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Abstract 

This paper develops a methodology for benchmarking knowledge-based systems that practitioners may use to 
perform a comparative analysis of expert system shells. A program utilizing a deliberate instructional mix was found 
to be the most suitable and accurate way to measure the value of shells. The benchmark is intended for rule-based 
shells, such as CLIPS, VP-Expert and Ibis. The methodology for the approach is a generic rule-based algorithm that 
is easily adaptable to meet the language requirements of individual shells. We present results for three shells. 
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1. Introduction 

The concept of expert systems [12] has existed 
since the mid-sixties, however it was not until the 
eighties, when the microcomputer revolution oc- 
curred, that this technology was made easily ac- 
cessible in a business environment [14]. Expert 
system technology has two levels application pro- 
grams (e.g., MYCIN [13]) and tools (the “shells”, 
by which applications are developed and run e.g. 
EMYCIN [151X Though there are many expert 
system shells available, there is no measurement 
technique that is generally used to compare their 
performance. We can find out if one expert sys- 
tem shell offers more capabilities than another, 
but we cannot determine from the packaging that 

lAcknowledgement: The authors wish to thank the anony- 
mous referees and Professor Sibley for their useful comments. 

comes with the system how well any given shell 
could process a standardized problem. Inability 
to judge the performance of a shell can prove 
very frustrating, especially to those people who 
are first time purchasers/users of this software 
and have no alternative system with which to 
make a comparison, or for users such as NASA 
who run a large number of systems upon their 
shells, and therefore where a saving in processing 
speed over all systems could be advantageous. It 
is the intent of this paper to fill this gap by 
developing a methodology to benchmark expert 
system shells. 

2. Expert systems shells’ benchmark strategy 

The following seven step procedure is used to 
create a benchmark system for expert system 
shells. First, the target area is defined, this is the 
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environment in which the benchmark is to be 
utilized. The constraints for the benchmark are 
then laid down; these are the “benchmark goals,” 
which cover aspects such as accuracy, sensitivity, 
etc. Having determined these parameters, the 
techniques by which the benchmark is to be con- 
structed is selected, along with the statistical ap- 
proach that will be used to analyze the results of 
performing the experiments. Having determined 
the framework in which the benchmark is exam- 
ined, the standardized benchmark program is de- 
signed and implemented. Finally, the benchmark 
programs are run and the analysis performed. 

2.1. Target area definition 

The benchmark will be designed to measure 
the execution speed of development tools under 
the workload imposed by a typical business expert 
system. The shell will be running on an IBM PC 
or compatible machine with a version of the 
MS-DOS operating system and a hard disk drive. 
In order to measure the performance of our 
target area, we must first determine its relation- 
ship to the other components of the system. We 
also need to understand the effect that other 
factors have on the target area [9]. Obviously, the 
benchmark will be influenced by the speed of the 
compiler or interpreter; in our case this is the 
shell program. In turn, the compiler or inter- 
preter’s performance is influenced by the operat- 
ing system. The operating system (MS-DOS) and 
the machine (IBM PC) remain constant through- 
out the experiment for all shells in order to 
minimize test variance. The benchmark program 
design is standardized, such that all shells use as 
small a set of operating system features as possi- 
ble, minimizing bias. However, without access to 
the shells’ source code, a complete determination 
of the operating system shell dependence cannot 
be made. In turn, we note that software perfor- 
mance is influenced by hardware performance, 
which in turn, is composed of processing speed 
and input/output performance. The benchmark 
may be run on different types of PC compatible 
computers. So, we must provide a way to assess 
the differences in processing speed and hard disk 
performance produced by the differences in hard- 

ware characteristics. We need this assessment to 
relate the results of running the benchmark pro- 
grams on different computers. 

Here, we discuss the effect of running the 
benchmark programs on three different ma- 
chines: a 10 MHz XT compatible, an 80386SX 16 
MHz AT compatible, and an 80386DX 25 MHz 
AT compatible machine. Future shell benchmark 
programs may be written for new development 
tools, using the specifications produced here; 
these new programs may be run on different 
machines. The hardware benchmark programs 
will provide a way of relating future results to 
those discussed here, since hardware characteris- 
tics may be compared using the results of the 
commercial hardware benchmark programs. 

