
ELSEVIER Information & Management 27 (1994) 89-101

Research

Expert systems shell benchmarks: The missing comparison factor

Robert T. Plant *, Juan P. Salinas ’

Department of Computer Information Systems, University of Miami, Coral Gables, FL 33124, USA

Abstract

This paper develops a methodology for benchmarking knowledge-based systems that practitioners may use to
perform a comparative analysis of expert system shells. A program utilizing a deliberate instructional mix was found
to be the most suitable and accurate way to measure the value of shells. The benchmark is intended for rule-based
shells, such as CLIPS, VP-Expert and Ibis. The methodology for the approach is a generic rule-based algorithm that
is easily adaptable to meet the language requirements of individual shells. We present results for three shells.

Key words: Benchmarking; Expert system shells; Expert systems; System performance

1. Introduction

The concept of expert systems [12] has existed
since the mid-sixties, however it was not until the
eighties, when the microcomputer revolution oc-
curred, that this technology was made easily ac-
cessible in a business environment [14]. Expert
system technology has two levels application pro-
grams (e.g., MYCIN [13]) and tools (the “shells”,
by which applications are developed and run e.g.
EMYCIN [151X Though there are many expert
system shells available, there is no measurement
technique that is generally used to compare their
performance. We can find out if one expert sys-
tem shell offers more capabilities than another,
but we cannot determine from the packaging that

lAcknowledgement: The authors wish to thank the anony-
mous referees and Professor Sibley for their useful comments.

comes with the system how well any given shell
could process a standardized problem. Inability
to judge the performance of a shell can prove
very frustrating, especially to those people who
are first time purchasers/users of this software
and have no alternative system with which to
make a comparison, or for users such as NASA
who run a large number of systems upon their
shells, and therefore where a saving in processing
speed over all systems could be advantageous. It
is the intent of this paper to fill this gap by
developing a methodology to benchmark expert
system shells.

2. Expert systems shells’ benchmark strategy

The following seven step procedure is used to
create a benchmark system for expert system
shells. First, the target area is defined, this is the

0378-7206/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved
SSDI 0378-7206(94)E0057-B

90 R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101

environment in which the benchmark is to be
utilized. The constraints for the benchmark are
then laid down; these are the “benchmark goals,”
which cover aspects such as accuracy, sensitivity,
etc. Having determined these parameters, the
techniques by which the benchmark is to be con-
structed is selected, along with the statistical ap-
proach that will be used to analyze the results of
performing the experiments. Having determined
the framework in which the benchmark is exam-
ined, the standardized benchmark program is de-
signed and implemented. Finally, the benchmark
programs are run and the analysis performed.

2.1. Target area definition

The benchmark will be designed to measure
the execution speed of development tools under
the workload imposed by a typical business expert
system. The shell will be running on an IBM PC
or compatible machine with a version of the
MS-DOS operating system and a hard disk drive.
In order to measure the performance of our
target area, we must first determine its relation-
ship to the other components of the system. We
also need to understand the effect that other
factors have on the target area [9]. Obviously, the
benchmark will be influenced by the speed of the
compiler or interpreter; in our case this is the
shell program. In turn, the compiler or inter-
preter’s performance is influenced by the operat-
ing system. The operating system (MS-DOS) and
the machine (IBM PC) remain constant through-
out the experiment for all shells in order to
minimize test variance. The benchmark program
design is standardized, such that all shells use as
small a set of operating system features as possi-
ble, minimizing bias. However, without access to
the shells’ source code, a complete determination
of the operating system shell dependence cannot
be made. In turn, we note that software perfor-
mance is influenced by hardware performance,
which in turn, is composed of processing speed
and input/output performance. The benchmark
may be run on different types of PC compatible
computers. So, we must provide a way to assess
the differences in processing speed and hard disk
performance produced by the differences in hard-

ware characteristics. We need this assessment to
relate the results of running the benchmark pro-
grams on different computers.

Here, we discuss the effect of running the
benchmark programs on three different ma-
chines: a 10 MHz XT compatible, an 80386SX 16
MHz AT compatible, and an 80386DX 25 MHz
AT compatible machine. Future shell benchmark
programs may be written for new development
tools, using the specifications produced here;
these new programs may be run on different
machines. The hardware benchmark programs
will provide a way of relating future results to
those discussed here, since hardware characteris-
tics may be compared using the results of the
commercial hardware benchmark programs.

