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Abstract 

How do decision makers weight private and official information sources which are correlated 
and differ in accuracy and bias? This paper studies how traders update subjective risk 
perceptions after receiving expert opinions, using a unique data set from a prediction market, the 
Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts 
how traders update the probability of a hurricane making landfall in a certain range of coastline, 
after receiving correlated track forecast information from official and unofficial sources.  Our 
results suggest that traders behave in a way consistent with Bayesian updating but this behavior 
is based on the perceived quality of the information received.  Official information sources are 
discounted when a perception of bias and credible alternatives exist. 
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1.  Introduction 

Consider a decision maker who solicits advice from several experts, including an official 

government source, regarding the probability that an adverse event will occur.  Such problems 

are ubiquitous.  A stock trader may look at the Securities and Exchange Commission (SEC) and 

private information sources for balance sheet information to determine the probability of 

bankruptcy.  A bond buyer may consider information from officially-sanctioned rating agencies 

as well as private sources regarding the probability of default.  An individual making nutritional 

choices may examine government advice (e.g., the USDA food pyramid) and private nutrition 

books.  A regulator may solicit private sector opinions and an internal study regarding the 

probability of environmental damage.  An individual considering evacuation from a hurricane 

may consult official and private track forecasts to determine the probability that a hurricane will 

make landfall near the individual.  Expert opinions are likely to be correlated, given that each 

expert observes overlapping data sets. Further, private and official information sources likely 

have different objectives and incentives.  How do decision makers weight private and official 

information sources which are correlated and differ in accuracy and bias?   

 Here we use data from a prediction market to study how traders react to official and non-

official risk information sources.  In particular, we study how traders update beliefs about the 

probability that a hurricane will make landfall in a certain area ("hurricane risk perceptions") in 

response to official and non-official hurricane track forecast information.1  We find that traders 

were able to spot biases in official information, and used weights consistent with Bayesian 

                                                 
1 Hurricanes are the most costly natural disaster in the U.S. To mitigate the costs and loss of life of extreme weather, 
federal agencies have financed weather research programs aiming to improve the accuracy of weather forecasting 
and to enhance the dissemination of usable weather information (NOAA, 2005). 
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updating for two information sources.  However, traders discounted information from a third 

source, which was overall the least accurate, but nonetheless provided information that was 

relatively uncorrelated with the other sources.  Information in the third source therefore had a 

high marginal value.  

Because of the difficulty of directly measuring a decision maker's posterior risk 

perceptions following the solicitation of expert opinion, researchers typically use survey or 

hedonic methods.  Survey research shows that prior perception of risk (Smith, et al. 2001), 

outside information (Viscusi, 1997; Cameron, 2005), credibility of the source of information 

(Cameron, 2005 and Viscusi and O’Connor, 1984), socio-economic characteristics (Dominitz 

and Manski, 1996; Flynn et al., 1994), among other factors, affect risk perceptions.  For 

hurricanes, Baker (1995) uses surveys to study responses to hurricane track forecasts and 

evacuation notices and finds that updates of official warnings play a major role in shifting stated 

responses.  

Surveys require well-designed monetary payments, or scoring rules, to insure that survey 

responses accord with actual individual beliefs (for example, Hanson, 2007 contrasts the costs of 

scoring rules with market-based alternatives).  Still, surveys are typically designed with a single 

information event in mind.  Researchers measure respondents’ risk perceptions after presenting 

an information set and associated precision of the information set.  Consequently, respondents do 

not get the opportunity to learn over time which forecasts perform better.  Further, the 

information sources we study are correlated, and so far research using survey methods examines 

only uncorrelated information.  We find that traders give little weight to information that is less 

accurate but nonetheless valuable since it is relatively uncorrelated with other information 

sources.   
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The main alternatives to surveys are hedonic methods, whereby researchers use changes 

in market prices to reveal changes in risk perceptions.  Halstrom and Smith (2005) and Bin and 

Polasky (2004) are two prominent studies that use changes in housing prices to infer changes in 

hurricane risk perceptions subsequent to a hurricane event.  Such studies must try to control for 

confounding influences on prices following an adverse event.  First, individuals may take on 

adaptations, such as installing hurricane proof windows, to insulate themselves from future risk.  

Second, the econometrician may not observe individual heterogeneity in exposure to adverse 

events or in risk aversion.  That is, individuals may be willing to pay different amounts to avoid 

an adverse event that occurs with a probability that all agree upon.  Finally, government 

regulatory policy may distort prices away from those which represent risk perceptions, by 

creating a moral hazard problem. This occurs two ways. First, state legislatures may pass 

regulation which suppresses windstorm insurance premia, ex ante.  Second, a disaster declaration 

from the president may provide reimbursement, ex post.  In both cases, the change in sale prices 

will not fully reflect the increase in risk perceptions.  Some hedonic studies attempt to control for 

these factors.  In particular, Halstrom and Smith (2005) use a near miss hurricane to ensure that 

rebuilding will not be substantial and find a decrease in housing prices which they attribute to 

changes in risk perceptions.  However, Halstrom and Smith (2005) must still underestimate 

changes in risk perceptions to some degree, since some homeowners undertake adaptations even 

if a hurricane is a near miss (especially since the near miss they consider was Hurricane Andrew, 

a category five hurricane).    

The present study proposes an alternative approach to study risk perceptions based on 

data from a prediction market. In particular, we use the Hurricane Futures Market (HFM) 

prediction market at the University of Miami.  HFM creates securities whose payoffs depend on 
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whether or not a hurricane makes landfall in a specific range of coastline.  Traders then trade 

these securities in an online market.2 HFM operated during the latter half of the 2005 hurricane 

season in collaboration with the Iowa Electronic Market (IEM) project at the University of Iowa. 

The markets ran on the IEM system with traders recruited by HFM.    Payoffs are designed so 

that the price of the security represents the traders’ subjective belief of the probability that the 

event occurs.3 Hence, the price of the security equals the traders' risk perception.  

Prediction markets are well suited to reveal risk perceptions.  Because traders win or lose 

real dollars, they have a strong incentive to reveal, through their trades, their true risk 

perceptions.  Further, by design prediction markets are free of confounding influences from other 

aspects of risk, such as adaptations or moral hazard.  In addition, with hedonic studies, a fall in a 

sale price may overestimate changes in risk perceptions, because the seller may instead be very 

risk averse with respect to a small increase in risk.  In contrast, losses are small with a prediction 

market (maximum of $100 in HFM), so approximate risk neutrality is more plausible. 

Forty five participants made at least one trade in HFM.  Like most prediction markets 

(and survey populations), HFM traders are not a representative of the general population.  In fact,  

all traders have some interest in hurricanes and/or meteorology (many were undergraduate or 

graduate students in meteorology).  The general population may react differently to new 

information.  Of course, some of the examples given in the first paragraph pertain to experienced 

decision makers, and some hurricane decision makers (e.g., broadcast meteorologists, traffic 

engineers) are experienced as well.4   

                                                 
2 See Wolfers and Zitzewitz (2004) for a survey and introduction to prediction markets. 
3 In particular, we are assuming payoffs are small enough so that risk neutrality is a reasonable approximation, that 
the discount rate is close to one, and security payoffs are not correlated with traders' marginal utility of wealth.  See 
Wolfers and Zitzewitz (2006) for a formal justification. 
4 One disadvantage may be a lack of liquidity in the market, but Tetlock (2007) argues that uninformed traders in 
thick markets inhibit information revelation. 
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Lee and Moretti (2009) study the impact of polls on a presidential election prediction 

market within a Bayesian learning context.  Like our paper, they find evidence in favor of 

Bayesian learning.  In particular, they find more precise polls receive more weight by traders.  

Our results extend upon their study by considering correlated information sources and a 

(potentially biased) government information source.  In addition, although they find that polls, 

rather than outside information, are the primary drivers of risk perceptions, information 

revelation is more controlled with hurricanes since new information is revealed only every six 

hours, when track forecasts are released.  Finally, we consider multiple prediction markets and 

are thus able to control for hurricane-specific fixed effects. 

Other studies focus on environmental risk perceptions.  Oberholzer and Mitsunari (2006) 

find that Toxic Release Inventory reports of toxic emissions a moderate distance from a home 

cause the price to fall, which they attribute to upward adjustments of risk perceptions.  A series 

of papers by Viscusi (Viscusi and O’Connor, 1984; Viscusi and Magat, 1992; Viscusi, 1997; and 

others) study various environmental risks.  For example, Viscusi (1997) studies air pollution and 

cancer and finds individuals give too much weight to forecasts indicating a high risk of cancer, 

which they call ‘alarmist’ learning.  Cameron (2005) asks students to forecast future 

temperatures and studies how risk perceptions change after introducing new information.  

Students come close to Bayesian learning but place too much weight on priors when forecasts 

diverge.   