2.2. Goals of the expert system shell benchmarks 

After defining the target area, the goals of the 
benchmark must be set in terms of accuracy, 
sensitivity, portability, and effort [3][4]. We begin 
with accuracy. A goal of the benchmark is to 
provide sufficient accuracy to guarantee that if it 
takes a shell less time to execute the benchmark 
than another, it is because that shell is faster for 
many business applications. However, there may 
be expert systems that, due to the nature of their 
algorithms, run faster on the shell though the 
benchmark program ran slower. This is because 
the benchmark is based on an estimated average 
of the typical business expert system’s workload. 
In order to obtain the desired level of accuracy, 
we must be careful in applying five points. First, 
select the contents of the benchmark programs 
carefully, so that it represents the work load 
imposed by a typical business expert system. Sec- 
ond, be clear and concise in preparing the bench- 
mark specifications to avoid any programmers’ 
interpretations and abilities that produce inaccu- 
racies. Third, analyze and standardize the con- 
tents of the system files of the machines (e.g., 
possibly empty all other directories) used to run 
the benchmarks; system files are invoked in all 
operations. Fourth, to guarantee the desired level 
of accuracy, consider problems introduced by any 
lack of compatibility among different develop- 
ment tools. For example, differences in language 
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semantics can be a source of inaccuracies. Most 
development tools provide a syntax to create pro- 
duction systems; the production rules should fol- 
low a standard structure, as depicted in Fig. 1. 
To avoid possible implementation inaccuracies, 
the benchmark only includes production rules. 

The fifth consideration, involves the method of 
measuring the execution time of the benchmark 
programs. 

We also have to define goals in terms of sensi- 
tidy. The benchmark must be able to show major 
differences in execution speed of the shells. It 
must be sensitive to those instructions most com- 
monly used by business expert systems. To guar- 
antee this, we perform a thorough statistical anal- 
,ysis of the selected variety of expert systems. 

Because of the differences in syntax of the 
development tools, portability is an important 
issue. By using only production rule systems, the 
syntax becomes almost standard with a few varia- 
tions due to wording and termination characters. 
This makes the benchmark portable; translating 
the benchmark involves modifying the syntax only 
slightly. 

It is also important to provide for variety in 
control commands. An expert system may be 
modelled in two portions: control code and rules. 
The control code tends to be different from one 
shell to another. For this reason, we try to keep 
the control architecture of the benchmark as small 
as possible, while attempting not to bias the ex- 
periments in any way. 

The 

IF condition 
THEN act i on-a 

[ELSE act ion-b] . 

The condition is also known as the left hand side of the rule (LHS); 
action a and action b are know as the right hand side (RHS). 
The ELSE clauztional. 

Fig. 1. Syntax of IF/THEN/ELSE rules. 
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of a system, such as the number of assignment 
statements, operations, loop control statements, 
and other instructions contained in the code of 
the program. Dynamic analysis reflects the actual 
behavior of the program, achieved through count- 
ing the number of times each type of instruction 
is executed rather than just counting the number 
of occurrences, in the program. 

To obtain accurate profiles of the business 
systems that we were using as the basis of our 
benchmark programs, we performed both dy- 
namic and static analysis, through a technique 
called Real Problem Execution Simulation (RE- 
PROES), in which a manual procedure was per- 
formed to execute a series of case studies on 
actual business expert systems. 

2.6. Shell internal functioning 

After determining the type of statistics desired 
and the method to compile them, we had to 
define those characteristics of expert systems we 
wished to study. Every characteristic examined 
must have an impact on the execution speed of 
expert systems and must represent the vast major- 
ity of the running time of the programs. The two 
key components in the inferencing procedure are 
the chaining mechanism and pattern matching. 