2.2. Goals of the expert system shell benchmarks

After defining the target area, the goals of the
benchmark must be set in terms of accuracy,
sensitivity, portability, and effort [3][4]. We begin
with accuracy. A goal of the benchmark is to
provide sufficient accuracy to guarantee that if it
takes a shell less time to execute the benchmark
than another, it is because that shell is faster for
many business applications. However, there may
be expert systems that, due to the nature of their
algorithms, run faster on the shell though the
benchmark program ran slower. This is because
the benchmark is based on an estimated average
of the typical business expert system’s workload.
In order to obtain the desired level of accuracy,
we must be careful in applying five points. First,
select the contents of the benchmark programs
carefully, so that it represents the work load
imposed by a typical business expert system. Sec-
ond, be clear and concise in preparing the bench-
mark specifications to avoid any programmers’
interpretations and abilities that produce inaccu-
racies. Third, analyze and standardize the con-
tents of the system files of the machines (e.g.,
possibly empty all other directories) used to run
the benchmarks; system files are invoked in all
operations. Fourth, to guarantee the desired level
of accuracy, consider problems introduced by any
lack of compatibility among different develop-
ment tools. For example, differences in language

R.T. Plant, J.P. Salinas/Information &Management 27 (1994) 89-101 91

semantics can be a source of inaccuracies. Most
development tools provide a syntax to create pro-
duction systems; the production rules should fol-
low a standard structure, as depicted in Fig. 1.
To avoid possible implementation inaccuracies,
the benchmark only includes production rules.

The fifth consideration, involves the method of
measuring the execution time of the benchmark
programs.

We also have to define goals in terms of sensi-
tidy. The benchmark must be able to show major
differences in execution speed of the shells. It
must be sensitive to those instructions most com-
monly used by business expert systems. To guar-
antee this, we perform a thorough statistical anal-
,ysis of the selected variety of expert systems.

Because of the differences in syntax of the
development tools, portability is an important
issue. By using only production rule systems, the
syntax becomes almost standard with a few varia-
tions due to wording and termination characters.
This makes the benchmark portable; translating
the benchmark involves modifying the syntax only
slightly.

It is also important to provide for variety in
control commands. An expert system may be
modelled in two portions: control code and rules.
The control code tends to be different from one
shell to another. For this reason, we try to keep
the control architecture of the benchmark as small
as possible, while attempting not to bias the ex-
periments in any way.

The

IF condition
THEN act i on-a

[ELSE act ion-b] .

The condition is also known as the left hand side of the rule (LHS);
action a and action b are know as the right hand side (RHS).
The ELSE clauztional.

Fig. 1. Syntax of IF/THEN/ELSE rules.

92 R. T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101

of a system, such as the number of assignment
statements, operations, loop control statements,
and other instructions contained in the code of
the program. Dynamic analysis reflects the actual
behavior of the program, achieved through count-
ing the number of times each type of instruction
is executed rather than just counting the number
of occurrences, in the program.

To obtain accurate profiles of the business
systems that we were using as the basis of our
benchmark programs, we performed both dy-
namic and static analysis, through a technique
called Real Problem Execution Simulation (RE-
PROES), in which a manual procedure was per-
formed to execute a series of case studies on
actual business expert systems.

2.6. Shell internal functioning

After determining the type of statistics desired
and the method to compile them, we had to
define those characteristics of expert systems we
wished to study. Every characteristic examined
must have an impact on the execution speed of
expert systems and must represent the vast major-
ity of the running time of the programs. The two
key components in the inferencing procedure are
the chaining mechanism and pattern matching.

2.7. Focus of the statistical analysis

Pattern matching is a key element for both
forward and backward chaining methods. Thus,
composition of patterns is a major element in the
systems performance. However, the literature
covering the relationships of performance to pat-
tern composition or size is weak.

The importance of this can be seen by running
several tests on VP-Expert, Ibis, and CLIPS [it
should be noted that these shells were selected
arbitrarily and the benchmarks produced are not
intended to be a reflection of the commercial
suitability of the products. The paper present a
benchmark methodology and uses these shells
only to demonstrate the technique]. The tests
were to determine if the length of the patterns
made any difference in the execution time. Pat-
tern length refers to the number of ASCII char-
acters composing each pattern. The knowledge
bases of these tests did not include any rules.
Their only function was to assert 200 facts to the
cache memory; that is, to relate one pattern to
another. The syntax of Ibis and VP-Expert’s as-
sertions are very similar: pattern _ a = pattern _b.