Cameron (2005) and Viscusi (1997) consider government and private information 

sources.  Cameron (2005) finds that perception of bias leads to lower weight placed on a 

particular information source, while Viscusi (1997) finds neither government nor industry 

sources were more credible. In contrast, we find that traders in our prediction market discount 
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the official National Hurricane Center (NHC) forecast, when it is likely to be biased.  In 

particular, traders discounted the NHC forecast when the NHC forecasted landfall close to an 

urban area, concluding the NHC was biased to avoid type II (false negative) error. 

In general, we find traders behave in a way consistent with Bayesian updating with 

respect to two forecasts, but essentially ignore a third forecast.  The third forecast is the least 

accurate forecast, and yet provides useful information because it is relatively uncorrelated with 

the other forecasts.5  Thus, while we confirm previous results that indicate traders can 

appropriately weight information sources according to their accuracy, we show this result does 

not extend to weighting information sources according to their correlation structure, which is 

more complex.   

Overall, traders are remarkably accurate forecasters.  Indeed, traders correctly predict a 

hurricane will or will not make landfall in one of eight Gulf or Atlantic regions with 84% 

accuracy.  The most accurate forecast, the NHC forecast, correctly predicts whether or not a 

hurricane will make landfall in one of eight regions with 81% accuracy.  Traders are more 

accurate than the NHC for storms more than five days from landfall (69% to 54%), but less 

accurate for storms two days or less from landfall (90% versus 100%).   

Finally, we conduct an ex-post test of market efficiency by grouping securities with 

similar prices and measuring the fraction of securities in the group which eventually pay off (see 

for example Tetlock, 2004).  We find that although price and average payoff are close, a 

‘favorite-longshot’ bias exists in that traders could mildly profit by buying securities with a price 

near one.  The favorite-longshot bias is also evident from the relatively poor performance of the 

traders for storms close to landfall, which typically have a price very close to one.  Jullien and 

                                                 
5 The third forecast uses statistical information from previous hurricanes, while the other forecasts use mainly 
physics equations.  Thus the third forecast contains different information. 
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Salanie (2000) and others find the favorite-longshot bias in sports wagering prediction markets, 

but Tetlock (2004) finds no favorite-longshot bias in financial prediction markets and argues that 

one possible explanation is that those who bet on sports may be inexperienced with prediction 

markets.  Our results are consistent with this argument in that our traders, while experts in 

meteorology, have little experience with prediction markets. 

The rest of this article is organized as follows. The next section gives an overview of the 

Bayesian approach in studying risk perception updating analysis, followed by a description of the 

data and the empirical model. Then, we present and discuss the empirical results. The last 

Section presents some concluding remarks along with some suggestions for further research. 

 

2.   Risk Perception Updating Model: The Case of Hurricanes 

In the Bayesian framework, new information causes traders to update the probability that 

a certain hypothesis (a hurricane makes landfall in a certain area in our case) is true.6  Assume 

the true probability of hurricane h of type k making first landfall in coastline range j is P*.7  Note 

that all of the parameters below and P* will depend on j and k, but we suppress this dependence 

where no confusion is possible.  The true probability is unknown to traders.  Since a hurricane of 

type k will either make landfall in range j or not,8 traders can view this event as a Bernoulli 

distributed random variable.  That is, each hurricane of type k is a draw from a Bernoulli urn in 

which P* is the probability of ‘success,’ in that the hurricane does make landfall in range j.  

Traders have prior beliefs that P*~BETA(α,β).  The beta distribution is particularly 

advantageous since it allows for a wide variety of density function shapes.  The mean of the beta 

                                                 
6 See Bolstad (2004) for a detailed review of the Bayesian theory. 
7 Hurricane type characteristics may include Atlantic versus Gulf storm, wind speed, and/or the day of the year when 
the storm formed.     
8 Because storms may straddle more than one range, we define as our trigger event the location where the storm 
center makes its first U.S. landfall. 
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distribution is α/(α+β), meaning the prior distribution is equivalent to  out of  draws 

indicating success.  If the prior was formed from previous, similar hurricanes, then the prior 

indicates α/(α+β)  fraction of hurricanes of type k ended up making first landfall in range j. 

Next, suppose traders receive hurricane track forecast information at time t.  We can view 

t in six hour increments, since all track forecast are released every six hours.  Each track forecast 

i contains a set of predicted latitude and longitude positions over time.   Let zit =z(it) be the 

traders’ belief of the probability of landfall in range j given the latitude and longitude 

information it of track forecast i at time t.9  We can view zit as the fraction of nit draws from the 

Bernoulli urn which indicate success, where nit=q(it)zit(1- zit) and q(it) is the precision (or 

inverse of the variance) of zit.
10  Each track forecast is therefore a realization, zitnit, of a binomial 

random variable with parameters P* and nit.  The precision varies by track and the time the track 

forecast was released. Track forecasts vary in their accuracy, and all track forecasts become more 

accurate at predicting whether a hurricane will make first landfall in a security range as 

hurricanes approach the coastline.  Given our distributional and information assumptions, it is 

well known (see for example DeGroot, 1970) that, if the track forecasts are independent, the 

posterior distribution is also beta, with:  
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9 We specify z(it) precisely in Section 3, but the theoretical model only requires that a function z exists. 
10 We are thus assuming the information content of each track forecast is known (indeed the only uncertain 
parameter is P*).  This assumption is standard in the literature (e.g. Viscusi, 1997), but of course the trader's actual 
environment is likely considerably more uncertain.    
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Here tP  is the expectation of P* conditional on the track forecast information at time t, I 

is the total number of track forecasts and 



I

i
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represents the information contained within 

the track forecasts.  Equation (2) may be decomposed into a linear weighted average of the priors 

and the information provided by each track forecast, with the weights being equal to the relative 

information content of each track forecast.  Let tt ND    be the total precision of the 

prior and track forecast information.  Then: 
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Equation (3) shows that the information within each track forecast implies a predicted 

probability that the hurricane will make first landfall in range j, and that the posterior probability 

is a weighted average of the predicted probabilities.  The weights equal the relative information 

content of each track forecast.   

Equation (3) assumes the track forecasts are independent.  In fact, the NHC forecast is an 

expert opinion forecast which explicitly considers other track information.  Suppose a known 

fraction mijt of the draws tracks i and j made from the urn are common (which draws are common 

is unknown).  We therefore have overlapping information sets (see for example Clemen, 1987 

and Zeckhauser, 1971).  We can interpret mijt as a correlation measure, since the correlation 

between zit and zjt is jtitijt nnm / . Clemen (1987) shows that, when information sources are 

correlated binomial random variables and the prior is uninformative, the posterior is a mixture of 

beta distributions.  Estimation of mixture distributions is possible (Leroux, 1992), but especially 

complicated here since each observation has potentially a different mixture of betas.  Viscusi 

(1997) suggests weighting binomial information sources as if the information sources were 
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draws from a correlated multivariate normal distribution.  He speculates that the difference 

between using the weights of the normal distribution and the weights obtained by applying Bayes 

rule when the prior is beta and the information sources are correlated binomial draws is likely 

small.  We show in appendix 2 that, for values of Nt typically in our data, that in fact the errors 

are small and therefore adopt Viscusi's suggestion.  That is, let eVeD tt
1ˆ  , where e is a unit 

vector and Vt is the covariance matrix:  
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We assume new track information is uncorrelated with the prior.  Thus, if information sets are 

overlapping, and  assuming the underlying distribution is normal, the weights are computed via: 
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Here ttItt DVeww ˆ/],...,[ 1
0

  are the weights on the prior and track information of 

security j for hurricane h at time t.  The conditional expectation remains a linear weighted 

average of the priors and track forecasts, but the weights account for the probability that 

information is redundant.  

Equation (4) is closely related to Clemen (1987) and Viscusi (1997), who study beta-

binomial models.  However, all empirical papers assume independent information events. In 

Section 4 we estimate a version of equation (4) with non-zero correlations, with maximum 

likelihood, using private and official track forecast data, and prediction market data for the 

conditional probability tP .  In particular, the price of a security which pays $1 if a hurricane 
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makes landfall in range j trades at price equal to tP , since otherwise a trader could make positive 

expected profits by buying the security if the price was less than tP , or selling if the price was 

greater than tP .11 

 

3.  Data 

To analyze hurricane risk perceptions, we use data gathered from the Hurricane Futures Market 

(HFM) project at the University of Miami.  When the NHC officially names a tropical storm, 

HFM creates a market for the storm, which allows traders to buy and sell ten securities whose 

payoff is conditional on where the storm makes landfall.  If the storm is north of a dividing 

line,12 the storm is considered in the Atlantic region.  Otherwise the storm is in the Gulf region.   