2.7. Focus of the statistical analysis 

Pattern matching is a key element for both 
forward and backward chaining methods. Thus, 
composition of patterns is a major element in the 
systems performance. However, the literature 
covering the relationships of performance to pat- 
tern composition or size is weak. 

The importance of this can be seen by running 
several tests on VP-Expert, Ibis, and CLIPS [it 
should be noted that these shells were selected 
arbitrarily and the benchmarks produced are not 
intended to be a reflection of the commercial 
suitability of the products. The paper present a 
benchmark methodology and uses these shells 
only to demonstrate the technique]. The tests 
were to determine if the length of the patterns 
made any difference in the execution time. Pat- 
tern length refers to the number of ASCII char- 
acters composing each pattern. The knowledge 
bases of these tests did not include any rules. 
Their only function was to assert 200 facts to the 
cache memory; that is, to relate one pattern to 
another. The syntax of Ibis and VP-Expert’s as- 
sertions are very similar: pattern _ a = pattern _b. 

The syntax of CLIPS is different: DEFFACTS 
(assertion _ namecpattern _ apattern _ bl). 

Although both instructions may seem differ- 

Pattern Assertions 

Average Execution lime Expressed in Seconds (a) 

Pattern Lengths 25 X 25 25 X 2 2 X 25 2x2 

CLIPS 1.1515 0.9075 0.9095 0.6645 
VP-Expert 9.5665 9.5675 1.9625 1.9485 
Ibis 3.9610 3.9570 1.4470(b) 1.4340(b) 

(a) These times are the average of 20 executions running on a 803860X 
25 MHz. 

(b) Ibis requires variable names to be at least 3 characters tong 

r- ~ Percentage Changes From Results of 25 X 25 

Pattern Lengths 25 X 25 25 X 2 2 X 25 2x2 

CLIPS 0.00% -21.19% -21.02% -42.29% 

VP-Expert 0.00% 0.01% -79.49% -79.63% 
Ibis 0.00% -0.10% -63.47% -63.80% 

Fig. 2. Pattern assertion execution times. 
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ent, they have the same purpose: to make a 
logical connection between the two patterns. Fig. 
2 contains the results of these tests. 

Although the number of assertions was kept 
constant, decreasing the size of the patterns pro- 
duces reductions in run-time of up to 80%. 
Though the programs only tested assertion effi- 
ciency, they proved that number of instructions 
executed is not the only factor to be observed. 
The length of the patterns used by business ex- 
pert systems must also be examined, allowing us 
to determine the average length of the patterns 
used by most business expert systems. The shell’s 
efficiency in pattern matching and the size of 
these patterns will have a tremendous effect on 
the execution speed of expert systems. 

It is important to note that the tests men- 
tioned above are not benchmark programs. They 
are intended to demonstrate the differences in 
execution times produced by variations in pat- 
terns’ lengths, rather than demonstrating the 
speed of the shells. These tests were performed 
by creating sample knowledge bases through pro- 
gram generators. 

Rules stored in the knowledge base is the next 
issue. First, the total number of rules must be 
counted. The more rules, the greater the search 
space for the inference engine. We also must 
count how many of these rules were actually 
executed. In backward chaining, we count rules 
that fail as fired rules. That is, if the inference 
engine fails in an attempt to fire a rule, it will 
have to perform a second search for another rule. 

The final factor to observe is the composition 
of the rules fired. The rule components are di- 
vided into those included in the LHS and those in 
the RHS. In the rules that fail, we will record 
those elements of the RHS that were executed as 
the only components of that rule. This must be 
done because our benchmark will run using both 
forward and backward chaining. The workload 
must be identical for both methodologies. Instead 
of having rules that fail, we increase the number 
of rules to be executed. This produces a similar 
effect on the benchmark’s workload. To empha- 
size, it is critical to note the characteristics of the 
patterns used, particularly because this will have 
a great impact on the speed of the conflict resolu- 

DYNAMIC STATISTICS(a) 
Dynamic Behavior of a Typical Business Expert System 

N&r of Rules 

Rules in the knowledge base: 53 rules total 
N&r of rules fired: 44 rules total (b) 
Nurrber of rules fired from uithin another rule: 25 rules (c) 
Average depth of an intermediate chain: 3 rules (d) 

