An integrated methodology for knowledge-based
 system development .   Expert Systems with Applications ,  7 ,  259 – 271 .

 P LANT ,  R .  T .,  M URRELL ,  S .  & M ORENO ,  H .  R .  (1994) .  Prototype decision support system for
 a dif ferential diagnosis of psychotic ,  mood ,  and organic mental disorders :  Part II .   Medical
 Decision Making ,  14 ,  273 – 289 .

 P REECE ,  A .  (1993) .  A new approach to detecting missing knowledge in expert system rule
 bases .   International Journal of Man  – Machine Studies ,  38 ,  661 – 688 .

 P REECE ,  A .  D .,  & S HINGHAL ,  R .  (1991) .  COVER :  a practical tool for verifying rule-based
 systems .   AAAI Workshop on Validation & Verification Notes .  Anaheim ,  CA .

 P REECE ,  A .  D .,  S HINGHAL ,  R .,  & B ATAREKH ,  A .  (1992) .  Verifying expert systems :  a logical
 framework and a practical tool .   Expert Systems with Applications ,  5 ,  421 – 436 .

 R ADWAN ,  A .  E .,  G OUL ,  M .,  O’L EARY ,  T .  J .  & M OFFITT ,  K .  E .,  (1989) .  A verification
 approach for knowledge-based systems .   Transportation Research - A ,  23A ,  287 – 300 .

 R EEVE ,  M .  & Z ENITH ,  S .  E .,  Eds (1989) .   Parallel Processing and Artificial Intelligence .
 Chichester :  Wiley .

 R OMAN ,  G .,  G AMBLE ,  R .  F .  & B ALL .  W .  E .  (1993) .   Formal deri y  ation of rule - based
 programs . IEEE Transactions on Software Engineering ,  19 ,  277 – 296 .

 R OUSSET ,  M .  C .  (1994) .  Knowledge formal specifications for formal verification :  a proposal
 based on the integration of dif ferent logical formalisms .   Proceedings of the ECAI 9 4 ,
 Amsterdam ,  The Netherlands .

 R USHBY ,  J .  (1988) .   Quality measures and assurance for AI software .  NASA Contact Report
 NASI-17067 ,  Langley Research Centre ,  Hampton ,  VA ,  USA .

 R USHBY ,  J & W HITEHURST ,  R .  A .  (1989) .   Formal  y  erification of AI software .  NASA Contract
 Report 18226 (Task  5) ,  February ,  Langley Research Centre ,  Hampton ,  VA ,  USA .

 S CHULTZ ,  R .  & G EISSMAN ,  J .  R .  (1988) .  Bridging the gap between static & dynamic
 verification .  In U .  G UPTA ,  Ed .   Validating & Verifying Knowledge - Based Systems ,
 pp .  86 – 92 .  Los Alamitos ,  CA :  IEEE Computer Society Press .

 S EITZ ,  C .  L .  (1985) .  The cosmic cube .   Communications of ACM ,  28 ,  22 – 33 .
 SENTAR ‘95 (1995) .   Distributed hybrid systems V&V database annex C .  Technical Report ,

 Sentar ,  Inc .,  Huntsville ,  AL .
 S OLOWAY ,  E .,  B ACHANT ,  J .  & J ENSEN ,  K .  (1987) .  Assessing the maintainability of

 XCON-in-RIME :  coping with the problem of a very large rule-base .   Proceedings of the
 6 th IJCAI ,  pp .  824 – 829 ,  Seattle ,  WA ,  USA .

 S TACHOWITZ ,  R .  A .,  C HANG ,  C .  L .,  S TOCK .  T .  S .  & C OOMBS ,  J .  B .  (1987) .  Building
 Validation Tools for Knowledge-Based Systems .  In  NASA Conference Publication  2 4 9 1 ,
 First Annual Workshop on Space Operations Automation and Robotics  ( SOAR ’ 8 7  ) ,
 pp .  209 – 216 .  Johnson Space Centre ,  Houston ,  TX .  August 5 – 7 .

 S TEIB ,  M .,  S MALL ,  R .,  C ASTELLS ,  C .,  & S CHOFIELD ,  J .  (1991) .  Tailoring VASTT for expert
 system verification ,  validation and testing .   Workshop Notes :   AAAI Workshop on V&V .
 Anaheim ,  AL .

 S UWA ,  M .,  S COTT ,  A .  C .,  & S HORTLIFFE ,  E .  H .  (1982) .  An approach to verifying
 completeness & consistency in a rule-based system .   AI Magazine ,  3 ,  16 – 21 .



 S .  MURRELL AND R .  PLANT 144

 T ODD ,  B .  S .,  S TAMPER ,  R .  & M ACPHERSON ,  P .  (1995) .  A probabilistic rule-based expert
 system .   International Journal of Bio - Medical Computing  (in press) .

 T OWNSEND ,  P .  (1987) .  Flagship hardware and implementation .   ICL Technical Journal ,  5 ,
 575 – 594 .

 TRILLIUM (1992) .  TRILLIUM :  telecom software product development capability assess-
 ment model .  Bell Canada Quality .  Technical Report Draft 2 . 2 .,  Bell Canada ,  July .

 V ALIENTE ,  G .  (1993) .  Verification of knowledge-based redundancy and subsumption using
 graph transformations .   International Journal of Expert Systems :   Research and
 Applications ,  6 ,  341 – 355 .

 V ANTHIENEN ,  J .  (1991) .  Knowledge acquisition and validation using a decision table
 engineering workbench .   World Congress of Expert Systems ,  pp .  1861 – 1868 ,  Orlando ,  FL ,
 USA .

 V ERMASAN ,  A .  I .  & W ERGELAND ,  T .  H .  (1994 a ) .  A formally based methodology for deriving
 verifiable expert systems from specifications .   Workshop Notes , AAAI Workshop on
 Validation & Verification .  Seattle ,  WA .

 V ERMESAN ,  A .  I .  & W ERGELAND ,  T .  (1994 b ) . Expert system  y  erification and  y  alidation :   issues
 and approaches .  Working Paper :  82 / 1994 ,  Centre for Research in Economics and
 Business Administration ,  University of Oslo .  Norway .

 W EITZEL ,  J .  R .  & K ERSHBERG ,  L .  (1989) .  Developing knowledge-based systems :  reorganising
 the system development life cycle .   Communications of the ACM ,  32 ,  482 – 490 .

 W IELINGA ,  J .  B .  & B REUKER ,  J .  A .  (1984) .  Analysis techniques for knowledge-based systems :
 part 1 .  Report 1 . 1 Esprit Project 12 .

 Z LATAROVA ,  N .  (1991) .  VVR :  a uniform framework for expert system knowledge bases
 verification ,  validation and refinement .   Workshop Notes :   AAAI Workshop on V&V ,
 Anaheim ,  AL .