For an Atlantic region storm, eight securities (labeled A1-A8) pay one dollar if a hurricane 

makes first landfall within a particular range of U.S. coastline.13  Securities represent disjoint 

coastline ranges, and the union of ranges for all securities is the entire U.S. Atlantic coastline 

from Florida to Maine.  Additionally, an ‘expires’ security, AX, pays one dollar if the storm 

expires without making U.S. landfall,14 and a final security, AN, pays one dollar if the storm 

moves southwest into the Gulf region.  For Gulf region storms, eight securities (G1-G8) have 

coastline ranges which cover the U.S. Gulf coast from Florida to Texas.  An expires security, 

GX, pays if the storm expires at sea or makes landfall in mainland Central America outside the 

U.S., and a final security, GN, pays if the storm moves North into the Atlantic region.  Coastline 

                                                 
11   Appendix 3 discusses the required conditions for the trade price to equal the trader's conditional probability.   
12 Atlantic storms are those located north and east of the imaginary line extending from Key Largo, Florida 
(25.25°N, 80.30°W) through the Lesser Antilles (15°N, 65°W) and beyond. Specifically, a storm is designated an 
Atlantic storm if it forms east of 80.3°W and its latitude satisfies the inequality: latitude > 10.25 · (longitude - 65) / 
15.3 + 15.0.  Gulf storms are those forming west of 80.3°W or south of that same line when they are named. 
13 NHC provides an exact latitude and longitude corresponding to the site where the center of the hurricane first 
lands. 
14 A storm is defined to ‘expire’ if it has not made U.S. landfall or crossed the dividing line and the NHC issues its 
final advisory for that storm when it is still over the ocean, or over non-U.S. land. 
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ranges were computed so that since 1949 an approximately equal number of tropical storms or 

hurricanes made first landfall in each coastline range.  Figure 1 is a map of the Eastern U.S. 

coastline which shows the landfall range of each security and the dividing line.  

HFM creates multiple markets if more than one storm is present, and creates more than 

one market for an individual storm if the storm crosses the dividing line or returns to the ocean 

after making an initial landfall.  

HFM data cover storms for later half of the 2005 season.  Many storms and securities 

elicited little or no trading activity.  In such storms the price of a particular security is close or 

equal to one dollar, and the other securities have a price near zero.  Traders put probability near 

or equal to one on a particular security paying off (typically the “expires” security).  Since such 

storms apparently have no subjective risk, we exclude them from the sample.  Our rule is to 

exclude storms with less than 20 trades.  This leaves 4 usable storms, 13 securities, and 445 

trades.15  Thirty two traders made at least one trade in one of the 13 usable securities.  Tables 1-3 

present summary statistics for the 2005 Atlantic hurricane season and for security prices. 

Consider as an example the storm Ophelia, for which a market was created September 7, 

2005 and which expired without making landfall on September 16, 2005.  Figure 2 presents the 

evolution of the two securities most likely to pay off:  A5 pays one dollar if first landfall occurs 

in a range of coastline which includes part of North and South Carolina (see Figure 1), and AX 

pays one dollar if Ophelia expires without making landfall.  Initially, A5 traded at a price equal 

to $0.10, indicating that traders’ subjective risk assessment was that Ophelia would make first 

landfall in A5 with probability equal to 0.1.  New information from track forecasts then arrived, 

indicating that it was more likely Ophelia would make landfall in A5.  Traders then revised their 

                                                 
15 Our data set is of similar size to other estimates of risk perceptions using survey data (see for example, Viscusi, 
1997 or Cameron, 2005). 
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subjective beliefs upward, eventually to a peak of 0.85 on September 13, as Ophelia neared the 

Carolina coast.  However, Ophelia then turned Northeast and went out to sea, resulting in a 

decrease in the subjective risk of Ophelia making landfall in A5 to zero by September 15. 

Regarding the operational details of HFM, the market consisted of 45 traders.  Each 

trader began with $100 of research funding in their account.  No minimum number of trades was 

required, so traders could make no trades and receive $100.  All traders made at least one trade, 

however.  A set of all securities, which pays $1 with probability one, may be purchased at any 

time from HFM for $1.  The securities purchased from HFM form the supply of securities. 

Traders may also post limit orders to buy or sell a security at a specific price.  Traders see the 

highest buy and lowest sell order, and may accept an offer to buy or sell, creating a trade.  HFM 

records the time, date and price of each trade.  Only one trader lost the full $100, and was then 

out of the market, since traders could not use their own funds.  At the end of the season, traders 

received checks equal to their account value.  For more details on HFM, see 

http://hurricanefutures.miami.edu/.             

For the information sources, we collected latitude and longitude data for three standard 

track forecasts. These track forecasts become available about every 6 hours, being released to the 

public either shortly before or at the times of midnight, 6 am, noon, 6 pm, Greenwich Mean 

Time (GMT).  All times reported in this paper are GMT.  Thus, unlike presidential races or stock 

markets, information events are easily identified as occurring every six hours. The first track 

forecast is NOAA's National Hurricane Center forecast, denoted NHC.  As few as four NHC 

hurricane experts consider data from many separate track forecasts (including both of our other 

track forecasts), and through consensus create the NHC track forecast.  Thus, the NHC forecast 

is a standard expert opinion-type forecast and is also the official government forecast that 
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competes with private forecasts.  NHC forecasts have become increasingly accurate over the 

years, due to computational advances, more data, and improved physical models (Franklin, et. 

al., 2003).  A three-day track forecast today is about as accurate as a two-day track forecast 20 

years ago.  The mean absolute error for a five-day track forecast is 283.7 nautical miles, which 

improves to 108.6 nautical miles for a two-day forecast, and 59.6 nautical miles for a one-day 

forecast (60 nautical miles equals one degree latitude).   

The second track forecast is the NOAA/Geophysical Fluid Dynamics Laboratory (GFDL) 

forecast model (Bender, et. al., 2007).  The GFDL model is a structural model (known as a 

‘dynamic model’ in the hurricane literature).  Structural models use numerical solutions to 

physics equations.  GFDL forecasts are widely available on the web.   

The third track forecast is the Climatology and Persistence (CLP5) forecast model 

(Aberson, 1998).  CLP5 is a purely statistical regression model that forecasts using direction of 

motion, location, storm intensity, and day of the year information, using parameters estimated 

from data on previous hurricanes.  CLP5 also proxies for basic information about a storm such as 

the storms current position and heading.  CLP5 is widely available in tracking software and on 

the internet.   

Consequently, our data contain three representative models: one expert forecast, one 

structural model, and one statistical model. Although other models are available (see 

http://www.nhc.noaa.gov/modelsummary.shtml for details), they are typically either structural, 

statistical, or a combination of both, and are thus unlikely to add much in the way of information 

not contained in the models we use.  Interviews with the traders revealed that they were using 

GFDL and were aware of CLP5.  Traders seemed to regard CLP5 as too inaccurate to pay much 
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attention to, yet traders did claim to pay attention to the storms' position, heading, speed, and 

other characteristics upon which CLP5 is based.   

Each track forecast contains a set of predicted latitude and longitude positions over time.  

Each predicted latitude and longitude position is an l-hour ahead forecast.  Tracks vary in the 

number of hour ahead forecasts they report, but no forecasts are greater than 126 hours ahead.  

Table 4 reports forecast accuracy up to 120 hours ahead in 12 hour increments.  

As noted in Section 2, traders must convert the point forecasts into probabilities of 

landfall, with associated precision.  Appendix 1 shows how we calculate these probabilities.   

The probabilities depend closely on the accuracy of the point forecasts and the implied landfall 

locations.  The probability z rises as the predicted landfall location nears the center of range j.  If 

the predicted landfall location is in range j, then the probability rises with the accuracy of the 

point forecast.  Similarly, precisions vary by track and time since track forecasts vary in their 

accuracy, and all track forecasts become more accurate as hurricanes approach landfall.  Table 5 

gives summary statistics for the probability data. 

As an example, Figures 3a-c plot the track forecasts for Hurricane Wilma, from October 

17-23, 2005.  In the graph, the most Northeast marker (square, circle, or plus) is the five-day 

ahead forecast.  From the graphs, on October 17 all three five-day forecasts agreed that Wilma 

would still be in the Gulf of Mexico.  However, the next day GFDL predicted Wilma would land 

in G7.  NHC and CLP5 predicted Wilma would still be at sea, but CLP5 moved closer to the G8 

coastline.  The implied landfall probability of G7 for GFDL was only 0.24, however.  For all 

tracks, five-day forecasts have large errors.  Indeed, the standard deviation of the GFDL five-day 

forecast error is more than 4.5°, enough to move the landfall to nearly the border between 

Alabama and Florida.  Traders were apparently considerably more confident than the historical 
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accuracy of the GFDL forecast implies, however, since the trade price indicated Wilma would hit 

G7 with probability 0.40 and G8 with probability 0.45 (GFDL predicted G8 with probability 

0.23).  The next day, the NHC forecast predicted G8 (specifically, the probability of G8 rose 

from 0.28 to 0.37) and GFDL predicted the storm would be just off the G8 coastline.  The price 

of G8 rose to 0.7, while the price of G7 dropped to 0.25.  Again, traders were considerably more 

confident than the historical accuracy of the forecasts implied.  The price eventually neared one 

as Wilma neared the G8 coastline, where it eventually made landfall.  It is interesting to note that 

traders appeared overconfident, and yet their forecasts proved correct in this case.  Interviews 

with traders subsequent to the 2005 season indicated traders did not view track forecasts of five 

days or more ahead as informative, yet their trades indicated surprising confidence.  In Section 5 

we estimate whether or not traders are systematically overconfident. 