Conposition of the LHS 

stringpttern a = stringgattern-b: 
length of string_pattern_a: 

50 coqoarisons total 
6 characters average 

length of stringgattern-b: 
integer I(‘<’ 

6 characters average 
‘>’ I<=1 

real ilxl 
I>=’ ‘<>‘)I! integer: 11 comparisons total 

‘>’ 1CSfi ,,=-I l<>l)li real: 14 comparisons total 
AND’s: 13 instances 
OR’s: 9 instances 

Con-position of the RHSfe) 

stringgattern-c = stringgattern-d: 57 string assertions total 
pattern = real-n&r: 9 real n&r assertions 
pattern = integer_nunber: 7 integer assertions total 
length of stringgattern-d: 6 characters average 
pattern-e = pattern-f ‘(‘+I 
pattern-h = pattern-1 IC’xl 

1-1)11 pattern g: 
‘/‘I’, pattern:j: I 

8 computations total(f) 
6 computations total(g) 

Fig. 3. Resulting data from the statistical analysis. 
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tion process. All types of comparisons and asser- 
tions must be recorded, including the type and 
size of the elements being compared or stored. 
Although development tools offer many other 
functions such as I/O, graphics and spreadsheet 
interfaces, these tend to be nonstandard from 
shell to shell. We therefore concentrate on the 
real burden of expert system processing: conflict 
resolution and inference. 

We next examined six business expert systems 
in operation through the REPROES technique. 
The results of this systematic study are compiled 
in Fig. 3, where the letters between brackets refer 
to the following: 

(a) The results of this data may vary from 
execution to execution, since they are based 
on actual behavior of the programs tested. 
The path followed to reach a solution 
changes with the problem presented to the 
expert system. This produces a different 
program behavior for each different prob- 
lem solved. The results are the averages 
obtained by running each expert system 
several times, following the REPROES 
technique. 

(b) This result includes partially fired rules of 
the backward chaining expert systems 
tested. 

cc> 

(4 

(e> 

(f, d 

This result counts for the rules that are not 
fired from the control architecture but from 
within another rule, either by a FIND 
statement or during the inference process. 
An intermediate chain occurs when a rule 
calls another rule. The second rule calls a 
third rule, and so on. This result measures 
the average number of rules called. 
The RHS of the rules fired may contain 
additional statements not considered here. 
These numbers only represent the data 
considered relevant to the benchmark de- 
sign. 
Multiple operator statements count as mul- 
tiple statements. For example, the state- 
ment pattern = A X B + C counts as two 
statements, one multiplication and one ad- 
dition. 

2.8. Benchmark design 

After determining the actual behavior of a 
typical business expert system, we proceed to the 
design stage of the benchmark. This step pro- 
duces the program specifications. These are based 
on the dynamic statistics. Fig. 4 includes the 
benchmark program specifications. The imple- 

Benchmark Program Specifications 

The benchmark programs must have 53 rules, and only 44 out of 
those 53 rules will get fired during execution. 25 of the 44 
rules will be executed from within other rules, and the rest 
nust be called from the control architecture. The average 
depth of the intermediate chains r-rust be 3 rules. There will 
be 50 string comparisons. The benchmark program must have had 
a total of 13 AND and 9 OR statements in the LHS of fired 
rules. Also, there must occur 57 string comparisons during the 
execution of the program. The average length of all string 
patterns must be six characters. There will be 8 additions ant 
subtractions altogether, and 6 multiplications and divisions 
altogether, as well. The number of additions must be the same 
as the number of subtractions. This also applies to the 
number of divisions and multiplications. All string patterns 
used throughout the program must be different. This applies 
to rule names, patterns, and contents of the variables. Each 
rule should have a comment, stating the rule n-r. The 
program should not use any type of display or print statement. 

Fig. 4. Benchmark program specifications. 