The syntax of CLIPS is different: DEFFACTS
(assertion _ namecpattern _ apattern _ bl).

Although both instructions may seem differ-

Pattern Assertions

Average Execution lime Expressed in Seconds (a)

Pattern Lengths 25 X 25 25 X 2 2 X 25 2x2

CLIPS 1.1515 0.9075 0.9095 0.6645
VP-Expert 9.5665 9.5675 1.9625 1.9485
Ibis 3.9610 3.9570 1.4470(b) 1.4340(b)

(a) These times are the average of 20 executions running on a 803860X
25 MHz.

(b) Ibis requires variable names to be at least 3 characters tong

r- ~ Percentage Changes From Results of 25 X 25

Pattern Lengths 25 X 25 25 X 2 2 X 25 2x2

CLIPS 0.00% -21.19% -21.02% -42.29%

VP-Expert 0.00% 0.01% -79.49% -79.63%
Ibis 0.00% -0.10% -63.47% -63.80%

Fig. 2. Pattern assertion execution times.

R. T. Plant, J.P. Salinas / Information & Management 27 (1994) 89-101 93

ent, they have the same purpose: to make a
logical connection between the two patterns. Fig.
2 contains the results of these tests.

Although the number of assertions was kept
constant, decreasing the size of the patterns pro-
duces reductions in run-time of up to 80%.
Though the programs only tested assertion effi-
ciency, they proved that number of instructions
executed is not the only factor to be observed.
The length of the patterns used by business ex-
pert systems must also be examined, allowing us
to determine the average length of the patterns
used by most business expert systems. The shell’s
efficiency in pattern matching and the size of
these patterns will have a tremendous effect on
the execution speed of expert systems.

It is important to note that the tests men-
tioned above are not benchmark programs. They
are intended to demonstrate the differences in
execution times produced by variations in pat-
terns’ lengths, rather than demonstrating the
speed of the shells. These tests were performed
by creating sample knowledge bases through pro-
gram generators.

Rules stored in the knowledge base is the next
issue. First, the total number of rules must be
counted. The more rules, the greater the search
space for the inference engine. We also must
count how many of these rules were actually
executed. In backward chaining, we count rules
that fail as fired rules. That is, if the inference
engine fails in an attempt to fire a rule, it will
have to perform a second search for another rule.

The final factor to observe is the composition
of the rules fired. The rule components are di-
vided into those included in the LHS and those in
the RHS. In the rules that fail, we will record
those elements of the RHS that were executed as
the only components of that rule. This must be
done because our benchmark will run using both
forward and backward chaining. The workload
must be identical for both methodologies. Instead
of having rules that fail, we increase the number
of rules to be executed. This produces a similar
effect on the benchmark’s workload. To empha-
size, it is critical to note the characteristics of the
patterns used, particularly because this will have
a great impact on the speed of the conflict resolu-

DYNAMIC STATISTICS(a)
Dynamic Behavior of a Typical Business Expert System

N&r of Rules

Rules in the knowledge base: 53 rules total
N&r of rules fired: 44 rules total (b)
Nurrber of rules fired from uithin another rule: 25 rules (c)
Average depth of an intermediate chain: 3 rules (d)

Conposition of the LHS

stringpttern a = stringgattern-b:
length of string_pattern_a:

50 coqoarisons total
6 characters average

length of stringgattern-b:
integer I(‘<’

6 characters average
‘>’ I<=1

real ilxl
I>=’ ‘<>‘)I! integer: 11 comparisons total

‘>’ 1CSfi ,,=-I l<>l)li real: 14 comparisons total
AND’s: 13 instances
OR’s: 9 instances

Con-position of the RHSfe)

stringgattern-c = stringgattern-d: 57 string assertions total
pattern = real-n&r: 9 real n&r assertions
pattern = integer_nunber: 7 integer assertions total
length of stringgattern-d: 6 characters average
pattern-e = pattern-f ‘(‘+I
pattern-h = pattern-1 IC’xl

1-1)11 pattern g:
‘/‘I’, pattern:j: I

8 computations total(f)
6 computations total(g)

Fig. 3. Resulting data from the statistical analysis.