Figures 4a-c presents a second example, track forecasts for Hurricane Rita for the dates 

during which trades occurred (September 21-23, 2005).  Rita is interesting because the three 

September 21, 12 pm forecasts predicted landfall in locations covered by three different 

securities (the orange lines).  The NHC forecast predicted G1 (zNHC,t=0.49), GFDL predicted G2 

(zGFDL,t=0.41), and CLP5 predicted G3 (zCLP5,t=0.40).  The forecasts predicted the storm was 

approximately three days from landfall, yet the landfall predictions are relatively close to borders 

between securities, and so the probabilities are relatively close to one half. 

One hour subsequent to the release of these forecasts, the prices were PG1=0.4, PG2=0.6, 

and PG3=0.03, indicating traders gave the GFDL forecast the highest weight.  Traders apparently 

discounted CLP5, which predicted G3.16  Indeed, all the forecasts had a higher probability of G3 

than the traders.  So traders were considerably more confident in G2 than the forecasts implied.  

Twelve hours later (green lines), the NHC forecast moved to G2 (zNHC,t=0.55), GFDL continued 
                                                 
16 The weights for CLP5 implied from equation (4) are all above 0.29. 
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to predicted G2 (zGFDL,t=0.46), and CLP5 predicted G3 (zCLP5,t=0.49).  At this point, the price of 

G1 fell to 0.1, G2 increased to 0.85, and G3 was 0.05.  Thus traders placed more weight on the 

forecasts (GFDL and NHC) that turned out to be correct, because the hurricane made landfall in 

G2.17  Further, traders were more confident than the forecasts would suggest, given the forecasts 

predicted the storm was still more than two days from landfall.   

These examples indicate traders can make sophisticated decisions and look at diverse 

information.  They also indicate some possibility of overconfidence.  Although these examples 

are suggestive, a formal statistical model is needed to ascertain exact weights placed on each 

forecast, and to test whether or not such weights are optimal in a Bayesian sense.  

 

4.  Empirical Model and Hypotheses 

We estimate an empirical version of equation (4) with three track forecasts: 
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Here ],...,,,[ 4100  k  is a vector of parameters to be estimated, and sht is a hurricane-

specific dummy.18  Here hjtP  is the conditional probability of hurricane h making landfall in 

range j, at the time t that a track forecast was released, equal to the price of security hj at time t. 

Equation (5) requires values for the priors  and .19  We considered both the initial 

CLP5 forecast and an uninformative (improper) prior (==0).   If ==0, then from equation 

(4): 

                                                 
17 That the prices in a few cases sum to greater than one most likely occurs due to thinness in the market.  In 
addition, the data are last trade data, and so trades do not occur at exactly the same time. 
18 Adding a dummy for the first day of trading had little effect on the results. 
19 One could also estimate the priors via empirical or hierarchal Bayesian methods (Bernardo and Smith, 2000), 
rather than assuming a fixed prior, which is the standard Bayesian methodology used here.  We consider this 
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The uninformative prior provides no information (no draws) about P* and thus the prior receives 

zero weight.  Hence, the β1 term drops out of the regression.  The remaining weights simplify to 

ttttt DVewww ˆ/
~
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 , where eVeD tt
1~ˆ   and tV

~
 is the matrix Vt excluding the first row and 

column, and e is now a 3x1 unit vector.   The results are virtually identical for both the 

uninformed and initial CLP5 forecast prior, so we report results using the uninformed prior. 

As in equation (4), the data in equation (5) vary by hurricane, security, and over time.  

Our calculation of the track forecast probabilities in appendix 1 accounts for security- and time-

specific information.  For example, if a hurricane is forecast to make landfall at the border 

between securities, the security with the longer coastline will consequently have a higher 

probability.  In addition, probabilities are relatively large if the forecast predicts landfall in a 

short period of time within the security range.  However, it is possible that we have not 

considered all hurricane-specific information.  For example, one track forecast may be more 

accurate in Gulf versus Atlantic storms, leading to different weights for different storms.  Hence 

we use hurricane-specific fixed effects, which control for unobserved heterogeneity in the 

hurricane-specific information traders are exploiting that we have not modeled. 

Our dependent variable, Phjt, lies on the [0,1] interval. However, direct maximum 

likelihood estimation of equation (5) is generally not feasible since predicted values of Phjt 

outside the unit interval have beta probability equal to zero.  Thus, the likelihood function is not 

differentiable at 0 and 1, ruling out gradient based likelihood maximization algorithms.  For this 

reason, we follow the literature (see for example, Ferrari and Cribari-Neto, 2004 or Paulino, 

                                                                                                                                                             
possibility in appendix 4.  Neither Viscusi (1997)  nor Lee and Moretti (2009) estimate the priors.  Cameron (2005) 
takes  and  directly from survey data.   
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2001) and use a logit function to transform the conditional mean to the unit interval.  By using 

this approach, our beta distribution model can now be estimated by maximum likelihood.  In 

particular, we rewrite equation (1), defining the beta distribution as a function of the mean and 

sample size, and then maximize the log of the likelihood function: 
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However, the transformation makes )( 0xgPhjt    a non-linear function of the regressors, which 

is inconsistent with the theoretical model outlined in Section 2. We therefore present a linear 

approximation of the regression results using first-order Taylor series approximations of the 

nonlinear density:20  xxgxgxgPhjt  )('))(')(( 000  =βx, where x0 is the mean of 

the independent variables. 

Equations (4) and (5) imply that traders are Bayesian if 1... 42   , so a test for 

Bayesian updating corresponds to a test of this restriction.  If the constant term is positive and 

significant, then the price exceeds the Bayesian weighted average of forecasts.  This signals 

either that traders have additional information, or that traders are overconfident.  If the constant 

term is positive and significant but traders predictions are less accurate than the prices imply, 

then traders are overconfident (for example if, when the price is 0.8, hurricanes make landfall in 

range j less than 80% of the time). 

 

                                                 
20 The logistic function is relatively linear in the unit interval, so the errors are small.  Using a linear approximation 
is also a standard assumption.  Using a linear approximation of the density function is also standard in the literature 
(see for example, Lee and Moretti, 2009) . 
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5.  Results and Discussion 

a. Bayesian Updating Test 

Table 6 summarizes the regression results.  From Table 6, column 1, the coefficients for GFDL 

and NHC are highly significant and close to one, the theoretical value consistent with Bayesian 

updating.  The CLP5 coefficient is nearly zero, indicating traders are ignoring CLP5 information, 

which is consistent with the statements from traders mentioned in Section 3 indicating their 

belief that CLP5 was too inaccurate to be useful.  However, from a Bayesian perspective, traders 

are underweighting CLP5.  Forecast CLP5 is indeed the least accurate, but the low accuracy is 

somewhat offset by the low correlation CLP5 has with other forecasts.  Thus, the information 

CLP5 does provide has relatively high marginal value.  Our results using the entire data set reject 

strict Bayesian updating.  However, the results are consistent with traders who are Bayesians but 

are unaware of the value of the CLP5 forecast: the hypothesis 2=3=4=1 is rejected with 

2=92.5 (p-value=0.00) and the hypothesis 2=3=1 is not rejected with 2=2.43 (p-

value=0.22). The constant term is positive and significant, indicating either overconfidence or 

that traders are using other information besides the three track forecasts. 

Hurricane Ophelia illustrates how traders ignored CLP5 information.  Inspection of 

Figures 2 and 5a-c reveals that the price of AX closely followed the NHC and CLP5 forecasts 

throughout much of the trading.  For example, on September 13, both NHC and CLP5 predicted 

the Ophelia make first landfall in range A5, whereas on September 14, both predicted Ophelia 

would expire at sea.  As expected, the price of A5 fell from $0.85 to $0.24.  However, during 

September 8-10, the price of AX fell while the CLP5 forecast was moving east (increasing the 

probability of AX) and the NHC forecast was moving northwest (increasing the probability of 

A5).  Traders apparently put more weight on the NHC forecast during this period, and a trader 
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would have earned more by assigning more weight to CLP5, since AX eventually paid off.  