R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101 95 

mentation of the benchmark programs must fol- 
low these specifications closely. 

2.9. Implementation of the benchmark programs 

We attempt to benchmark three development 
tools: VP-Expert Version 2.1 by Paperback Soft- 
ware International, CLIPS version 4.2 developed 
at NASA/Johnson Space Center, and Ibis educa- 
tional version 4.33 by Intelligence Manufacturing 
Company [2][8][16]. VP-Expert and Ibis use back- 
ward chaining, whereas CLIPS utilizes forward 
chaining. 

Benchmark programs were produced through 
our code generator, which itself was written in 
Clipper Version Summer 87. However, due to the 
divergence in logic between forward and back- 
ward chaining, the benchmark for CLIPS varies 
slightly from the other two benchmark programs. 
The first difference is that the contents of the 
LHS and the RHS had to be altered. The result 
of running both sets of rules will be the same, and 
the processing requirements for both is very simi- 
lar. In addition, CLIPS requires an additional 
rule that invokes all other rules. This rule starts 
the program by making the necessary pattern 
assertions to the cache memory required by the 
other rules. Even with these differences, the bur- 
den imposed by the CLIPS’ benchmark program 
is identical to the Ibis and VP-Expert programs 
within our accuracy constraints. 

2.10. Timing of the benchmark programs 

Upon developing the benchmark programs, we 
must devise a technique that guarantees precision 
and fairness in measuring execution times. The 
first alternative is to use the internal clock of the 
computer. The major limitation of this approach 
is that the internal clock only counts in seconds, 
so lack of precision rules out this option. There- 
fore, we must use an external chronometer. The 
new problem is therefore: how can we start and 
stop the external timer? Because human response 
time is slow and inconsistent, manual control is 
not effective. We need to create an interface 
between the computer and the timer that is ac- 
cessible from all expert system programs. In addi- 
tion, portability becomes an issue. 

As a result, we created a purpose built timing- 
device: The “Chronosound”. As its name sug- 
gests, this device is a chronometer that works 
with sounds. The instrument is connected to the 
terminals of the internal speaker of the com- 
puter. It contains an internal audio amplifier that 
transforms the speaker output into the necessary 
voltage needed to activate a micro relay. This 
relay, in turn, controls an external chronometer. 
Fig. 5 shows the circuit diagram of the Chrono- 
sound. 

In testing the measuring device, we discovered 
that different computers send different output 
voltage levels to their speakers. To amend these 
discrepancies, we adjust the audio level through 
the audio gain control. The frequency and dura- 
tion of the sound that starts and stops the 
chronometer may need adjustment and this is 
determined through a program that tests differ- 
ent frequencies and durations, so that the opti- 
mum signal for a given computer can be identi- 
fied. After obtaining the frequency and duration 
of sound, we use a small program “START- 
STOP.EXE” that contains the instruction 
“sound-frequency, duration”, (frequency and du- 
ration contain the values obtained before). Run- 
ning this program will cause the Chronosound to 
start or stop the chronometer, depending on its 
previous status. 

To use the Chronosound with our benchmark 

I Audio Amplifier Circuit 

LM366 
400mWAudio Amplilicr 
26 to 46 dB Gain 
Oulescenl Drain -3mA 
Archer CatNo. 276-l 731 

speaka - 

Input+ 
1OGU 

Fiihrn 

Fig. 5. Chronosound’s electrical diagram. 
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Overall 

Video Speed 
Math Speed 

Average Seek Time 
Track to Track Seek Trne 

Transfer Speed 

Disk Capacity 
Number of Cylinders 

Number of Heads 

Number of Sectors per Track 
Transfer Speed 

Average Seek Time 
Track to Track Seek Trne 

Performance Index 

CPU speed 

Disk Speed 
Average Seek lime 

Track to Tracl Seek Time 

Tlanster Speed 

Overall Performance Index 

465 762 3,543 5.212 3.2i7 6.995 CharacteresISecond (e) 
6.5 13.6 31.2 60.4 35.4 121.5 Kilo-Whetstones (e) 