94 R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101

tion process. All types of comparisons and asser-
tions must be recorded, including the type and
size of the elements being compared or stored.
Although development tools offer many other
functions such as I/O, graphics and spreadsheet
interfaces, these tend to be nonstandard from
shell to shell. We therefore concentrate on the
real burden of expert system processing: conflict
resolution and inference.

We next examined six business expert systems
in operation through the REPROES technique.
The results of this systematic study are compiled
in Fig. 3, where the letters between brackets refer
to the following:

(a) The results of this data may vary from
execution to execution, since they are based
on actual behavior of the programs tested.
The path followed to reach a solution
changes with the problem presented to the
expert system. This produces a different
program behavior for each different prob-
lem solved. The results are the averages
obtained by running each expert system
several times, following the REPROES
technique.

(b) This result includes partially fired rules of
the backward chaining expert systems
tested.

cc>

(4

(e>

(f, d

This result counts for the rules that are not
fired from the control architecture but from
within another rule, either by a FIND
statement or during the inference process.
An intermediate chain occurs when a rule
calls another rule. The second rule calls a
third rule, and so on. This result measures
the average number of rules called.
The RHS of the rules fired may contain
additional statements not considered here.
These numbers only represent the data
considered relevant to the benchmark de-
sign.
Multiple operator statements count as mul-
tiple statements. For example, the state-
ment pattern = A X B + C counts as two
statements, one multiplication and one ad-
dition.

2.8. Benchmark design

After determining the actual behavior of a
typical business expert system, we proceed to the
design stage of the benchmark. This step pro-
duces the program specifications. These are based
on the dynamic statistics. Fig. 4 includes the
benchmark program specifications. The imple-

Benchmark Program Specifications

The benchmark programs must have 53 rules, and only 44 out of
those 53 rules will get fired during execution. 25 of the 44
rules will be executed from within other rules, and the rest
nust be called from the control architecture. The average
depth of the intermediate chains r-rust be 3 rules. There will
be 50 string comparisons. The benchmark program must have had
a total of 13 AND and 9 OR statements in the LHS of fired
rules. Also, there must occur 57 string comparisons during the
execution of the program. The average length of all string
patterns must be six characters. There will be 8 additions ant
subtractions altogether, and 6 multiplications and divisions
altogether, as well. The number of additions must be the same
as the number of subtractions. This also applies to the
number of divisions and multiplications. All string patterns
used throughout the program must be different. This applies
to rule names, patterns, and contents of the variables. Each
rule should have a comment, stating the rule n-r. The
program should not use any type of display or print statement.

Fig. 4. Benchmark program specifications.

R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101 95

mentation of the benchmark programs must fol-
low these specifications closely.

2.9. Implementation of the benchmark programs

We attempt to benchmark three development
tools: VP-Expert Version 2.1 by Paperback Soft-
ware International, CLIPS version 4.2 developed
at NASA/Johnson Space Center, and Ibis educa-
tional version 4.33 by Intelligence Manufacturing
Company [2][8][16]. VP-Expert and Ibis use back-
ward chaining, whereas CLIPS utilizes forward
chaining.

Benchmark programs were produced through
our code generator, which itself was written in
Clipper Version Summer 87. However, due to the
divergence in logic between forward and back-
ward chaining, the benchmark for CLIPS varies
slightly from the other two benchmark programs.
The first difference is that the contents of the
LHS and the RHS had to be altered. The result
of running both sets of rules will be the same, and
the processing requirements for both is very simi-
lar. In addition, CLIPS requires an additional
rule that invokes all other rules. This rule starts
the program by making the necessary pattern
assertions to the cache memory required by the
other rules. Even with these differences, the bur-
den imposed by the CLIPS’ benchmark program
is identical to the Ibis and VP-Expert programs
within our accuracy constraints.

2.10. Timing of the benchmark programs

Upon developing the benchmark programs, we
must devise a technique that guarantees precision
and fairness in measuring execution times. The
first alternative is to use the internal clock of the
computer. The major limitation of this approach
is that the internal clock only counts in seconds,
so lack of precision rules out this option. There-
fore, we must use an external chronometer. The
new problem is therefore: how can we start and
stop the external timer? Because human response
time is slow and inconsistent, manual control is
not effective. We need to create an interface
between the computer and the timer that is ac-
cessible from all expert system programs. In addi-
tion, portability becomes an issue.