Using data only for Ophelia and excluding trades from September 9-10 results in the CLP5 

coefficient being positive and not significantly different from one, supporting the idea that 

traders ignored CLP5 during these dates. 

Subsequent to the trading season, we interviewed several traders.  They indicated that 

CLP5 was a better predictor for Ophelia because Ophelia was a slow moving storm and CLP5 

forecasts well for slow moving storms.  Furthermore, in their opinion, the NHC did not 

maximize forecast accuracy, because it faces different penalties for type I (false positive) and 

type II (false negative) errors.  In their opinion, the NHC predicts landfall too often and predicts 

storms will land near or on an urban center too often.21  For Ophelia, traders we interviewed felt 

the NHC was predicting landfall because it feared the consequences of predicting that Ophelia 

would go out to sea, only to see it make landfall in the Carolinas.   

To test this idea, in Table 6, column 3, we interact the Ophelia dummy with the NHC 

forecast.  The coefficient is not significant, indicating traders did not give the NHC forecast 

significantly less weight for Ophelia.  Overall then, even though some traders felt the NHC 

forecast was biased for Ophelia and CLP5 was predicting AX, traders went with the NHC 

forecast (especially during September 8-10) because they did not view the CLP5 as providing 

valuable information. 

Wilma provides another test case, this time between GFDL and the NHC.  From Figure 3, 

the NHC consistently forecasted G8, whereas GFDL forecasted G7 on October 17-18, but 

switched to G8 on October 19, and then trended south towards GN.22  The NHC forecast was 

                                                 
21 Powell and Aberson (2001) examine NHC forecasts between 1976 and 2000 and find a bias to avoid type II 
errors, which they call a “least regret” forecast.  Note that while it may be entirely appropriate for the NHC to bias 
forecasts in this way, our interest is in how traders react to a potentially biased forecast. 
22 Traders discounted CLP5, which predicted mainly G5 and G6 until the very end. 
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very close to Tampa, a large urban center, whereas GFDL trended south to a less populated area.  

Prices appeared to closely follow GFDL.  The price of G7 declined from $0.44 to trade in the 

range of $0.10 to $0.25 after October 18, before declining to near zero as GFDL trended toward 

GN.  Similarly, the price of GN increased briefly to $0.35 at the end of the day on October 19 as 

GFDL began to drift south of Tampa.  From October 20-23, the probability of GN for GFDL 

declined because the effect of the standard error of the forecast narrowing as the storm 

approached the coast outweighed the effect of the forecast nearing the GN border.  The price of 

GN also declined during the period from October 20-23.  The prices are therefore consistent with 

traders' favoring GFDL over NHC.  Interviews with the traders indicated they discounted the 

NHC forecast because the felt the NHC was compelled to predict landfall near Tampa.23   

In Table 6, column 4, we formally test this idea by including a term which interacts the 

Wilma dummy with the NHC forecast.  The coefficient is negative and significant as expected, 

indicating that traders discounted the NHC forecast in favor of GFDL for Wilma.24  Overall then, 

the results for Ophelia and Wilma indicate that traders discount the official forecast when they 

perceive bias and when they perceive the alternative information source is credible. 

Turning next to Katrina, although CLP5 and GFDL briefly turned towards G4 very early 

on (Figures 6a-c), all three forecasts consistently predicted G3, the eventual winner.  Traders also 

favored G3, whose probability never fell below 0.73.  Nonetheless, traders seemed to favor G4, 

assigning G4 probabilities as high as 0.7 during trading,25 despite the fact that no forecast had the 

probability of G4 above 0.07 during the period of trading.  Katrina made landfall in G3, but 

                                                 
23 Regional weather patterns indicated there was almost no chance of a landfall near Tampa.  Thus traders could 
effectively rule out model uncertainty as a reason for divergence of the forecasts. 
24 We can reject the hypothesis that the sum of the NHC coefficients equals one at the five percent level of 
significance.  
25 The sum of the last trade prices was greater than one for about one day.  This may reflect illiquidity in the market.  
In addition, Katrina was the first hurricane with active trading.   Therefore, there was probably quite a bit of learning 
during Katrina trading. 
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extremely close to the border of G4.  Close enough, in fact, that it took a couple of days to 

determine the winning security. The true probability of G4 is of course unobserved, but most 

likely greater than the probability indicated by the track forecasts.  For consistency, in Table 6, 

column 5, we included a term which interacted the NHC forecast with the Katrina dummy.  As 

expected the coefficient was not significant, since the forecasts were all in agreement that 

Katrina would make landfall near an urban area. 

Turning next to Rita, from Figures 4a-c, GFDL and NHC generally predicted G2, 

whereas CLP5 generally predicted G3.  Prices appeared to closely track GFDL and NHC, which 

was correct ex post since Rita eventually made landfall in G2.  In Table 6, column 6, we included 

a term which interacted the NHC forecast with the Rita dummy.  As expected, the term was not 

significant.  GFDL was generally closer than the NHC to the urban center Houston, so no 

perception of bias existed. 

Overall then, our results indicate some support for Bayesian updating with respect to 

GFDL and NHC, but with CLP5 being generally underweighted.  Furthermore, traders perceived 

the NHC forecast was biased in cases where the NHC predicted landfall near an urban center and 

when an alternative information source perceived to be credible predicted landfall elsewhere.   

Government information dissemination faces difficult tradeoffs in its principal-agent 

problem.  If the information is unbiased, then the government agency may face a high penalty for 

not predicting an adverse event that occurs, while if the agency submits biased information it 

may be ignored.  Here, the NHC apparently leans toward releasing biased information to ensure 

that type II errors will not occur (Powell and Aberson, 2001).  Our results indicate that the NHC 

bias crept into the price of Ophelia AX, even though some traders were aware of it.  However, 
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the NHC bias did not affect Wilma security prices, as traders discounted the NHC forecast in 

favor of GFDL.   

 

b. Accuracy 

Consider as a measure of accuracy the fraction of trades for which 5.0)(hjtP  and the hurricane 

made (did not make) landfall in range j.  Table 7 indicates that, by this measure, traders forecast 

with an 84% success rate.  When a hurricane is three days or less from landfall, the percentage 

rises to better than 90%. Traders are remarkably accurate in their forecasts.  For forecasts, we 

similarly measure the fraction of forecasts for which 5.0)(hjtz  and the hurricane made (did 

not make) landfall in range j.  Table 7 indicates that, as expected, the official NHC forecast is the 

most accurate forecast, whereas CLP5 is the least accurate.  Traders are more accurate than the 

NHC for storms greater than three days from landfall, whereas the NHC is more accurate for 

storms less than or equal to two days from landfall.  Overall traders are slightly more accurate 

than the NHC. 

One possible reason why traders are less accurate for storms near landfall is a ‛favorite-

longshot bias’ (see for example Tetlock, 2004).  The favorite-longshot bias occurs when 

expected returns from betting increase with the probability of winning.  Traders could mildly 

profit by buying securities for which the hurricane is near landfall and forecasted to make 

landfall in the security range.  Such securities have a high price and are thus ‘favorites.’  

Additional evidence of a favorite-longshot bias is presented below.  

In Table 7, each trade counts as one observation of trader beliefs.  That is, when a buyer 

and seller agree on a trade price, we take the trade price as a proxy for the average beliefs of the 

two traders.  However, new information is released only every six hours, so trades in the same 
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six hour window at very different prices might reflect illiquidity in the market, rather than new 

information.  For example, 11 trades for Rita, security G3, occurred within three hours of 12 

noon on September 23.  The average price was $0.32, while the forecasts ranged from 0.17 to 

0.20.  However, one trade was at $0.60. In a more liquid market with less price dispersion, trades 

would be closer to the mean trade, as the buyer would be able to find a seller for a price less than 

$0.60.     

In Table 8, we group trades by the nearest forecast release.  In particular, since forecasts 

are released every six hours, each trade is matched to a set of forecasts no more than plus or 

minus three hours from the trade.  We then average all prices that are matched to the same set of 

forecasts.  If a six hour period has no trades, we have no observation for that time interval.  Table 

8 reveals that the NHC forecast accuracy falls slightly, while the HFM forecast accuracy 

improves considerably to 94%.  Averaging the trades reduces the impact of some less accurate 

trades that probably would not occur in a more liquid market.  HFM still outperforms all three 

track forecasts.  Indeed, we computed HFM forecasts a number of ways and HFM outperformed 

all track forecasts with the exception of storms very close to landfall.  The primary advantage of 

HFM is in Ophelia and Wilma, when the storms were more than five days from landfall.  Thus, 

as noted in Section 5a, traders are more accurate in situations where the NHC faces a large 

penalty for type II error. 