64.1 64.6 19.8 19.6 21.2 20.7 Milliseconds (f) 
0.8 0.0 6.0 6.0 1.0 1 .O Milliseconds (fj 

28.2 100.1 594.3 494.3 514.0 514.0 Kilobytes/Second (r) 
CORE Disk Performance Test Proaram V. 2.8 

32.7 80.3 89.0 Megabytes (r) (9) 
939 922 1,023 Cylinders (f) (g) 

4 5 10 Heads (r) (g) 
17 34 17 Sectors (1) (9) 

28.1 189.1 670.5 666.2 807.0 960.0 Kilobytes/Second (g) 
59.6 62.7 6.1 20.1 21.2 21 .O Milliseconds (g) 
16.6 17.0 6.1 6.2 1.2 1 .O Milliseconds (g) 

1.090 2.003 6.741 6.823 7.396 8.458 Benchmark Units (g) 

Norton Utilities V.5.0 System lntormatfon Benchmarks 
I.0 2.0 4.9 8.9 5.9 22.5 Benchmark Units (h) 
0.8 1.5 6.3 6.3 6.6 7.1 Benchmark Units (i) 

62.95 62.83 19.72 19.71 20.87 20.89 Milliseconds (i) 
9.81 9.93 5.17 5.16 3.62 3.51 Milliseconds (i) 
29.1 142.7 711.9 711.1 780.9 878.1 Kilobytes/Second (i) 

0.8 1.8 5.3 8.0 6.1 17.3 Benchmark Units fj) 

Fig. 6. Benchmark results. 

Shell Benchmarks’ Execution Times 

80386Sx/1OMlIz 

80386Sx/16MHz 

80386DXQSMH 

CLIPS VP-Bxpert Ibii 

Fig. 7. Execution times of the shell benchmark programs. 

programs, we include two system calls within the 
benchmarks to the program START-STOP.EXE. 
The first call must be placed at the beginning of 
the expert system and the other at the end. 

The Chronosound was used in a way to guar- 
antee that all times are taken under the same 
conditions. The results produced by the Chrono- 
sound have a 0.03 seconds variance. The average 

10 MHz: 2.0 
80386 SX - 10 MHz: 4.9 
80386 SX - 16 MHz: 8.9 
80386 DX - 8 MHz: 5.9 

Fig. 8. Norton’s CPU benchmark results. 
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Average = 7.333 
Standard Deviation = 7.174 

(l.O-7.333)/7.174) = -0.911 
(2.0-7.333)/7.174) = -D.771 
(4.9-7.333)/7.174) = -0.367 
(8.9-7.333)/7.174) = 0.191 
(5.9-7.333)/7.174) = -0.228 
(22.5-7.333)/7.174) = 2.086 

Fig. 9. Computations to produce Fig. 10. 

time for 40 executions of the shell benchmark 
programs on each computer were calculated. The 
number of executions was chosen to obtain the 
execution times within 0.015 seconds with 98% 
confidence or better. Using the standard sample 

size formula the actual result calculated was 22 
samples or executions; but by increasing the num- 
ber of samples to 40, we also increase the confi- 
dence factor. By measuring 40 executions, we are 
at least 98% confident that the margin of error is 
not greater than 0.015 seconds. 

Since the three computers used to run the 
benchmarks allowed is to select the processor’s 
speed, all benchmarks were run at both speeds 
available on each machine. Fig. 6 contains the 
results obtained from all the benchmarks, includ- 
ing the shell and the hardware benchmarks. 

With all the benchmark programs run and 
compiled, the results of the benchmarks can be 
compared to determine the fastest shell. These 
results are diagramed in Fig. 7. 