As a result, we created a purpose built timing-
device: The “Chronosound”. As its name sug-
gests, this device is a chronometer that works
with sounds. The instrument is connected to the
terminals of the internal speaker of the com-
puter. It contains an internal audio amplifier that
transforms the speaker output into the necessary
voltage needed to activate a micro relay. This
relay, in turn, controls an external chronometer.
Fig. 5 shows the circuit diagram of the Chrono-
sound.

In testing the measuring device, we discovered
that different computers send different output
voltage levels to their speakers. To amend these
discrepancies, we adjust the audio level through
the audio gain control. The frequency and dura-
tion of the sound that starts and stops the
chronometer may need adjustment and this is
determined through a program that tests differ-
ent frequencies and durations, so that the opti-
mum signal for a given computer can be identi-
fied. After obtaining the frequency and duration
of sound, we use a small program “START-
STOP.EXE” that contains the instruction
“sound-frequency, duration”, (frequency and du-
ration contain the values obtained before). Run-
ning this program will cause the Chronosound to
start or stop the chronometer, depending on its
previous status.

To use the Chronosound with our benchmark

I Audio Amplifier Circuit

LM366
400mWAudio Amplilicr
26 to 46 dB Gain
Oulescenl Drain -3mA
Archer CatNo. 276-l 731

speaka -

Input+
1OGU

Fiihrn

Fig. 5. Chronosound’s electrical diagram.

96 R. T. Plant, J.P. Salinas /information & Management 27 (1994) 89-101

Overall

Video Speed
Math Speed

Average Seek Time
Track to Track Seek Trne

Transfer Speed

Disk Capacity
Number of Cylinders

Number of Heads

Number of Sectors per Track
Transfer Speed

Average Seek Time
Track to Track Seek Trne

Performance Index

CPU speed

Disk Speed
Average Seek lime

Track to Tracl Seek Time

Tlanster Speed

Overall Performance Index

465 762 3,543 5.212 3.2i7 6.995 CharacteresISecond (e)
6.5 13.6 31.2 60.4 35.4 121.5 Kilo-Whetstones (e)

64.1 64.6 19.8 19.6 21.2 20.7 Milliseconds (f)
0.8 0.0 6.0 6.0 1.0 1 .O Milliseconds (fj

28.2 100.1 594.3 494.3 514.0 514.0 Kilobytes/Second (r)
CORE Disk Performance Test Proaram V. 2.8

32.7 80.3 89.0 Megabytes (r) (9)
939 922 1,023 Cylinders (f) (g)

4 5 10 Heads (r) (g)
17 34 17 Sectors (1) (9)

28.1 189.1 670.5 666.2 807.0 960.0 Kilobytes/Second (g)
59.6 62.7 6.1 20.1 21.2 21 .O Milliseconds (g)
16.6 17.0 6.1 6.2 1.2 1 .O Milliseconds (g)

1.090 2.003 6.741 6.823 7.396 8.458 Benchmark Units (g)

Norton Utilities V.5.0 System lntormatfon Benchmarks
I.0 2.0 4.9 8.9 5.9 22.5 Benchmark Units (h)
0.8 1.5 6.3 6.3 6.6 7.1 Benchmark Units (i)

62.95 62.83 19.72 19.71 20.87 20.89 Milliseconds (i)
9.81 9.93 5.17 5.16 3.62 3.51 Milliseconds (i)
29.1 142.7 711.9 711.1 780.9 878.1 Kilobytes/Second (i)

0.8 1.8 5.3 8.0 6.1 17.3 Benchmark Units fj)

Fig. 6. Benchmark results.

Shell Benchmarks’ Execution Times

80386Sx/1OMlIz

80386Sx/16MHz

80386DXQSMH

CLIPS VP-Bxpert Ibii

Fig. 7. Execution times of the shell benchmark programs.

programs, we include two system calls within the
benchmarks to the program START-STOP.EXE.
The first call must be placed at the beginning of
the expert system and the other at the end.