Still, Tables 7 and 8 do not provide a test of market efficiency.  For example, it may be 

that 94% of storms of type k make first landfall in range j, but traders only assess a probability of 

0.7.  In that case Table 7 would indicate 94% accuracy, but traders would be consistently 

underestimating the probability of success, and traders could make positive expected profit of 

$0.24 by buying the security for $0.70, with expected payout of $0.94.  Market efficiency 
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implies the current price is the conditional probability, based on current public information, that 

the hurricane will make landfall in range j.  Unfortunately, the true conditional probability is 

unobserved.  Instead, we observe only whether or not the security paid off.  However, by 

grouping securities with similar prices, we can estimate the true conditional probability with the 

fraction of securities that eventually pay off. Therefore we grouped nearby trade prices into 20 

equal sized bins,26 and then for each bin compare the midpoint of the range of prices in the bin 

with the percentage of actual successes for all trades in the bin's price range.  Market efficiency 

implies the relationship between price and the percentage of actual successes is the 45 degree 

line.27   

Figure 7 shows that most observations are near the 45 degree line, but the slope is greater 

than one.  Traders could mildly profit by betting on storms with a high price and selling 

securities with a low price (buying favorites, selling long shots).28,29  Hence Figure 7 is 

consistent with a favorite-longshot bias.  These results must be interpreted with caution because 

of the difficulty of estimating an event with a probability near one without a large data set.  Even 

grouping all trade prices greater than or equal to 0.8 to increase the sample size, however, gives a 

slope greater than one. 

 

6. Concluding Remarks 

This study is the first to use prediction market data to study hurricane risk perceptions.  Our 

regression model estimates how individuals update their subjective risk perceptions in response 

                                                 
26 The bins are of equal size ($0.01-$0.05, $0.06-$0.10, etc) and the results are not very sensitive to the number of 
bins used. 
27 Assuming a discount factor of one, risk neutrality, that payoffs are uncorrelated with wealth, and no transactions 
costs. 
28 Interestingly, one trader we interviewed noticed the bias and made significant profits selling securities with a low 
price.  These trades apparently did not completely eliminate the bias, however. 
29 Jullien and Salanie (2000) and others find evidence of a favorite-longshot bias in horse racing, but Tetlock (2004) 
finds a reverse longshot bias for the case of sports prediction markets and no bias for financial prediction markets. 
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to private and official sources of hurricane track forecast information. An important issue that we 

address is how much weight individuals place on competing information sources, as well as their 

own prior beliefs, as they update their subjective beliefs about hurricane landfalls.  We find 

traders behave in a manner consistent with Bayesian updating with respect to the official (NHC) 

forecast and a structural forecast model (GFDL), but underweight a statistical model (CLP5).   

 CLP5 is the least accurate forecast, but receives significant weight in the Bayesian 

forecast because it is relatively uncorrelated with the other forecasts.  Since the value of CLP5 is 

subtle, it is perhaps not surprising that boundedly rational traders were unable to see the value of 

CLP5 information.  Nonetheless, our results indicate differences between uncorrelated and (until 

now not examined in the literature) correlated information sources, since the value of correlated 

information sources is more difficult to ascertain. 

Traders display remarkable skill.  Traders correctly predict whether a hurricane will or 

will not make landfall in one of 8 regions for 84% of their trades.  If the hurricane is 3 days or 

less from landfall, the percentage rises to over 90%.  When comparing average forecasts made 

by traders with track forecasts on the same hurricane at roughly the same time, the traders 

forecast with 94% accuracy compared to 77% accuracy of the best available track forecast 

(NHC).   

Nonetheless, the NHC forecast outperformed traders for storms less than or equal to three 

days from landfall.  Track forecasts are highly accurate when storms are near landfall.  Hence, 

security prices should be near one if the storm is projected to make landfall in the security range 

and near zero otherwise.  But security prices tended to be too low when the landfall probability 

was near one and too high when the landfall probability was near zero.  This behavior is 

consistent with a favorite-longshot bias.   
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With regard to official versus private information, traders believed the NHC forecast was 

biased to avoid type II errors.  For Wilma, traders discounted the NHC forecast in favor of 

GFDL (which turned out to be correct), but for Ophelia traders did not discount the NHC 

forecast in favor of CLP5 (which turned out to be correct).  Traders perceived bias in both cases, 

but were only willing to discount the NHC forecast when the alternative forecast was perceived 

as credible.   

Several caveats are in order.  First, HFM is a thin market.  Due to the lack of trades, we 

cannot introduce other track forecasts traders may be watching, including official forecasts with 

different time lags.  Nonetheless, it is unclear if adding additional noise traders would help or 

hinder information revelation.  Second, our traders are mostly meteorologists, so it is unclear if 

the results generalize to the general population.  Still, a wide variety of experienced decision 

makers consult possibly correlated and competing official and unofficial information sources.   

Our results indicate official information agencies such as the NHC face a difficult 

tradeoff.  Penalties for type II error may lead information agencies to bias information 

dissemination, but biased official information may be discounted, at least by experienced 

decision makers, in the face of credible alternatives.  It would be interesting to see if this tradeoff 

extends to other information agencies.  We leave this question to future research.  
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7. Appendix 1:  Computing the probabilities and precisions 

Every six hours, institutions release track forecasts, which give point forecasts of the storm's 

position at various times in the future.  Thus the information in track forecast i released at time t, 

it, consists of a set of Li pairs of position coordinates, so it ={Latitl,Lonitl}, l=1…Li.  Tracks 

vary in the number of point forecasts issued at each release.  Each trader must at least implicitly 

convert the information it into a probability of first landfall in range j, zijt, upon which the price 

of the security is based.  Here we explain how we compute the probability, based on the point 

forecasts and historical mean forecast errors.   

The first step is to compute the standard deviation of the point forecast errors.  NHC 

(2008) gives historical mean prediction errors by track and time to landfall.  Hurricane track 

forecasts have become increasingly accurate, thus we consider only the 2000-06 mean absolute 

errors (2002-06 for CLP5).  It is straightforward to show (proof available on request) that, if the 

latitude and longitude point forecast errors are normally distributed with mean zero and if the 

variance of the latitude error equals the variance of the longitude error, then the standard 

deviation in each direction, il, is related to the mean absolute Euclidean distance error, MAE, 

according to: ilil MAE /2~ .  For example, the third point on the black line of Figure 6c is 

the 36 hour ahead forecast of the August 28, 12 pm CLP5 Katrina forecast.  Thirty six hour 

ahead CLP5 forecasts have a mean absolute distance error of 315.4 km, which corresponds to a 

standard deviation of the longitude error of 251.7 km.     

We next compute the probability of landfall in range j via a Monte Carlo procedure.  The 

simulated actual longitude position, itlc~ , is a normally distributed random variable with mean 

equal to the point forecast Lonitl and standard deviation il .  However, errors are positively 

serially correlated over point forecasts.  That is, if the hurricane is west of the one day ahead 
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forecast, the hurricane is likely to be west of the two day ahead forecast as well.  We model the 

serial correlation as: 
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Hence, itlitl Lonc ~  is mean zero with standard deviation il , but is positively serially correlated 

over i.  A simulated actual latitude is computed in an identical manner. 

Next, for each simulated actual track, }~,...,~{~
1 itLitit ccc   and the same for latitude, we 

compute the first landfall, by interpolating between the simulated actual positions, accounting for 

the curvature of the earth.  The first landfall coordinate is the first intersection between the 

coastline (including the dividing line) and the line formed by interpolating the simulated actual 

positions.  If all forecasts are at sea (over land), the track forecast is extrapolated forward 

(backward) using the last (first) two forecasts.  If all simulated actual positions and the forward 

extrapolation are at sea, the simulated track is said to predict the storm will expire at sea.  The 

probability is thus equal to the fraction of a large number (1000) of simulated actual tracks which 

make first landfall in range j. 

To compute the precision of the probability, q(it), we use a bootstrap procedure.  For 

each track forecast, we have 1000 simulations which either made landfall in range j or did not.  

From this set, we draw a large number (1000) of samples with replacement of 1000 simulations 

each and compute the fraction which make landfall in range j.  We then have a set of 1000 

probabilities.  The precision is the inverse of the variance of the set of probabilities. 

Our methodology requires some fairly sophisticated computations.  However, traders are 

at least aware of the various track forecasts, and how their error varies across tracks and as the 
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hurricane approaches landfall.  More straightforward methods of computing probabilities from 

track forecast information should produce similar regression results. 

 

8. Appendix 2:  Normal approximation 

Here we show that the approximation of the posterior distribution of P* used in the paper is a 

reasonable approximation of the actual distribution.  The approximation is equal to Beta(Pt,Nt-

Pt), where Pt is as in equation (4), while Clemen (1987) shows the actual distribution is a mixture 

of beta distributions.  Intuitively the normal approximation works for two reasons.  First, all 

information sources (track forecasts) provide unbiased estimates of the true probability.  

Therefore, the track forecasts tend to converge on the true value for large N and the weights 

become irrelevant.   