Combined Benchmarks Results 
In Number of Standard Deviations from the Mean 

Grouped by Benchmarks' Target Areas 

X-l-1 8088 ATI 80386SX ATI 80386DX 
+77Whx IOMh. IOMhx 16Mhr Ihlhx UMh= 

-0.244 1.999 . . I 

Average (“) a.997 -0.823 1 -0.296 0.368 1 -0.256 2003 

Transfer Speed (i) -1559 

Transfer Speed (r) -1.555 

Transfer Speed (g) -1.573 

Average Seek Time (O)(i) -1.411 

Average Seek Time (*)(I) -1.407 

Average Seek Time (O)(g) 6.802 

Track to Track Seek Time (O)(i) -1.228 

Track lo Track Seek Time (‘)(o -0.771 

Track IO Track Seek lime (*)(g) -0.829 

Disk Speed (i) -1.538 

0.515 0.513 0.725 1.020 

0990 0.540 0.629 0.629 

0326 0.373 0.730 1.242 

0.794 0.796 0.617 0.614 

0.792 0.792 0.582 0.654 

2.143 0.142 -0.194 -0.185 

0:022 0.027 1.153 1.271 
-0.641 -0.641 1.412 1.412 

-0.560 -0.567 1.178 1.611 
0.595 0.595 0.711 0.905 

Disk Performance Index(g) -1.542 -1.217 1 0.471 0.500 0.705 1.083 

Average (“) -1.292 -1.138 1 0.495 0.253 0.750 0.932 

Overall Performance Index 0) -1.065 4.879 1 -0.231 0.268 1 -0.083 1.990 

Fig. 10. Number of standard deviations away from the mean. 
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An analysis of the results in Fig. 7 shows us 
that Ibis performance is far from satisfactory. It 
took the shell almost a minute to run the bench- 
mark on a 4.77 MHz PC, more than nine times 
CLIPS’s run time, and five times VP-Expert’s run 
time. The Ibis requires a powerful computer to 
provide an acceptable response time. CLIPS, on 
the other hand, proved to be the fastest shell. Its 
response time was good for almost all the ma- 
chines. The only case where this execution time 
was not satisfactory was in the 4.77 MHz test, 
which took over six seconds to execute. Since this 
type of computer is almost extinct, this becomes 
less of an issue. CLIPS also produced interesting 
results for the 16 MHz 80386SX and the 25 MHz 
80386DX. Although the first machine is faster 
than the second one, CLIPS runs faster on the 
SX. The only explanation to this phenomena is 
the fact that the hard disk on the SX is slightly 
faster than the one on the DX. Still, the differ- 
ence of only five hundredths of a second is quite 
small, if compared to the difference obtained 
from the Ibis benchmarks (2.327 seconds slower 
on the SX than on the DX). From this one may 
conclude, CLIPS uses the hard disk more than 

VP-Expert and Ibis, since VP-Expert and Ibis 
behaved as expected, running faster on the faster 
machine. This may make shells such as VP-Ex- 
pert and Ibis more competitive with faster 80486 
and subsequent generation processors. 

Because the values represent different types of 
information and are expressed with different no- 
tations, it is difficult to infer the relationships 
among the different variables. We created Fig. 10 
to show the relationships. The values in Fig. 11 
are stated as “the number of standard deviations 
that each value of Fig. 6 moves away from the 
average computed for that benchmark”. This was 
achieved by determining the CPU speeds as re- 
ported by Norton Utilities CPU Speed bench- 
mark, Fig. 8. 

We calculated the average (7.3331, together 
with the standard deviation (7.174). With these 
two figures, we can perform the computations 
shown in Fig. 9. 

The numbers we calculated are the same as 
those of the line “CPU Speed (h)” of Fig. 10 
although Fig. 10, does not provide the actual 
results of each test, it enables us to make compar- 
isons among the different characteristics of the 

80366SXAOMhz 

80386SNlGMhz 

80386DXBMhz 

80386DXf25Mhz w VP-Expert 

CLIPS 

Fig. 11. Differences in shell benchmarks’ execution times. 
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hardware and the running speed of the shell 
benchmark programs. 

The rows in Fig. 10 have been sorted by the 
target area of the benchmarks. The first section 
includes the expert systems’ benchmarks. The 
second section includes the benchmarks targeted 
at the processing speed. The third section in- 
cludes the hard disk benchmarks. The last section 
includes the overall hardware benchmark. 