The Chronosound was used in a way to guar-
antee that all times are taken under the same
conditions. The results produced by the Chrono-
sound have a 0.03 seconds variance. The average

10 MHz: 2.0
80386 SX - 10 MHz: 4.9
80386 SX - 16 MHz: 8.9
80386 DX - 8 MHz: 5.9

Fig. 8. Norton’s CPU benchmark results.

R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101 97

Average = 7.333
Standard Deviation = 7.174

(l.O-7.333)/7.174) = -0.911
(2.0-7.333)/7.174) = -D.771
(4.9-7.333)/7.174) = -0.367
(8.9-7.333)/7.174) = 0.191
(5.9-7.333)/7.174) = -0.228
(22.5-7.333)/7.174) = 2.086

Fig. 9. Computations to produce Fig. 10.

time for 40 executions of the shell benchmark
programs on each computer were calculated. The
number of executions was chosen to obtain the
execution times within 0.015 seconds with 98%
confidence or better. Using the standard sample

size formula the actual result calculated was 22
samples or executions; but by increasing the num-
ber of samples to 40, we also increase the confi-
dence factor. By measuring 40 executions, we are
at least 98% confident that the margin of error is
not greater than 0.015 seconds.

Since the three computers used to run the
benchmarks allowed is to select the processor’s
speed, all benchmarks were run at both speeds
available on each machine. Fig. 6 contains the
results obtained from all the benchmarks, includ-
ing the shell and the hardware benchmarks.

With all the benchmark programs run and
compiled, the results of the benchmarks can be
compared to determine the fastest shell. These
results are diagramed in Fig. 7.

Combined Benchmarks Results
In Number of Standard Deviations from the Mean

Grouped by Benchmarks' Target Areas

X-l-1 8088 ATI 80386SX ATI 80386DX
+77Whx IOMh. IOMhx 16Mhr Ihlhx UMh=

-0.244 1.999 . . I

Average (“) a.997 -0.823 1 -0.296 0.368 1 -0.256 2003

Transfer Speed (i) -1559

Transfer Speed (r) -1.555

Transfer Speed (g) -1.573

Average Seek Time (O)(i) -1.411

Average Seek Time (*)(I) -1.407

Average Seek Time (O)(g) 6.802

Track to Track Seek Time (O)(i) -1.228

Track lo Track Seek Time (‘)(o -0.771

Track IO Track Seek lime (*)(g) -0.829

Disk Speed (i) -1.538

0.515 0.513 0.725 1.020

0990 0.540 0.629 0.629

0326 0.373 0.730 1.242

0.794 0.796 0.617 0.614

0.792 0.792 0.582 0.654

2.143 0.142 -0.194 -0.185

0:022 0.027 1.153 1.271
-0.641 -0.641 1.412 1.412

-0.560 -0.567 1.178 1.611
0.595 0.595 0.711 0.905

Disk Performance Index(g) -1.542 -1.217 1 0.471 0.500 0.705 1.083

Average (“) -1.292 -1.138 1 0.495 0.253 0.750 0.932

Overall Performance Index 0) -1.065 4.879 1 -0.231 0.268 1 -0.083 1.990

Fig. 10. Number of standard deviations away from the mean.

98 R.T. Plant, J.P. Salinas/Infonnation &Management 27 (1994) 89-101

An analysis of the results in Fig. 7 shows us
that Ibis performance is far from satisfactory. It
took the shell almost a minute to run the bench-
mark on a 4.77 MHz PC, more than nine times
CLIPS’s run time, and five times VP-Expert’s run
time. The Ibis requires a powerful computer to
provide an acceptable response time. CLIPS, on
the other hand, proved to be the fastest shell. Its
response time was good for almost all the ma-
chines. The only case where this execution time
was not satisfactory was in the 4.77 MHz test,
which took over six seconds to execute. Since this
type of computer is almost extinct, this becomes
less of an issue. CLIPS also produced interesting
results for the 16 MHz 80386SX and the 25 MHz
80386DX. Although the first machine is faster
than the second one, CLIPS runs faster on the
SX. The only explanation to this phenomena is
the fact that the hard disk on the SX is slightly
faster than the one on the DX. Still, the differ-
ence of only five hundredths of a second is quite
small, if compared to the difference obtained
from the Ibis benchmarks (2.327 seconds slower
on the SX than on the DX). From this one may
conclude, CLIPS uses the hard disk more than

VP-Expert and Ibis, since VP-Expert and Ibis
behaved as expected, running faster on the faster
machine. This may make shells such as VP-Ex-
pert and Ibis more competitive with faster 80486
and subsequent generation processors.