 Second, Clemen (1987) shows the mixture of distributions arises from the decision maker 

(trader) inferring the total successes for all track forecasts by the reports of each track forecast.   

The total successes, s, is unknown since for example if two track forecasts have m12=1 and report 

one success in four draws (zi=1/4), then either both saw one shared draw (s=1) or each saw one 

successful private draw (s=2).  In contrast, the approximation does not infer the total successes, 

but instead just constructs a weighted average of the track forecasts.  Therefore, the variance of 

the estimate of P* is higher.  However, with large N the posterior is a mixture of many beta 

distributions, the weighted average of which tends to be close to normal.   

 Figure 8 gives an average of 50,000 posterior distributions each of which draws random 

zi's from a binomial distribution where the true value is 0.5, and n1=25, n2=30, n3=20, and 

m12=15, m13=0, m23=0, and m123=5.  The solid line is a theoretical best case posterior supposing 

the trader knew the total successes, which has the smallest variance.  The mixture of betas is 
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unbiased, but has a higher variance since the trader estimates the total number of successes.  The 

variance of the normal approximation is 1.5% higher still, since the normal distribution does not 

try to infer the total successes.  Figure 9 shows how the approximation error decreases with the 

total number of draws n=n1+n2+n3+2m123-m12-m13-m23.  For n>15, still well below n for even 

five day track forecasts, the variance is less than two percent higher than the variance of the 

mixture of betas.  Thus the approximation is reasonably accurate.   

 

9. Appendix 3:  Correlation between security payoff and marginal utility of wealth 

A number of papers give sufficient conditions for prediction market prices to be equal to the 

traders' subjective probability that the event occurs.  Clearly risk neutrality is sufficient (Wolfers 

and Zitzewitz, 2004).  Wolfers and Zitzewitz (2006) show that if the distribution of beliefs is 

symmetric and demand is symmetric around the point where price equals probability, then prices 

equal probabilities even if traders are risk averse.  These papers have a number of other implicit 

assumptions, such as no transaction costs and a discount factor equal to one.  These assumptions 

are relatively innocuous in our case: the small stakes make risk neutrality a reasonable 

assumption, and the security pays off within a week or so of trading, so the discount factor is 

near one.   

However, one assumption is potentially relevant to our application.  Wolfers and 

Zitzewitz (2004) note that, if traders are risk averse and payoffs are correlated with agents' 

marginal utility of wealth, then prices and probabilities can differ.  For example, risk averse 

traders with at least partially uninsured assets, such as housing, along the coastline of G3 may 

purchase G3 at a price above the subjective probability of landfall for insurance reasons.  If the 

hurricane makes landfall in G3, the trader's asset losses are offset from the payoff from G3.  
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Similarly, if traders have assets under risk along the coastline, then GX and AX are positively 

correlated with traders' wealth.  Thus GX and AX would trade below the subjective probability 

of expiring at sea.  Risk averse traders require a premium of a positive expected return to hold 

the added risk of GX and AX (the principle is the same as the capital asset pricing model, 

CAPM).   

To see this precisely, let q(k) be trader k's subjective probability of GX or AX, yx(k) be 

the wealth of trader k if the hurricane expires at sea, and y0(k)=δyx(k) be the expected wealth of 

trader k if the hurricane makes landfall.  Following the logic of equation (5) in Wolfers and 

Zitzewitz (2006) we have for log utility: 
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 That is, traders with more wealth at risk than the ex ante average expected wealth demand 

relatively less of a security whose payoff is positively correlated with their wealth, decreasing 

the price.  We assume no correlation exists between traders' wealth at risk and subjective 

beliefs.30  Hence, rewriting gives: 
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Thus Pt<E[q], since the probability for each trader is less than one. 

                                                 
30 It is possible that traders with more wealth at risk also have an incentive to acquire more accurate priors, but 
unlikely that traders with more wealth at risk systematically believe hurricanes are less likely to make landfall.  In 
fact, though, Pt<E[q] as long as the covariance satisfies: 
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We therefore test Pt<E[q] for the security AX,31 by including a dummy variable equal to 

one if the trade was an AX security.  The null hypothesis is that the coefficient on the dummy is 

negative.  The price should be lower for securities positively correlated with assets at risk.    

As shown in Table 6, we can reject the hypothesis that the coefficient is negative at the 

five percent level.  We therefore reject that traders are using HFM to hedge wealth at risk from 

hurricanes.    

 

10. Appendix 4:  Estimation of the priors. 

Our empirical results assume priors are uninformative, or α=β=0.  Another possibility is to 

estimate the priors which best fit the data.  Estimation of priors is known as empirical Bayesian 

methods.  Another alternative we do not consider is hierarchical Bayesian methods, in which the 

econometrician has priors over α and β.   

To estimate the priors, we take α and β in equation (7) as parameters to be estimated, 

rather than assuming α=β=0.  Column 8 of Table 6 details the results.  The estimate of α+β=1.05  

is close to one.  The estimated precision of the prior is then equal to about one draw.  Thus the 

econometric results show that the traders priors are not very informative, providing some 

justification for our assumption of an uninformative prior.  The estimate of α/(α+β)=0.68 

indicates the prior amounts to a very noisy prediction that the hurricane makes landfall in the 

coastline range 68% of the time.  The χ2 value drops with the addition of α and β, indicating that 

estimating the priors has not significantly improved the fit of the model.  

As for the weights on the track forecasts, the weight on GFDL increases slightly and the 

weight on NHC decreases slightly and the standard error of both weights decreases, so we can 

now reject the joint hypothesis that both weights are equal to one.  However, the results remain 
                                                 
31 We have no trades for the GX security. 
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qualitatively unchanged in that traders still put essentially no weight on CLP5, and that the 

GFDL and NHC weights remain close to one.      

      

11. Appendix 5:  Tables and Figures 

Table 1:  Summary statistics for the 2005 Atlantic hurricane season. 

Number of Tropical and Subtropical Storms 28
Number of Hurricanes 15
Number of Major  Hurricanes (Cat. 3-5) 7

 

Table 2. HFM Trade Data for year 2005: Summary Statistics.  Hurricanes can potentially have 
multiple landfalls and thus multiple markets.  Forty five traders participated, of which 32 made at 
least one trade in the subset of securities with at least 20 trades.  All traders began with $100.  
 

Summary Statistic Number Summary Statistic mean Std. Dev. Max. Min. 
Storms with markets 11 Contracts 730.6 1,059.9 4,150.0 9.0
Securities with >20 trades 13 Ending Balance ($) 103.0 52.6 207.6 0.0
Storms with > 20 trades 5   

 
 
Table 3.  Summary statistics for transaction prices by storm and security. 
 

Storm (Intensity) Trades Mean Std. Dev. Maximum Minimum
Katrina-Atlantic (Cat 1)  

 Security A2 20 0.456 0.215 0.700 0.020
Katrina-Gulf (Cat 5)  

 Security G3 22 0.894 0.063 0.980 0.730
 Security G4 39 0.400 0.161 0.700 0.001

Ophelia (Cat 1)  
 Security A5 29 0.235 0.218 0.750 0.001
 Security AX 46 0.420 0.198 0.895 0.050

Rita (Cat 5)  
 Security G1 36 0.379 0.162 0.700 0.015
 Security G2 73 0.766 0.150 0.990 0.150
 Security G3 63 0.168 0.145 0.600 0.001

Wilma (Cat 5)  
 Security G7 26 0.247 0.148 0.440 0.010
 Security G8 27 0.736 0.182 0.990 0.350
 Security GN 32 0.176 0.079 0.350 0.010
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Table 4.  Standard deviation of longitude and latitude distance error in km by track and hours 
ahead.  Source:  authors’ calculations from data published by NHC (2008). 
 

Track 
Hours ahead 

0 12 24 36 48 72 96 120 
GFDL 64.6 112.1 177.1 257.7 353.6 486.9 552.1 896.3 
NHC 17.8 89.6 156.1 219.0 284.4 422.2 558.9 743.1 
CLP5 31.3 131.2 270.8 446.0 596.9 872.7 1088 1297 

 
 
Table 5.  Summary statistics for track forecasts.  The top number in each cell is the mean and the 
bottom number is the standard deviation.  For columns 2-4, each row considers all 12 hour ahead 
track forecasts occurring between the start and end of trading for the security given in the first 
column.  Columns 2-4 give the average distance in km to the closest point in the range of 
coastline given by the security listed in the rows.  If the 12 hour ahead forecast is over land, the 
distance is set to zero.  For AX, the distance is the average minimum distance to the US 
coastline.  For track forecasts that eventually cross the coastline, columns 8-10 are computed by 
interpolating between the hour ahead forecast that is last over water and the first hour ahead track 
over land.  If the 120 hour ahead forecast does not cross land, the track forecast is interpolated 
forward.  If the forecast predicts the storm will expire at sea, the hour ahead forecast closest to 
landfall is used.  
 