Fig. 11 provides a graphical representation of 
the differences in execution speed among the 
computer runs. The term “computer run” refers 
to the execution of a benchmark program on a 
given machine at a given speed. Because each 
machine allows two speeds, two runs can be ob- 
tained from each. The vertical axis indicates the 
“number of standard deviations away from the 
mean.” The three plots are the three shell bench- 
marks. 

Fig. 12 shows that the execution times for the 
three benchmarks denoted almost the same pat- 
tern for all six computer runs. The three lines, 
representing the three benchmark programs, are 

almost identical because the instruction mix of 
each program is equivalent. If this were not the 
case, we would not see such even behavior among 
the shells’ execution times when switching from 
one computer run to the next. 

Finally, computer performance is the product 
of several factors and hardware processing speed 
will have an influence on shell performance. Fig. 
12, illustrates this point and provides a graphical 
perspective of the influence that different hard- 
ware characteristics have upon shell perfor- 
mance. 

Fig. 12 is based on the calculated averages 
obtained for the four groups of benchmarks of 
Fig. 11: shells, processing speed, disk speediness, 
and overall hardware performance. The vertical 
axis shows the number of standard deviations that 
each run is away from the computed average for 
that type of benchmark over all the computer 
runs, as calculated in Fig. 10 on the rows labeled 
“Average (** 1” and “Overall Performance Index 
(J)“. 

The four plots represent the changes in bench- 

Relationship Between Hardware and Shell Performance 
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CPU 

q Disk 

Computer Run 
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Fig. 12. Relationship between hardware and shell performance. 
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mark results from one computer run to the next 
for each of the four benchmark groups. We can 
see how the shell’s benchmarks ran faster, thus 
taking less time to execute on faster machines 
that obtained higher ratings on the hardware 
benchmarks. Note that, the shell benchmarks’ 
results are given in seconds, whereas the com- 
mercial hardware benchmarks produce ratings. 
The faster the hardware, the higher the ratings of 
the hardware benchmarks; the faster the shell 
benchmarks executed, the less time to run them. 

A final observation is that differences in Disk, 
CPU and Overall Hardware Speed produce 
changes in the execution speed of the bench- 
marks to different degrees. As noted earlier when 
selecting goals, the shell benchmarks are not 
hardware insensitive. The results of the hardware 
benchmarks allow the reader to relate possible 
future benchmarks of other shells run on differ- 
ent hardware. 

3. Conclusion 

We attempted to develop a benchmark for 
shells or development tools. These benchmark 
programs allow for comparison of different shells 
based on their execution speed. In the past, such 
comparisons could only be made based on the 
features and capabilities of the different pro- 
grams available. After implementing the bench- 
mark programs, we see that CLIPS is faster than 
Ibis, for business applications. If we only look at 
the features and capabilities of the programs, Ibis 
would probably be the winner, because it pro- 
vides excellent development and user interfaces. 
In addition, Ibis offers both forward and back- 
ward chaining, while CLIPS only permits forward 
chaining. 

In the past, researchers have attempted to 
develop benchmark programs for expert systems. 
Their major flaw was that they did not establish 
the link between their benchmark programs and 
the real world. People developed expert systems 
to compare different tools, but only to a certain 
degree. Although we can use an expert system 
that solves the “monkey and the bananas” prob- 
lem to compare shells [6], we cannot conclude 
that a shell that runs this program in less time 

will also run business applications faster. The 
second error was that they did not utilize the fact 
that expert system performance is strongly re- 
lated to its pattern matching capability. Develop- 
ing a set of rules that call each other and count 
the number of rules fired does not tell us any- 
thing about the shell unless we know the contents 
of the rules and base those contents on some 
logical criteria. 

This paper summarizes the efforts of many 
people, who for over 20 years, have studied 
benchmarks. Only a few researchers have at- 
tempted to develop a benchmark program for 
expert systems, and their efforts tended to be 
“one-off’ attempts; e.g., [7][10][11]. 
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