Because the values represent different types of
information and are expressed with different no-
tations, it is difficult to infer the relationships
among the different variables. We created Fig. 10
to show the relationships. The values in Fig. 11
are stated as “the number of standard deviations
that each value of Fig. 6 moves away from the
average computed for that benchmark”. This was
achieved by determining the CPU speeds as re-
ported by Norton Utilities CPU Speed bench-
mark, Fig. 8.

We calculated the average (7.3331, together
with the standard deviation (7.174). With these
two figures, we can perform the computations
shown in Fig. 9.

The numbers we calculated are the same as
those of the line “CPU Speed (h)” of Fig. 10
although Fig. 10, does not provide the actual
results of each test, it enables us to make compar-
isons among the different characteristics of the

80366SXAOMhz

80386SNlGMhz

80386DXBMhz

80386DXf25Mhz w VP-Expert

CLIPS

Fig. 11. Differences in shell benchmarks’ execution times.

R.T. Plant, J.P. Salinas/Information & Management 27 (1994) 89-101 99

hardware and the running speed of the shell
benchmark programs.

The rows in Fig. 10 have been sorted by the
target area of the benchmarks. The first section
includes the expert systems’ benchmarks. The
second section includes the benchmarks targeted
at the processing speed. The third section in-
cludes the hard disk benchmarks. The last section
includes the overall hardware benchmark.

Fig. 11 provides a graphical representation of
the differences in execution speed among the
computer runs. The term “computer run” refers
to the execution of a benchmark program on a
given machine at a given speed. Because each
machine allows two speeds, two runs can be ob-
tained from each. The vertical axis indicates the
“number of standard deviations away from the
mean.” The three plots are the three shell bench-
marks.

Fig. 12 shows that the execution times for the
three benchmarks denoted almost the same pat-
tern for all six computer runs. The three lines,
representing the three benchmark programs, are

almost identical because the instruction mix of
each program is equivalent. If this were not the
case, we would not see such even behavior among
the shells’ execution times when switching from
one computer run to the next.

Finally, computer performance is the product
of several factors and hardware processing speed
will have an influence on shell performance. Fig.
12, illustrates this point and provides a graphical
perspective of the influence that different hard-
ware characteristics have upon shell perfor-
mance.

Fig. 12 is based on the calculated averages
obtained for the four groups of benchmarks of
Fig. 11: shells, processing speed, disk speediness,
and overall hardware performance. The vertical
axis shows the number of standard deviations that
each run is away from the computed average for
that type of benchmark over all the computer
runs, as calculated in Fig. 10 on the rows labeled
“Average (** 1” and “Overall Performance Index
(J)“.

The four plots represent the changes in bench-

Relationship Between Hardware and Shell Performance

q Shell

El Overall

CPU

q Disk

Computer Run

NoteI: NSDFM=Numkr of Slandard Dcvialions from the Man

Norc2 l-8088/4.77MH2,2=8088/10MHz, 3=80386SXJLOMHz, 4=80386SWl6MHz, 5=80386DmMHz,

6=80386DXl25MI~

Fig. 12. Relationship between hardware and shell performance.

100 R.T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101

mark results from one computer run to the next
for each of the four benchmark groups. We can
see how the shell’s benchmarks ran faster, thus
taking less time to execute on faster machines
that obtained higher ratings on the hardware
benchmarks. Note that, the shell benchmarks’
results are given in seconds, whereas the com-
mercial hardware benchmarks produce ratings.
The faster the hardware, the higher the ratings of
the hardware benchmarks; the faster the shell
benchmarks executed, the less time to run them.

A final observation is that differences in Disk,
CPU and Overall Hardware Speed produce
changes in the execution speed of the bench-
marks to different degrees. As noted earlier when
selecting goals, the shell benchmarks are not
hardware insensitive. The results of the hardware
benchmarks allow the reader to relate possible
future benchmarks of other shells run on differ-
ent hardware.