Storm 
Distance to security 

range (km) 
Probability of landfall

in security range 
Predicted hours 

to landfall 
  GFDL  NHC CLP5 GFDL NHC CLP5 GFDL  NHC CLP5
Katrina-Atlantic          
 Security A2 136.8 

114.1 
126.3 

123.4 
119.1 

136.9 
0.10 

0.02 
0.22 

0.09 
0.27 

0.17 
33.0 

19.6 
26.5 

16.8 
42.0 

38.5 

Katrina-Gulf          
 Security G3 119.3 

122.2 
127.5 

130.1 
150.9 

142.5 
0.74 

0.13 
0.80 

0.09 
0.55 

0.20 
 34.0 

11.8 
36.0 

10.7 
52.0 

19.6 

 Security G4 73.3 
60.9 

75.5 
72.8 

109.8 
74.3 

0.12 
0.05 

0.11 
0.04 

0.05 
0.02 

 34.0 
11.8 

36.0 
10.7 

52.0 
19.6 

Ophelia          
 Security A5 117.0 

110.8 
126.1 

120.6 
142.8 

130.2 
0.22 

0.16 
0.23 

0.18 
0.18 

0.18 
54.0  

32.7 
52.8 

39.3 
43.4 

27.2 

 Security AX 174.9 
99.5 

185.2 
105.6 

192.7 
100.2 

0.27 
0.20 

0.37 
0.24 

0.42 
0.23 

54.0  
32.7 

52.8 
39.3 

43.4 
27.2 

Rita          
 Security G1 617.7 

339.2 
610.9 

331.9 
634.0 

343.8 
0.18 

0.14 
0.19 

0.19 
0.10 

0.08 
45.2 

22.4 
43.4 

20.5 
49.8 

20.1 

 Security G2 365.1 
300.0 

359.8 
290.0 

383.1 
301.1 

0.56 
0.15 

0.62 
0.19 

0.30 
0.25 

45.2 
22.4 

43.4 
20.5 

49.8 
20.1 

 Security G3 79.7 
127.9 

72.0 
124.9 

84.8 
135.3 

0.23 
0.08 

0.18 
0.08 

0.40 
0.18 

45.2 
22.4  

43.4 
20.5 

49.8 
20.1 

Wilma          
 Security G7 307.5 

136.6 
291.5 

131.3 
322.7 

144.4 
0.18 

0.10 
0.18 

0.08 
0.08 

0.06 
85.5 

36.9 
77.1 

34.5 
109.3 

30.9 
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 Security G8 332.8 
183.1 

317.2 
170.1 

343.1 
187.3 

0.38 
0.24 

0.46 
0.25 

0.14 
0.17 

85.5 
36.9 

77.1 
34.5 

109.3 
30.9 

 Security GN 492.0 
243.3 

468.2 
240.7 

498.5 
250.1 

0.22 
0.10 

0.21 
0.11 

0.15 
0.09 

85.5 
36.9 

77.1 
34.5 

109.3 
30.9 

 
 
Table 6.  Maximum likelihood estimation, all storms.  Column 2 is random effects, all other 
columns include hurricane-specific fixed effects (implemented using dummy variables). 
Columns 3-6 include interaction terms, column 7 includes a dummy variable for AX trades, and 
column 8 estimates the prior parameters using empirical Bayesian methods.  Independent 
variables equal zit, i= CLP5, GFDL, NHC.   **,*** indicates significance at the 5% and 1% level, 
respectively, and standard errors are in parenthesis.  Except for α and β, we report first-order 
Taylor series approximations of the mean of the density.  All regressions have 417 observations. 
 

 Econometric Specification   
Coefficient 1 2 3 4 5 6 7 8 

Constant 0.27*** 0.27*** 0.26*** 0.27*** 0.27*** 0.27*** 0.28*** 0.25**

  (0.02)   (0.02) (0.05) (0.05) (0.06) (0.05) (0.03) (0.11) 

GFDL 1.13*** 1.13*** 1.17*** 1.12*** 1.14*** 1.06*** 1.11*** 1.19***

(0.13) (0.13) (0.13) (0.12) (0.13) (0.13) (0.13) (0.07) 

NHC 0.89*** 0.90*** 0.95*** 0.81*** 0.92*** 1.05*** 0.88*** 0.80***

(0.11) (0.10) (0.11) (0.11) (0.11) (0.14) (0.11) (0.06) 

CLP5 0.00 0.00 0.00 -0.17 -0.02 -0.05 0.00 -0.16
(0.12) (0.12) (0.12) (0.13) (0.12) (0.12) (0.12) (0.12) 

OPHxNHC 
  -0.33      
  (0.27)      

WILxNHC 
   -0.57***     
   (0.19)     

KATxNHC 
    -0.14    
    (0.36)    

RITAxNHC 
     -0.26   
     (0.17)   

Dummy 
AX 

      -0.08  
      (0.15)  

α 
       0.71** 

       (0.25) 

β 
       0.34 

       (0.20) 

Log 
155.90 184.69 185.42 188.99 184.76 184.88 184.72 169.18 

Likelihood 
2 98.11*** 91.14*** 92.62*** 92.62*** 91.29*** 95.53*** 91.21*** 93.32***
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Table 7.  Forecast accuracy of HFM traders and track forecasts.  A trade price or forecast is 
correct if the probability of a hurricane making landfall in j is greater than (less than) or equal to 
0.5, and the hurricane makes (does not make) landfall in j.   
 

Days from HFM Forecast Observations Fraction Correct 
Landfall Trades GFDL NHC CLP5 HFM GFDL NHC CLP5
All trades 433 418 431 431 0.84 0.79 0.81 0.62
>5 days 108 95 108 108 0.69 0.60 0.54 0.58
≤5 days 325 323 323 323 0.89 0.85 0.90 0.64
≤4 days 303 301 301 301 0.89 0.86 0.91 0.63
≤3 days 270 268 268 268 0.90 0.89 0.94 0.63
≤2 days 181 179 179 179 0.90 1.00 1.00 0.61
≤1 day 66 65 65 65 0.98 1.00 1.00 0.97

 
Table 8.  Forecast accuracy of HFM traders and track forecasts, identical forecast times.  For 
each track forecast release, we compute the average security prices during the next six hours.  
Six trades for which no forecasts are available are removed from the sample.   
 

Days from Observations Fraction Correct 
Landfall  HFM GFDL NHC CLP5 
All trades 111 0.94 0.75 0.77 0.68 
>5 days 39 0.92 0.56 0.56 0.62 
≤5 days 72 0.94 0.85 0.89 0.71 
≤4 days 65 0.94 0.88 0.92 0.72 
≤3 days 52 0.96 0.94 0.96 0.71 
≤2 days 38 0.95 1.00 1.00 0.68 
≤1 day 19 1.00 1.00 1.00 0.95 
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Figure 1.  Map of HFM landfall ranges. 
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Figure 2.  Trade-weighted average daily prices of Carolina (A5) and Expires (AX) Securities for 
Hurricane Ophelia, September 7-16, 2005. 
 

 
Figure 3a.  GFDL track forecasts for Hurricane Wilma, October 17-24, 2005.   
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Figure 3b.  NHC track forecasts for Hurricane Wilma, October 17-24, 2005.  
 

 
Figure 3c.  CLP5 track forecasts for Hurricane Wilma, October 17-24, 2005.    
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Figure 4a.  GFDL track forecasts for Hurricane Rita, September 21-23, 2005.  
 

 
Figure 4b.  NHC track forecasts for Hurricane Rita, September 21-23, 2005.    
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Figure 4c.  CLP5 track forecasts for Hurricane Rita, September 21-23, 2005.  
 

 
Figure 5a.  GFDL track forecasts for Hurricane Ophelia, September 7-16, 2005.    
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Figure 5b.  NHC track forecasts for Hurricane Ophelia, September 7-16, 2005.  
 

 
Figure 5c.  CLP5 track forecasts for Hurricane Ophelia, September 7-16, 2005.    
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Figure 6a.  GFDL track forecasts for Hurricane Katrina, August 27-28, 2005.  
 

 
Figure 6b.  NHC track forecasts for Hurricane Katrina, August 27-28, 2005.    
 

 



 46 

Figure 6c.  CLP5 track forecasts for Hurricane Katrina, August 27-28, 2005. 
 

 
Figure 7.  Ex post forecast accuracy, all storms.   
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Figure 8.  Accuracy of the normal approximation relative to the mixture of beta distributions. 

 
Figure 9.  Accuracy of the normal approximation to the mixture of beta distributions.  Figure 
varies n=n1+n2+n3+2m123-m12-m13-m23 while keeping correlations constant.   Non-monotonicity 
in the graph arises from changes in the ability of the mixture of betas to estimate the total number 
of successes as m changes. 
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