3. Conclusion

We attempted to develop a benchmark for
shells or development tools. These benchmark
programs allow for comparison of different shells
based on their execution speed. In the past, such
comparisons could only be made based on the
features and capabilities of the different pro-
grams available. After implementing the bench-
mark programs, we see that CLIPS is faster than
Ibis, for business applications. If we only look at
the features and capabilities of the programs, Ibis
would probably be the winner, because it pro-
vides excellent development and user interfaces.
In addition, Ibis offers both forward and back-
ward chaining, while CLIPS only permits forward
chaining.

In the past, researchers have attempted to
develop benchmark programs for expert systems.
Their major flaw was that they did not establish
the link between their benchmark programs and
the real world. People developed expert systems
to compare different tools, but only to a certain
degree. Although we can use an expert system
that solves the “monkey and the bananas” prob-
lem to compare shells [6], we cannot conclude
that a shell that runs this program in less time

will also run business applications faster. The
second error was that they did not utilize the fact
that expert system performance is strongly re-
lated to its pattern matching capability. Develop-
ing a set of rules that call each other and count
the number of rules fired does not tell us any-
thing about the shell unless we know the contents
of the rules and base those contents on some
logical criteria.

This paper summarizes the efforts of many
people, who for over 20 years, have studied
benchmarks. Only a few researchers have at-
tempted to develop a benchmark program for
expert systems, and their efforts tended to be
“one-off’ attempts; e.g., [7][10][11].

References

l11

l21
[31

[41

El

lb1

[71

ls1

t91

[lOI

1111

[121

[I31

Bell, A.G., Hallowell, and Long, D.H., Software-Practice

and Experience, “A Universal Benchmark?” October

1973, P. 355

CLIPS Version 4.2 (NASA-Johnson Space Center)

Conte, Thomas M. and Hwu, Wen-mei, Computer,

“Benchmark Characterization,” January 1991, P. 49.

Curnow, H.J. and Wichmann, B.A., The Computer Jour-

nal, “A Synthetic Benchmark,” February 1976, P. 43

Ferrari, Domenico, Computer, “Workload Characteriza-

tion and Selection in Computer Performance Measure-

ment,” August 1972, P. 20

Giarratano, Joseph and Riley, Gary, Expert Systems:

Principles and Programming (Boston-Massachusetts:

PWS-KENT Publishing Co., 19891, P. 160.

Gilbreath, Jim, BYTE, “A High-Level Language Bench-

mark,” September 1981, P. 180

Ibis Educational Version 4.33 (West Sacramento-Cali-

fornia: Intelligence Manufacturing Company)

Levy, Henry M. and Clark, Douglas W., Computer Archi-

tecture News, “On the Use of Benchmarks for Measur-

ing System Performance,” December 1982, P. 5

Press, Larry, AI Expert, “Eight-Product Wrap-Up,”

September 1988, P. 64.

Press, Larry, IEEE Expert, “Expert Systems Bench-
marks,” Spring 1989, P. 37-44.

Rich, E., Artificial Intelligence, 1983. McGraw Hill, New
York.

Shortliffe, E.H. Computer-based Medical Consultations:
MYCIN, Elsivier, New York.

[14] Silverman, B.G., 1987. Addison-Wesley, Reading, MA.
[15] van Melle, W., Scott, A.C., Bennett, J.S.,&Peairs, M.A.,

The EMYCIN Manual. Technical Report, Heuristic Pro-

gramming Project, Stanford University, 1981
[16] VP-Expert Version 2.1 (Oakland-California: Paperback

Software International)

R. T. Plant, J.P. Salinas /Information & Management 27 (1994) 89-101 101

[17] Walters, R.E., The Computer Journal, “Benchmark tech-

niques: a constructive approach.” February 1976, P. 50

Robert T. Plant, is an Assistant Pro-

fessor in Computer information Sys-

tems Department, School of Business

Administration, at The University of

Miami, Coral Gables, Florida. Dr

Plant obtained his Ph.D in Computer

Science at The University of Liver-

pool, England. Previously having

studied at The Programming Re-

search Group, Oxford University,

England. His research interests are in

Software Methodology, Formal Meth-

ods, Software Economics and Metrics. Dr Plant is also a

Chartered Engineer and a Senior Member of the American

Institute of Aeronautics.

Juan Salinas is a Systems Consultant in Costa Rica, Central

America. He has a Master of Science Degree from the School

of Business Administration at The University of Miami,

Florida in Computer Information Systems and a Bachelor of

Science in Computer Information Systems from Bentley Col-

lege, Waltham, Massachusetts.

